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Electronic stopping power in a narrow band gap semiconductor from first principles
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The direction and impact parameter dependence of electronic stopping power, along with its velocity threshold
behavior, is investigated in a prototypical small-band-gap semiconductor. We calculate the electronic stopping
power of H in Ge, a semiconductor with relatively low packing density, using time-evolving time-dependent
density-functional theory. The calculations are carried out in channeling conditions with different impact
parameters and in different crystal directions for projectile velocities ranging from 0.05 to 0.6 atomic units. The
satisfactory comparison with available experiments supports the results and conclusions beyond experimental
reach. The calculated electronic stopping power is found to differ in different crystal directions; however, strong
impact parameter dependence is observed only in one of these directions. The distinct velocity threshold observed
in experiments is well reproduced, and its nontrivial relation with the band gap follows a perturbation theory
argument surprisingly well. This simple model is also successful in explaining why different density functionals
give the same threshold even with substantially different band gaps.
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I. INTRODUCTION

The study of fast-moving charged particles shooting
through solid materials started with Rutherford’s famous
experiment of showering a gold foil with α particles to
substantiate the nuclear model of the atom [1]. Such fast-
moving particles strongly perturb the target material. The
perturbed state of the medium relaxes to either its original
state or a new state with structural defects, depending on the
nature of the interaction. The study of such defects, generally
referred to as “radiation damage,” is of great interest from the
point of view of applications ranging from nuclear engineering
[2] to biological soft matter for medical applications [3] and
materials engineering for space electronics [4,5].

Stopping power is a quantitative measure of the interaction
between the projectile and the target medium, defined as the
energy transferred from the former to the latter per unit distance
traveled through the material. The fast-moving charged parti-
cle dissipates its kinetic energy by collisions with the nuclei
and the electrons of the medium. Therefore, it is traditional to
differentiate between these two distinct dissipation channels;
the loss of energy to electronic excitations is known as the
electronic stopping power Se, and the loss of energy to the
nuclear motion is known as the nuclear stopping power Sn.

There is a growing interest in modeling the stopping power
of ions with velocities between 0.1 and 1 atomic units (a.u.
hereafter) [6]. In this regime the electronic stopping power
(ESP) is generally dominant; however, at lower velocities the
contribution from nuclear collisions also becomes sizable [7].
Fermi and Teller [8], using an electron gas model, found
the ESP to be proportional to the projectile velocity for
v < 1 a.u. Lindhard [9] and Ritchie [10], applying a linear
response formalism to an electron gas model of simple metals,
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predicted a linear velocity dependence within the low projectile
velocity limit. Almbladh et al. [11] showed, by calculating
the static screening of a proton in an electron gas using
density functional theory (DFT), the significant limitations
of the linear response treatment. Using DFT Echnique et al.
[12,13] proposed a full nonlinear treatment to account for
nonlinear effects such as the presence of bound states and
the complex electronic structure of the heavy projectiles in
the low-velocity limit. Recently, the modeling of proton and
antiproton stoppings in metals, using jellium clusters as a
model of the target, has been extended to intermediate and high
projectile velocities using real-time time-dependent density
functional (TD-DFT) [14,15] simulations [16,17].

Fermi and Teller [8] pointed out that, in case of insulators,
the linear velocity dependence of the ESP is only valid in the
limit in which the kinetic energy of the projectile is greater
than the band gap. An extensive amount of interesting work
has been carried out on the problem of ESP within the linear
response theory [18–21] and nonlinear formalism [22]. A
detailed background on the subject can be found in Ref. [23]
and references therein. A vast majority of these approaches is
limited to an electron gas model of metals and do not take into
account important features such as the local inhomogeneity of
the electron density, core state excitations, and band gaps in
case of insulators and semiconductors. These features become
increasingly important at low velocities. Radiation damage
in metals has also been studied, obtaining very interesting
qualitative results describing the processes in model systems,
using explicit electron dynamics within a tight binding model
[24,25].

