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During C4 photosynthesis, CO2 is concentrated around the enzyme RuBisCO.

The net effect is to reduce photorespiration while increasing water and

nitrogen use efficiencies. Species that use C4 photosynthesis have evolved

independently from their C3 ancestors on more than 60 occasions. Along

with mimicry and the camera-like eye, the C4 pathway therefore represents

a remarkable example of the repeated evolution of a highly complex trait.

In this review, we provide evidence that the polyphyletic evolution of C4

photosynthesis is built upon pre-existing metabolic and genetic networks.

For example, cells around veins of C3 species show similarities to those

of the C4 bundle sheath in terms of C4 acid decarboxylase activity and

also the photosynthetic electron transport chain. Enzymes of C4 photo-

synthesis function together in gluconeogenesis during early seedling

growth of C3 Arabidopsis thaliana. Furthermore, multiple C4 genes appear

to be under control of both light and chloroplast signals in the ancestral

C3 state. We, therefore, hypothesize that relatively minor rewiring of

pre-existing genetic and metabolic networks has facilitated the recurrent

evolution of this trait. Understanding how these changes are likely to

have occurred could inform attempts to install C4 traits into C3 crops.

This article is part of the themed issue ‘Enhancing photosynthesis in crop

plants: targets for improvement’.

provided
1. Introduction
Photosynthesis has shaped life on the Earth by allowing the energy from

sunlight to be harvested and used for the assimilation of carbon dioxide. The

process of carbon assimilation via the Calvin–Benson–Bassham cycle [1]

requires initial fixation of CO2 by the enzyme ribulose-1,5-bisphosphate

carboxylase/oxygenase (RuBisCO) to form the three-carbon molecule

3-phosphoglycerate (3-PGA). RuBisCO is thought to have evolved in bacteria

under anoxic conditions approximately 3.5 billion years ago [2,3]. However,

approximately 2.3 billion years ago, the proliferation of oxygenic photosyn-

thetic organisms together with an increase in carbonate deposition due to

weathering started to deplete atmospheric CO2 concentrations [3–5].

Today, rather than RuBisCO being saturated by CO2, it is now surrounded

by 21% oxygen and only 0.04% CO2. Under these conditions, O2 competi-

tively inhibits the carboxylation reaction of RuBisCO to produce 2-

phosphoglycolate (2-PG) [6]. 2-PG is toxic and so is rapidly metabolized

to prevent its accumulation [7]. The metabolism of PG is known as photo-

respiration and is energetically costly, especially at high temperatures

when rates of oxygenation increase [8]. It has been proposed that high

rates of oxygenation by RuBisCO led to the evolution of increased speci-

ficity for CO2, but also that an inescapable trade-off between specificity

and the rate of catalysis led to a lower turnover rate [9]. Owing to the

relatively low rate of catalysis of RuBisCO, C3 species are associated with

significant losses of water via stomata, and large investments in nitrogen

are required to produce the amounts of RuBisCO needed to maintain

reasonable rates of photosynthesis [10].
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Figure 1. Biochemical subtypes of C4 photosynthesis. Boxes represent the M and BS cells. Chloroplasts are in green and mitochondria brown. NADP-ME, NADP-
dependent malic enzyme; PCK, phosphoenolpyruvate carboxykinase; NAD-ME, NAD-dependent malic enzyme; mMDH, mitochondrial malate dehydrogenase; CA,
carbonic anhydrase; PEPC, phosphoenolpyuvate-carboxylase; PPDK, pyruvate,orthophosphate dikinase; AspAT, aspartate aminotransferase; RuBisCO, ribulose-1,5
bisphosphate carboxylase/oxygenase; AlaAT, alanine aminotransferase; CBB cycle, Calvin – Benson – Basham cycle; Asp, aspartate; Mal, malate; CO2, carbon dioxide;
HCO�3 , bicarbonate; PEP, phosphoenolpyruvate; OAA, oxaloacetate; Pyr, pyruvate.
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It would therefore appear logical for photosynthe-

tic organisms to have been subject to significant selection

pressures to decrease rates of oxygenation at the active site

of RuBisCO. Although there is considerable natural variation

in the activity of RuBisCO [11] in photosynthetic lineages

as diverse as the cyanobacteria, algae and land plants,

it is thought that low CO2 concentrations before the

Anthropocene led to the evolution of carbon concentrating

mechanisms. These include the carboxysome in cyano-

bacteria [12], the pyrenoid in algae and hornworts [13],

as well as crassulacean acid metabolism [14] and C4

photosynthesis in angiosperms.

