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1. Summary
The mitochondrial F1-ATPase inhibitor protein, IF1, inhibits the hydrolytic, but

not the synthetic activity of the F-ATP synthase, and requires the hydrolysis of

ATP to form the inhibited complex. In this complex, the a-helical inhibitory

region of the bound IF1 occupies a deep cleft in one of the three catalytic inter-

faces of the enzyme. Its N-terminal region penetrates into the central aqueous

cavity of the enzyme and interacts with the g-subunit in the enzyme’s rotor.

The intricacy of forming this complex and the binding mode of the inhibitor

endow IF1 with high specificity. This property has been exploited in the devel-

opment of a highly selective affinity procedure for purifying the intact F-ATP

synthase complex from mitochondria in a single chromatographic step by

using inhibitor proteins with a C-terminal affinity tag. The inhibited complex

was recovered with residues 1–60 of bovine IF1 with a C-terminal green fluor-

escent protein followed by a His-tag, and the active enzyme with the same

inhibitor with a C-terminal glutathione-S-transferase domain. The wide appli-

cability of the procedure has been demonstrated by purifying the enzyme

complex from bovine, ovine, porcine and yeast mitochondria. The subunit com-

positions of these complexes have been characterized. The catalytic properties

of the bovine enzyme have been studied in detail. Its hydrolytic activity is sen-

sitive to inhibition by oligomycin, and the enzyme is capable of synthesizing

ATP in vesicles in which the proton-motive force is generated from light by

bacteriorhodopsin. The coupled enzyme has been compared by limited trypsi-

nolysis with uncoupled enzyme prepared by affinity chromatography. In the

uncoupled enzyme, subunits of the enzyme’s stator are degraded more rapidly

than in the coupled enzyme, indicating that uncoupling involves significant

structural changes in the stator region.
2. Introduction
The F-ATP synthase, or F1Fo-ATPase, from mitochondria is an abundant multi-

subunit assembly associated with the inner membranes of the organelle [1,2].

The high-resolution structural analysis of the F-ATP synthase has been con-

ducted by the detailed analysis of constituent domains, largely by X-ray

crystallography [3–10]. These substructures have been assembled into an over-

all mosaic structure within the constraints of a 32 Å resolution overall structure

determined by cryo-electron microscopy of single particle images of the intact

enzyme complex [10,11]. A series of structures of the F1 catalytic domain

from both the bovine [3–7,12] and yeast [13,14] enzymes describes the structural

changes that occur in the a3b3 subdomain in response to the anticlockwise

rotation of the central stalk of the enzyme (as viewed from its membrane
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domain), and provides a detailed description of the catalytic

mechanism of ATP hydrolysis by F1-ATPase. The structure of

the membrane extrinsic region of the enzyme was completed

by the addition of the structure of the peripheral stalk, which

demonstrated its mode of attachment to the F1 domain via an

interaction between the oligomycin sensitivity conferral

protein (OSCP) with the N-terminal region of one of the

three a-subunits [8,9,15]. The structural analysis of the mem-

brane domain of the enzyme is less advanced, but structures

have been determined for the F1–c ring complexes from

bovine [10] and yeast mitochondria [16], which contain the

complete rotors. However, as yet, there is no high-resolution

structural information describing the rest of the membrane

domain of the enzyme, and therefore a molecular description

is lacking of how the transmembrane proton-motive force is

coupled to ATP synthesis, and of how rotation is generated.

One possible approach to filling this lacuna would be to

crystallize the intact F1Fo-ATPase complex, and to determine

its high-resolution structure by X-ray crystallography.

One severe practical problem especially has impeded

this approach. As described in this study, the interface

between the c-ring and subunit a is unstable, and the removal

of phospholipids and their replacement by detergents often

uncouples the proton-motive force from ATP synthesis by

disrupting the interactions between subunit a and the

c-ring. Thus, any structural information about how they

interact is lost. To overcome this problem, as described

here, we have developed a simple, rapid and mild purifi-

cation of the F1Fo-ATPase complex from mitochondria that

takes advantage of the exquisitely specific inhibition of the

mitochondrial F1Fo-ATPase by its natural inhibitor protein,

IF1 [17]. The binding of the inhibitor to the enzyme requires

the hydrolysis of ATP, and only the ATP hydrolytic (and

not its synthetic activity) is inhibited. It has been suggested

that IF1 may also inhibit ATP synthesis [18], but this effect

has not been demonstrated directly on the isolated enzyme.