Relatively recently, TD-DFT-based first-principles calcu-
lations of ESP [26–29] have been performed for insulators
and noble metals to explain some interesting effects ob-
served experimentally [30–33] which do not fit the known
theoretical models [12,23]. These TD-DFT-based calculations
have successfully reproduced the expected threshold behavior
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in wide-band-gap insulators and the role of d electrons in the
nonlinear behavior found in gold. In contrast, there has not
been much work done on semiconductors, except for a study
[34] which investigated oscillations in the ESP by varying the
atomic number Z. However, no systematic velocity-dependent
investigation has been attempted at this level of theory. Recent
experiments show a possible small velocity threshold for
protons in bulk Ge, a system with very small band gap [35].
The band gap of Ge is almost 20 times smaller than that of
LiF while the observed threshold velocity in Ge is only 2 to 3
times smaller. Very little is known about the velocity threshold
in small-band-gap materials.

Experimentally, it is almost impossible to measure directly
the ESP at velocities � 0.2 a.u., as usually the total stopping
power S = Sn + Se of the medium is measured. The ESP can
then be extracted from the measured spectrum using different
models [36,37]. However, a quantitative knowledge of all
possible mechanisms contributing to the total stopping power
is necessary to extract the electronic component properly. At
velocities not much higher than 0.1 a.u. it becomes rather
difficult to disentangle the two contributions [38]. However,
in simulations it is possible to directly access the ESP using
TD-DFT-based nonadiabatic electron dynamics simulations.
In such simulations the projectile is directed along a crystal
direction, where it does not get too close to any of the
target nuclei. The nuclear contribution to the stopping power,
therefore, is negligibly small and can even be completely
suppressed by constraining the host atoms to be immobile.

In this study we have investigated the ESP of H in Ge. A
small band gap and relatively low packing density makes Ge
particularly interesting for the investigation of the threshold
behavor which has been observed in wide-band-gap insulators
[29,33]. The simulations have been carried out using an
equivalent method to Refs. [28,29]. Furthermore, we have
systematically studied the direction and impact parameter
dependence of the ESP, for which very little is known. The
accuracy offered by this method, as verified in the satisfactory
comparison to experiments below, allows us to explore these
aspects explicitly.

II. METHOD

The calculations are carried out using an extension of the
SIESTA program and the method described in Refs. [39,40]
which incorporates time-evolving TD-DFT-based electron
dynamics [41]. The ground state of the system is calculated
with the projectile placed at its initial position. The ground-
state Kohn-Sham (KS) orbitals [42] serve as initial states. Once
the ground state of the system is known, the projectile is
given an initial velocity and the KS orbitals are propagated
according to the time-dependent KS equation [14] using the
Crank-Nicholson method with a time step of 1 as. The forces
on the nuclei are muted so energy is transferred only through
inelastic scattering to the electrons. In any case, the projectile
velocities are fast enough to leave little or no time for the
nuclei to respond. The projectile velocity itself is similarly kept
constant by neglecting forces on the projectile. This allows for
a simple extraction of the ESP at a well-defined velocity for
each simulation, which is the main aim of our study. The
change in velocity, if considered, can be expected to be of no
more than 10%.
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FIG. 1. (Color online) The total energy of the electronic subsys-
tem as a function of the projectile displacement is shown by the dotted
(black) line (for a projectile traveling along the [011] direction of Ge
at a velocity of 0.6 a.u.). The solid (red) line shows the adiabatic
total energy of the electronic subsystem along the same trajectory.
The dashed (blue) line shows the difference between the two, i.e., the
nonadiabatic energy contribution.

The total energy of the electronic subsystem is recorded as a
function of the projectile displacement for a given velocity, as
shown by the example in Fig. 1 (dotted black line). The peaks
reflect the crystal periodicity. We then adiabatically move
the projectile along the same trajectory (i.e., using standard
ground-state DFT) and calculate a corresponding adiabatic
energy profile (solid red line). Subtracting the adiabatic
total electronic energy Ea(z) from the time-dependent total
electronic energy Etd(z) gives an oscillation-free profile of the
nonadiabatic energy transfer to the electronic subsystem along
the trajectory:

�Ena(z) = Etd(z) − Ea(z). (1)

�Ena(z) is therefore the nonadiabatic contribution shown by
the dashed blue line, from which the gradient can easily be
extracted by a linear fit; this gives our value for the ESP at that
velocity.