The C4 pathway results from a series of metabolic and

structural adjustments to leaves that together concentrate

CO2 around RuBisCO. In doing so, photorespiration is

reduced, less water is lost per unit of carbon fixed, and con-

siderably lower amounts of RuBisCO and therefore nitrogen

are accumulated per unit leaf area [15]. Despite its complex-

ity, the C4 pathway has evolved independently in more

than 60 lineages that span 18 plant families [16], making it

one of the most remarkable examples of convergent evolution

found in biology. It is thought that the evolution of C4 photo-

synthesis relied on a series of coordinated modifications to

leaf anatomy, cell biology and biochemistry [17]. However,

the basic components, including enzymes of the C4 pathway,

are present in species that use the ancestral C3 pathway [18].
In this review, we summarize our current understanding of

the role of C4 proteins in C3 species and the regulation

of genes encoding these proteins. From these findings,

we propose that rewiring of pre-existing metabolic and

genetic networks has facilitated the evolution of this

novel metabolic pathway.
2. The biochemistry and evolution of
C4 photosynthesis

In the majority of C4 plants, CO2 assimilation is divided

between mesophyll (M) and bundle sheath (BS) cells [15].

CO2 is first converted to HCO�3 by carbonic anhydrase

(CA) and then combined with phosphoenolpyuvate (PEP)

by PEP-carboxylase (PEPC) in the M to generate the four-

carbon acid oxaloacetate (OAA). Metabolism of OAA to

either aspartate or malate is followed by diffusion to the BS

where RuBisCO is localized. Decarboxylation of C4 acids

typically releases a three-carbon acid and high concentrations

of CO2 (figure 1). The three-carbon acid diffuses back to the

M where conversion to PEP by pyruvate, orthophosphate

dikinase (PPDK) allows the C4 cycle to continue. O2 does

not react with PEPC and so CO2 fixation occurs in the

absence of oxygenation. Three different C4 acid decarboxy-

lase enzymes are known to operate in the C4 pathway:

http://rstb.royalsocietypublishing.org/
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NADP-dependent malic enzyme (NADP-ME), NAD-depen-

dent malic enzyme (NAD-ME) and PEP-carboxykinase

(PCK) (figure 1). Although there is some dominance in the

use of individual C4 acid decarboxylases, apparently associ-

ated with different C4 lineages, most species use a mixture

of the three decarboxylases, the make-up of which varies

depending on environmental conditions [19–21].

Most estimates suggest that in both monocots and eu-

dicots, the earliest origins of C4 photosynthesis occurred

approximately 25–30 Ma during the mid-Oligocene [22,23].

An abrupt reduction in the concentration of atmospheric

CO2 during this period is thought to have favoured natural

selection for the C4 pathway [2,23]. However, over the next

20–30 Myr, the C4 pathway continued to evolve in other

lineages, suggesting that low CO2 concentrations acted as a

preconditioning event rather than the sole trigger for C4 evol-

ution [16]. Other factors such as high temperatures, salinity

and fire frequency in tropical and subtropical regions have

been proposed to contribute to the polyphyletic evolution

of C4 photosynthesis [24].

Gene duplication followed by selection or genetic drift are

considered important sources for the appearance of new

traits [25]. After duplication, most redundant genes tend to

be lost as they do not reach sufficient frequencies to become

fixed in a population [26,27]. However, those genes that are

retained can acquire new functions (neofunctionalization) or

mutate to control more than one function (subfunction-

alization). Mechanistically, either can occur via changes in

cis-regulatory control or through alterations to coding regions

resulting in the production of new function [25,28–31]. Gene

duplications may therefore have occurred prior to the appear-

ance of the C4 pathway and facilitated its evolution [2,32].