Bovine IF1 is a predominantly a-helical protein [19] that, in

the inhibited complex, is deeply buried in a channel in one

of three catalytic interfaces of the F1 catalytic domain of the

enzyme [20,21]. In the inhibited complex, the C-terminal

part of the inhibitor protein is exposed, and extends from

the surface of the F1 domain. Therefore, affinity tags have

been attached to the C-terminus of appropriately engineered

inhibitor proteins to facilitate the purification of the inhibi-

ted complex. After the inhibition of the F1Fo-ATPase, the

detergent-solubilized inhibited complex has been bound selec-

tively to an appropriate affinity column. Then, in a subsequent

step, either the inhibited F1Fo complex or the active complex

has been recovered. These enzyme preparations are free from

contaminants, and they are almost entirely fully coupled. The

versatility of the procedure is demonstrated here by the purifi-

cation of the enzyme complex from bovine, ovine, porcine and

yeast mitochondria.
3. Material and methods
3.1. Analytical procedures
Protein concentrations were measured by the bicinchoninic

acid method (Pierce Biotechnology). The ATPase activity of

samples was determined by coupling it to the oxidation of

NADH monitored at 340 nm [22]. In this assay, hydrolysed
ATP is regenerated by a transfer of phosphate from phospho-

enolpyruvate to ADP catalysed by pyruvate kinase generating

pyruvate. Pyruvate is converted to lactate-by-lactate dehydro-

genase with concomitant oxidation of NADH to NADþ. Thus,

the rate of the decrease in absorbance at 340 nm is directly

proportional to the rate of ATP hydrolysis. The enzymes and

substrates are added in excess to ensure that the rate of

NADH oxidation is limited only by the hydrolytic activity

of the ATPase. The effect of oligomycin on this activity was

determined by addition of the inhibitor (0.1 mg ml21; w/v) in

ethanolic solution.
3.2. Isolation of mitochondria and mitochondrial
membranes

Mitochondria were isolated from bovine, ovine and porcine

hearts, as described previously for bovine mitochondria

[23], and stored at 2208C. Mitochondria were prepared

from 55 l cultures of Saccharomyces cerevisiae (W303–1A,

Mat a, ade2-1, trp1-1, leu2-3,112, ura3-1, his3-11,15, ybp1-1
plus a canavanine-resistance marker) grown at 308C in a

medium consisting of peptone (20 g l21), yeast extract

(10 g l21), 3 per cent glycerol (v : v), adenine (0.05 g l21) and

antifoam 204 (180 ml l21; Sigma-Aldrich) in an Applikon

ADI1075 fermentor (Applikon Biotechnology). At the end

of logarithmic growth when the OD600 had reached 8–9,

the cells were cooled to 208C, harvested by continuous

centrifugation at 18 000g, broken by passage through a dyno-

mill disruptor (WA Bachofen AG), and centrifuged for

20 min at 4800g and then for 10 min at 4200g. The mitochondria

were obtained from the supernatant by centrifugation (32 000g,

50 min). They were washed twice in a buffer containing

100 mM Tris–HCl, pH 7.5, 650 mM sorbitol, 5 mM aminohex-

anoic acid, 5 mM benzamidine and 0.005 per cent PMSF (w/v),

and stored at 2208C, at a protein concentration of 10 mg ml21,

in suspension in a buffer consisting of 20 mM Tris–HCl, pH

8.0, containing 10 per cent glycerol (v/v). The yield of

mitochondrial protein from a 55 l culture was 6–8 g.

Ammonium sulphate (AS) particles were prepared from

bovine mitochondria, as described previously [24].
3.3. Over-expression and purification of
inhibitor proteins