The Kohn-Sham orbitals were expanded in a basis of
numerical atomic orbitals of finite extent [43,44]. A double-ζ
polarized (DZP) basis set was used to represent the valence
electrons of the projectile and the host material, while the
core electrons were replaced by norm-conserving Troullier-
Martins pseudopotentials [45], factorized in the separable
Kleinman-Bylander (KB) form [46]. Pruneda and Artacho [47]
have studied the validity of pseudopotentials for short-range
interatomic interactions, showing how the inclusion of core
electrons in the valence configuration mitigates the errors
from this approximation. Therefore the effect of the Ge
pseudopotential was checked by introducing the core (3d)
electrons into the valence shell, which might be important
for the lowest impact parameter trajectories passing very close
to some of the Ge ions in the supercell. We did not find a
significant error in the ESP for any of the impact parameters
shown in our results. Considering the point expected to have
the largest pseudopotential error (the lowest impact parameter
and the highest projectile velocity), the semicore calculations
give an increase of 0.35 eV/Å (an error of 4%). Details of the
basis set and the pseudopotentials are given in Appendix A.
The sampling of the real-space grid, for representing the
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FIG. 2. (Color online) Ge supercell in the [001] direction with H
in a channel.

electronic density and basis functions for the calculation of
some terms of the Hamiltonian matrix [40], was chosen to
correspond to an energy cutoff of 200 Ry.

A 96-atom supercell (Fig. 2) constructed by 2 × 2 × 3
conventional cubic cells of Ge was used. We have checked the
convergence of the ESP with respect to supercell size using a
larger 144-atom supercell at a projectile velocity of 0.6 a.u.,
finding an increase of 0.29 eV/Å (an error of 4%). A k-point
mesh of 4 × 4 × 3 points generated with the Monkhorst-Pack
method [48] corresponding to an effective cutoff length of
22.36 Å [49] was used after testing its convergence. The ex-
change and correlation functional was evaluated using the local
density approximation (LDA) in the Ceperley-Alder form [50].

We used the theoretical lattice constant, which was found
to be 5.59 Å, compared to an experimental value of 5.66Å.
This underestimation of ∼ 1% is typical for the LDA. An
indirect band gap of 0.70 eV was found for bulk Ge, compared
with an experimental value of 0.74 eV (at 0 K). However, it
is important to note that this good agreement is fortuitous,
as DFT with LDA generally either underestimates the band
gap or does not produce one at all. Pseudopotential can be
one of the sources of cancellation of errors [51] along with
a smaller lattice parameter which tend to open the band gap.
Lee et al. [52], using a plane-wave method, have reported an
indirect band gap of 0.41 eV. Much larger band gaps, up to
0.81 eV [53], have been reported depending upon the details of
the calculation. The dependence on the density functional was
checked by repeating the calculations for the Perdew-Burke-
Ernzerhof (PBE) functional [54], for which the theoretical
lattice constant was found to be 5.78 Å with a direct band gap
of 0.33 eV.

In order to check the convergence of our basis in SIESTA,
we have also computed the band structure with the plane-wave
DFT code ABINIT [55], making use of exactly the same
pseudopotential, including the same choice of local potential
and KB projectors, and a high kinetic energy cutoff of 95 Ry
for the basis. The agreement for the valence and low-lying
conduction bands is excellent, although we find a slightly
smaller band gap of 0.58 eV with the plane-wave calculation
(see Appendix B).

The projectile trajectories are chosen along the [001], [011],
and [111] directions. A sectional view of the simulation box
orthogonal to the [001] channel is shown in Fig. 2. Different
representative impact parameters are considered within the
[001], [011], and [111] channels. The projectile velocities
range from 0.05 to 0.6 a.u. for each trajectory.

III. RESULTS AND DISCUSSION

In an experiment with a polycrystalline sample the projec-
tile gets channeled along different crystal directions. We have
therefore taken into account the direction and impact parameter
dependence. We have computed the ESP along three different
channels. The calculated ESP is compared with experimentally
measured values by Roth et al. [35] in Fig. 3.

A. The velocity threshold

The ESP varies linearly with projectile velocity, inter-
cepting zero at a finite velocity. This indicates a definitive
threshold. Roth et al. [35] determine the threshold velocity, by
extrapolating the experimental data, to be 0.027 a.u. ±10%.
We have found the threshold velocity to differ for different
channels. It is 0.05 a.u. in the [001] direction and 0.03 a.u. in
the [111] and [011] directions.