However, until recently the lack of genome sequences for

closely related C3 and C4 species precluded accurate assess-

ments of these phenomena, and so evidence for gene

duplication followed by neofunctionalization playing a

major role in the evolution of core C4 genes was lacking

[33–35]. Subsequently, approaches that accurately localized

gene duplication events across gene families [36,37] have

revealed that in monocotyledons, many C4 cycle genes

appear to have duplicated in the last common ancestor of

lineages containing C4 plants [38]. There is also evidence

that C4 photosynthesis is built on pre-existing components.

For example, it makes use of M and BS cells, both of which

exist in ancestral C3 leaves. Furthermore, all the enzymes of

the C4 pathway identified to date operate in C3 species [18].

Indeed, a number of models depicting evolutionary trajec-

tories from C3 to C4 photosynthesis have been developed in

recent years [2,16,39–41]. Although these models take con-

trasting approaches and focus on slightly different aspects

of the C4 system, overall they support the notion that anatom-

ical modifications tended to precede a series of modular

changes to metabolic networks that led to evolution of the

full C4 pathway. The ancestral role of C4 enzymes in C3

metabolism, from which these evolutionary changes take

place, will next be discussed.

3. Characteristics of the C4 pathway in C3 plants
BS cells of C3 species such as rice and barley are capable of

carrying out photosynthesis and starch synthesis [42–46]. It

is estimated that chloroplasts in BS and M cells of rice contain

similar amounts of RuBisCO [47]. Downregulation of
chlorophyll synthase in cells associated with the vasculature

of C3 Arabidopsis thaliana showed that photosynthetic capacity

of these cells makes an important contribution to plant

growth and seed production [48]. Thus, although the BS in

C3 species is most commonly associated with controlling

fluxes of nitrogen, sulfur and water into and out of the leaf

[49,50], these results suggest photosynthetic activity contrib-

utes significantly to plant fitness. In fact, in a number of

species widely distributed from across the land plant phylo-

geny, cells associated with the vasculature show some

characteristics of the C4 pathway. In stems and petioles of

celery and tobacco, cells of the mid-vein allow the decarbox-

ylation of organic acids coming from the vasculature and thus

release CO2 around RuBisCO for use in photosynthesis [51].

These attributes have also been observed in Arabidopsis and

rice leaves [52,53]. In each case, cells associated with veins

are photosynthetically active and contain significant activities

of C4 acid decarboxylases [51–53]. In the case of rice, just as

with the BS of certain C4 species, linear electron transport

from photosystem II to photosystem I is reduced in these

veinal cells [53]. Thus, BS cells around veins of C3 plants are

photosynthetic, but they also contain multiple characteristics

more commonly associated with the C4 pathway.

4. The ancestral role of C4 proteins in C3 plants
The fact that core C4 enzymes are present in C3 species meant

that they did not need to evolve de novo and so likely facili-

tated the recurrent evolution of the C4 pathway across land

plants. The role of these proteins in C3 species prior to their

recruitment into C4 photosynthesis has been addressed

recently [18,54]. We therefore next focus on discussing how

groups of C4 proteins could have been recruited from

pre-existing metabolic networks occurring in C3 species.

Gluconeogenesis is fundamental to all life, and in plants

is particularly important in allowing conversion of storage

lipids and proteins into sugars during germination and seed-

ling establishment. Traditionally, it was considered that a

single route meditated by PCK allowed the conversion of

OAA to PEP, and thus for carbon to enter gluconeogenesis

in plants [55–58]. However, disruption of PCK1 function in

A. thaliana has only a small effect on early seedling growth

[56]. Transcripts derived from the PPDK gene, which encodes

the protein catalysing the last committed step of the C4 path-

way, are also abundant during seedling establishment [59],

and the timing and location of expression within the germi-

nating seed are broadly similar to those derived from PCK
[60]. A double ppdk-pck1 mutant showed compromised move-

ment of labelled carbon from storage lipids and proteins into

sugars compared with wild-type, and also compared with

each single mutant. In addition, seedling establishment was

compromised [60]. Based on these findings, it is concluded

that two routes into gluconeogenesis operate in C3 plants,

both involving proteins associated with C4 photosynthesis

(figure 2). It therefore appears that expression of the PCK
and PPDK genes is coordinated to ensure proper functioning