The threshold behavior has been observed in insulators both
experimentally and theoretically. From perturbation theory
a relationship between the projectile velocity and electronic
transitions is given by (see, e.g., Ref. [56])

vth · �k = εg, (2)

where v is the projectile velocity, �k is the change in
momentum in electronic excitations, and εg is the band gap and
we are taking � = 1 for simplification through out this article.
This relation can be deduced by requiring the conservation
of energy and momentum for a two-particle collision event
in the limit of mass of projectile M → ∞ (see Appendix C).
Following Eq. (2), the velocity threshold for an indirect band

FIG. 3. (Color online) Electronic stopping power (Se) vs velocity
(v) of a H projectile in bulk Ge along different crystal directions
as obtained from TD-DFT and compared with the experimental
measurements (empty triangle dat points) reported in Ref. [35].
The trajectories in all the three directions are along the centers
of respective channels with one additional trajectory in the [011]
direction (empty square data points) at a very low impact parameter
(0.24 Bohr position 1 in Fig. 10).
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FIG. 4. (Color online) Schematic illustration of the relationship
between an indirect band gap and the threshold velocity. The arrow
shows a common tangent line from the top valence band to the bottom
of conduction band.

gap modelled as in Fig. 4 would correspond to the relation (see
Appendix C)

εg = 1
2 (me + mh)v2

th + k0vth, (3)

where me and mh are the electron and hole masses, respec-
tively, k0 is the difference in crystal momentum between the
valence band maximum and the conduction band minimum,
and εg is the indirect band gap. It follows that for small k0

the threshold returns to the direct band-gap behavior (see
Ref. [56]), and vth ∝ √

εg . In the case when both parabolas
are thin on the scale of k0, i.e., when k0 � √

(me + mh)εg , the
threshold velocity rather goes as vth = εg

k0
and is thus linear

with εg .
This argument implies that, for parabolic bands, below a

threshold velocity the ESP would drop to zero. For the case
of periodic bands, however, this threshold would not be strict
but can still be defined within some accuracy depending on
the smoothness of the projectile’s potential convoluted with
the relevant electronic wave functions [56]. From Eq. (2),
a threshold velocity in a given direction can be estimated from
the band structure of the material by finding the gradient of
the line which is a joint tangent to the valence and conduction
bands, shown by the arrow in Fig. 4. The threshold velocity
estimated from the band structure in the [001] direction is
found to be 0.053 a.u. as shown in Fig. 5 (solid arrows), which
is in good agreement with the calculated value of 0.05 a.u.
in the same direction. Furthermore, the reason for finding
different threshold velocities in different directions becomes
clear, as the gradient of the joint tangent line in the [111]
direction (dotted arrow in Fig. 5) is smaller, in qualitative
agreement with the TD-DFT calculations. Although the
mentioned experiments average out this direction dependence,
here we can relate it with the band structure of the host material.

The comparison between LDA and PBE results in Figs. 5
and 6 is of special interest. The electronic band gaps differ by
a factor of 2, and yet the ESP shows no significant difference.
The LDA functional produces an indirect band gap of 0.70 eV,
while the PBE functional produces a direct band gap of
0.33 eV. The calculated band structures are shown in Fig. 5.
However, the ESP calculated using LDA and PBE does not
differ significantly at low velocities, and the two calculations
produce almost the same threshold. This is a clear indication
that the threshold phenomenon is not straightforwardly related
to the band gap. The gradient of the joint tangent line of the
valence and conduction bands in both cases is almost the
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FIG. 5. (Color online) Band structure of bulk Ge, calculated
using PBE (dashed blue line) and LDA (solid black line). The valence
band maxima from the two calculations are aligned with each other
for clarity. The two solid (red) arrows illustrate the threshold velocity
corresponding to electron-hole excitations in both cases following
Eq. (2) in the [001] direction. The dotted (magenta) arrow shows the
same (LDA only) in the [111] direction.

same (shown by the solid arrows in Fig. 5). This suggests
that the behavior of the ESP threshold at low velocities is
rather related to the indirect band gap in the given direction
regardless of its being the absolute gap. This further supports
the above-described model of the ESP threshold. The fact that
the relation in Eq. (3) is accurate using the unperturbed host
band structure is somewhat surprising. Such agreement is due
to the fact that the perturbing projectile potential does not
significantly affect the band structure around the gap.

B. Direction and impact parameter dependence

We have found that the ESP strongly depends on direction
in the crystal, particularly at high velocities. The difference in
the ESP between the [111] and [001] channels is up to 3%,
and between these two and the [011] channel it is up to 33%.
The electron density along these channels is shown in Fig. 7
in suitable planes. The electron density is then averaged over
the z axis, as shown in Fig. 8. The direction with the lowest
ESP for a channeled projectile ([011]) has a lower average
density in the center of the channel compared with the two
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FIG. 6. (Color online) The ESP, calculated using the PBE
(dashed blue line with triangle data points) and LDA (solid black
line with circle data points) functionals, in the [001] direction. The
dashed (red) line shows the threshold velocity estimated from the
band structure.
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FIG. 7. (Color online) The projected electronic densities along
the trajectories of projectile in different channels, top [001], middle
[111], bottom [011]. The depicted planes are defined by the projectile
direction of propagation (z) and a high symmetry perpendicular
direction d (the [011] in case of the [001] channel). The electron
density increases from dark to bright.

other channels. For [001] and [111] the averaged density does
not differ significantly, which is similar to what happens for
the ESP. This suggests that the ESP in channeling conditions
can be related to the average density along the trajectory,
corroborating and supporting assumptions and approximations
used in the literature [57–60].

We have simulated five different trajectories in the [001]
channel, as shown in the inset of Fig. 9. The five trajectories are
chosen to sample different impact parameters (different closest
distance to any of the host atoms) within the channel. For each
trajectory we show the total energy of the electronic subsystem
versus distance for a given velocity of 0.5 a.u. in Figs. 9 and
10. The plots in Fig. 9 show the energy profile along the [001]
channel; the periodic variation in the electronic energy reflects
the periodicity of the crystal. A larger variation is seen for the
trajectories with the lowest impact parameters, as should be
expected; however, the baselines of all the trajectories have the
same gradient, which shows that, in this direction, the ESP is
quite insensitive to impact parameters. A similar calculation in
the [111] direction gives the same result (not shown). However,
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FIG. 8. (Color online) The projected density is averaged over the
z axis for all three channels.
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FIG. 9. (Color online) Electronic energy against distance along
the different projectile trajectories in the [001] direction. The
projectile velocity for all the trajectories is 0.5 a.u.. The inset shows
a sectional view of the [001] channel and the trajectories. The gray
circles represent Ge atoms in different transverse planes (defining
the channel), while the black circles show the projectile positions for
different impact parameters.

the ESP strongly depends on impact parameter in the [011]
direction. The total electronic energy profile for five different
trajectories in this direction is shown in Fig. 10. The change
in ESP from the highest impact parameter, i.e., the center of
channel (empty circle data points in Fig. 3) and the lowest
impact parameter, i.e., close to the edge of channel (empty
square data pionts in Fig. 3) changes by a factor of 2. Again
looking at the average density in the [011] direction (Fig. 8),
we can see that it changes by a factor of 3 from the center
to the edge of the channel. This reflects the proposed strong
correlation between the ESP and the averaged local density
within a small radius of the impact parameter. It is to be
expected that such a radius (or cross section) would increase
for slower projectiles. This is verified by the larger slope of
the ESP for the center of the [011] channel trajectory for lower
velocities. Indeed, the low velocity limit displays the same
behavior for all trajectories, indicating that the larger cross
section is seeing the same average electron density in all the
cases.
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In experiment the ESP is naturally averaged over different
directions and impact parameters and precise knowledge
of this averaging mechanism would be necessary to obtain
a comparable average from our calculations. We have not
attempted to do so, although it is clear from Fig. 3 that any
such averaging would result in a slight underestimation with
respect to experiment, especially for high velocities.

IV. SUMMARY

We have systematically studied the different aspects of
the ESP of H in bulk Ge, a representative narrow-band-
gap semiconductor for which good experimental results are
available. We have learned that the ESP is sensitive to the
crystal direction and, in certain directions, to the choice of
impact parameter. A detailed model is needed to average the
calculated ESP over different directions. Similarly to what is
known for insulators, a finite velocity threshold is found in
the calculations, in agreement with what has been observed
experimentally. Here the threshold is found to be much better
defined (a strict threshold) than in previous similar studies of
the ESP of H in LiF [26], a wide-band-gap insulator. Careful
analysis of the band structure of bulk Ge indicates that the
threshold phenomenon is connected to the indirect band gap
in given crystal directions. Our results give further insight into
the understanding of the threshold behavior of the ESP in
materials with a band gap.
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APPENDIX A

The parameters needed for the generation of the basis set
used in this work, according to the procedure explained in
Ref. [43], are given in Table I. The parameters need to generate
the pseudopotentials are listed in Table II.