of gluconeogenesis in C3 plants. We propose that an ancestral

gene regulatory system present in C3 species is used to ensure

their high and coordinate activity in C4 plants. Clearly, this

regulatory system must alter somewhat as C4 evolves. First,

it must become operational in mature leaves rather than coty-

ledons. Second, enhancers of expression must move from the

internal promoter that drives expression of cytosolic PPDK in

http://rstb.royalsocietypublishing.org/
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C3 seedlings to the distal promoter driving expression of

chloroplastic PPDK in C4 plants. Third, additional regulation

must evolve to ensure that expression of the PPDK and

PCK genes is restricted to M and BS cells, respectively.

If additional genes encoding C4 proteins are co-regulated in

the ancestral C3 state to allow the proteins they encode to

function together in other metabolic pathways, this may

well have further facilitated the evolution of this highly

complex state. We next consider our understanding of

mechanisms regulating C4 genes in both C3 and C4 plants.
5. Recruitment of pre-existing gene regulatory
networks

As with most traits, gene expression associated with the C4

pathway is regulated at multiple levels, including epigenetic,

transcriptional, post-transcriptional and post-translational

[61,62]. However, it is unclear to what extent these mechan-

isms are already associated with C4 genes in the ancestral

C3 state. It has long been clear that genes encoding proteins

of the C4 pathway respond to light [63–66]. Recently, it has

become apparent that this key characteristic is found in the

ancestral state. In C3 A. thaliana, most genes encoding core

C4 proteins are regulated by light [67]. Furthermore, some

C4 genes are also subject to control by chloroplast-to-nucleus

signalling [67]. Thus, two basic characteristics required for C4

cycle genes to be coordinately expressed with other genes of

C3 photosynthesis are already in place in the ancestral C3

state. Again, these networks need to be modified for an effi-

cient C4 system. First, compared with C3 A. thaliana, in C4

Gynadropsis gynandra (formerly designated Cleome gynandra),

more C4 cycle genes are controlled by the chloroplast. Second,

although an existing system of light-regulation operates in C3

species, this would need to be amplified in order that C4

genes are expressed at sufficiently high levels in leaves

undertaking C4 photosynthesis.

In C4 leaves, expression of C4 genes is typically restricted

to either M or BS cells [61]. For this to happen, trans-factors

must recognize elements in cis in a cell-specific manner. For
many years, it appeared that cell-specific expression in C4

leaves was mediated by cis-elements that were not present

in orthologous genes from C3 leaves. For example, while

the maize PEPC and PPDK genes are expressed in M cells,

and RbcS1A expression is limited to BS cells, this was

not the case for homologous genes in rice [64,68–71].

In addition, preferential expression of PEPC in the M cells

of C4 Flaveria bidentis is associated with two modifications

in cis that generate an M-enhancing module (MEM1) [72].

However, it is now clear that multiple genes are expressed

preferentially in M or BS cells of C4 G. gynandra because

of pre-existing cis-elements located in orthologous genes

from A. thaliana. For example, both genes encoding the

heterodimeric NAD-ME in G. gynandra contain elements in

the coding sequence that determine BS expression, and

these elements are found in the orthologues from A. thaliana
[73,74]. The genes from A. thaliana are not preferentially

expressed in the BS in the ancestral C3 state, but they are

when placed into leaves of C4 G. gynandra. A similar situation

has been found with PPDK and CA genes. Here, cis-regulat-

ory elements located in untranslated regions generate

preferential expression in M cells of C4 G. gynandra [75,76].

Orthologous CA and PPDK genes from C3 A. thaliana contain

the same elements, and although they are silent in terms of

cell specificity in C3 leaves, when placed into C4 G. gynandra,

they lead to expression in the BS. In all these cases, the

cis-elements are highly conserved in C3 A. thaliana, suggest-

ing that they carry out an important, but as yet undefined

regulatory function. Taken together, these findings indicate

that C4 photosynthesis has on multiple occasions made use

of cis-regulators found in C3 species, and therefore that its

evolution is based on alterations in trans as well as in cis.
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