TABLE I. Cutoff radii r(ζ1), r(ζ2) of first and second ζ functions,
respectively, and the soft-confinement potential’s internal radius ri

are in Bohr; the soft-confinement potential prefactor V0 is in Ry.

Species n l V0 ri r(ζ1) r(ζ2)

Ge 3 2 50 6 6.50
4 0 50 6 6.50 5.00
4 1 50 6 6.50 4.50
4 2 50 6 6.50

H 1 0 50 6 7.00 2.90
2 1 1000 0 6.00

TABLE II. Matching radii for each of the angular-momentum
channels of Ge and H. All lengths are in Bohr.

Species s p d f

Ge(4s24p2) 2.06 2.85 2.58 2.58
Ge(3d104s24p2) 1.98 1.98 1.49 1.98
H(1s2) 1.25 1.25 1.25 1.25

APPENDIX B

The band structure and density of states of bulk Ge
calculated using SIESTA (LCAO) and ABINIT (Plane Waves)
is compared in Fig. 11. The same pseudopotential (and its
local and nonlocal components) is used in both codes.

APPENDIX C

1. Threshold velocity

This is a known relationship that can be obtained in several
different ways; here we present one such way of deriving
it. If a particle of mass m and initial momentum ki collides
with another particle of mass M and initial momentum Ki ,
conservation of momentum requires that

�k ≡ kf − ki = Ki − Kf , (C1)

where kf and Kf are the final momenta of the particles,
respectively, and �k denotes the change in momentum.
Conservation of energy requires that

εf − εi = 1

2M

(
K2

i − K2
f

)
, (C2)

where εi and εf are initial and final energies of the particle of
mass m, respectively. From Eq. (C1), we can write

K2
i − K2

f = 2�k · Ki − �k2. (C3)

On substituting Eq. (C3) in Eq. (C2), we obtain

εf − εi = 1

M
Ki · �k − 1

2M
�k2. (C4)

In the limit M → ∞, the second term in Eq. (C4) vanishes,
and the rest simplifies to

εf − εi = v · �k, (C5)
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FIG. 11. (Color online) The solid and dashed lines represent
ABINIT and SIESTA calculations, respectively.
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where v = Ki

M
. The smallest excitation in the system would

require εf − εi = εg , where εg is the band gap of the material,
with an accompanying change in momentum �k of the
electron undergoing the transition. The threshold velocity of
the projectile at the onset of energy loss would therefore relate
to the band gap as:

εg = vth · �k. (C6)

2. Indirect band gap

The argument for deducing the excitation condition in a
direct-band-gap case can be extended to the case of parabolic
bands with an indirect band gap. The condition for the direct
band gap [εg = 1

2 (me + mh)vth] can be found in Ref. [56]. A
geometrical way to proceed for the indirect band gap is to find
the conditions for which a straight line (corresponding to the
red arrow in Fig. 4) would cross both of the parabolas, and from
these derive the limiting velocity value below which there is
no crossing. Considering first the parabola for electrons, we
can write

εe = 1

2me

|ke − k0|2 + εg. (C7)

The transition line εt = ke · v + ε0 should cross the parabola
εe, where ε0 is a constant defining the vertical positioning of
the transition line of slope v (red arrow in Fig. 4):

1

2me

|ke − k0|2 + εg = ke · v + ε0. (C8)

Here for simplicity we consider that k0 and v are collinear.
Furthermore, since we are interested in obtaining an equation
for the threshold velocity, we can consider that ke is parallel
to v without loss of generality. The Eq. (C8) is quadratic in ke

and can be solved to give

ke = k0 + mev ±
√

(k0 + mev)2 − 2me(εg − ε0) − k2
0 . (C9)

Similarly, for holes we can write

εh = − k2
h

2mh

. (C10)

Again, the transition line εt = kh · v + ε0 should cross this
parabola. Equating the two gives a quadratic equation in kh

which can be solved to give

kh = −mhv ±
√

(mhv)2 − 2mhε0. (C11)

The two conditions (C9) and (C11) (for electrons and holes,
respectively) can be combined as

1
2mhv

2 � ε0 � εg − 1
2mev

2 − k0v; (C12)

for that to be possible,
1
2mhv

2 � εg − 1
2mev

2 − k0v, (C13)

leading to

εg � 1
2 (me + mh)v2 + k0v, (C14)

or, at v = vth,

εg = 1
2 (me + mh)v2

th + k0vth. (C15)
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