Sequences encoding residues 1–60 of bovine IF1 plus

C-terminal hexahistidine, and with C-terminal glutathione-

S-transferase (GST), or green fluorescent protein (GFP), plus

hexahistidine, and of residues 14–60 of bovine IF1 with

C-terminal GST plus hexahistidine, were all cloned individu-

ally into the expression plasmid pRun [25]. The proteins were

expressed in Escherichia coli C41 (DE3), and purified by affi-

nity chromatography on a Hi-Trap nickel sepharose column

(5 ml; GE Healthcare), as described previously [26]. Pooled

fractions containing inhibitor proteins were dialysed for 4 h

against 2 l of buffer consisting of 20 mM Tris–HCl, pH 7.4,

and concentrated to 10 mg ml21 with a VivaSpin concentra-

tor (molecular weight cut-off 5 kDa; Sartorius). The yields

of inhibitor proteins referred to as I1–60His, I1–60GFPHis

and I1–60GSTHis were 10, 100 and 100 mg l21, respectively.
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3.4. Purification of inhibited F1Fo-ATPase complexes
Bovine heart (and ovine and porcine heart) mitochondrial

membranes were suspended in phosphate buffer consisting

of 50 mM disodium hydrogen orthophosphate, pH 9.2,

100 mM sucrose and 0.5 mM EDTA, and then centrifuged

(13 700g, 30 min, 48C). This procedure, which was repeated

twice, removed endogenous IF1 bound to the bovine

ATPase, but it was not applied to mitochondria from

S. cerevisiae as they have low amounts of bound endogenous

IF1. The pellet of phosphate-washed animal mitochondria (or

unwashed yeast mitochondria) was re-suspended at a protein

concentration of 8.5 or 10 mg ml21, respectively, in a buffer

containing 20 mM Tris–HCl, pH 8.0, and 10 per cent glycerol

(v/v). To 50 ml portions of this suspension, 5.5 ml of a sol-

ution of 10 per cent (w/v) dodecylmaltoside (DDM) was

added to a give a final detergent concentration of 1 per cent

(w/v). The suspensions were kept at room temperature for

10 min, and then centrifuged (24 000g, 10 min). In a typical

experiment, the ATPase activity in a DDM extract of bovine

mitochondrial membranes (382 mg of protein) was inhibited

with I1–60His (1.0 mg), and 750 ml of a solution containing

200 mM ATP, 200 mM MgCl2 and 400 mM Trizma base was

added. The sample was incubated at 378C for 15 min, and

further portions (750 ml) of the ATP solution were added

every 5 min. After centrifugation (10 000g, 10 min), sodium

chloride (0.3 g) and 5 M neutralized imidazole were added

to the supernatant to final concentrations of 0.1 M and

25 mM, respectively. This solution was applied at a flow

rate of 1 ml min21 to a nickel Sepharose HisTrap HP

column (5 ml; GE Healthcare) equilibrated in buffer B

(20 mM Tris–HCl, pH 7.4, 10% (v/v) glycerol, 0.1% (w/v)

DDM, 1 mM ATP, 2 mM MgSO4, 0.1 M NaCl and 25 mM imi-

dazole). The F1Fo–I1–60His inhibited complex was eluted

with a linear imidazole gradient of 25–500 mM over

100 ml. The recovery of the inhibited complex was 25 mg.

This procedure was performed at 238C.

3.5. Purification of active F1Fo-ATPase
Active bovine F1Fo-ATPase was purified in a similar way to

the inhibited complex, except that the ATPase activity of

the DDM extract (50 ml) was inhibited with 2.9 mg of I1–

60GSTHis. The F1Fo-I1–60GSTHis complex was applied to

two GSTrap HP columns (each 5 ml; GE Healthcare) con-

nected in series, equilibrated in buffer C consisting of

20 mM Tris–HCl, pH 7.3, 0.1 per cent DDM, 10 per cent gly-

cerol, 0.15 M NaCl and 5 mM dithiothreitol. The bound

protein was washed with buffer D containing 20 mM Tris–

HCl pH 7.3, 0.1 per cent DDM, 10 per cent glycerol and

10 mM EDTA at a flow rate of 1 ml min21. When the conduc-

tivity of the eluate had reached a stable baseline, the flow of

buffer was stopped for 17 h. Then, the active F1Fo-ATPase

complex was recovered at a buffer flow rate of 0.5 ml min21.

The preparation of the active bovine complex was

repeated with various phospholipids (final concentration

of 0.1 mg ml21) in the chromatography buffers. The

phospholipids were asolectin (a mixture of phopholipids

from soya beans; Sigma-Aldrich), and the following

mixtures (Avanti Polar lipids): bovine cardiolipin (CL) :

bovine phosphatidylcholine (PC) : bovine phosphatidyl-

ethanolamine (PE) (3 : 1 : 1, by wt); asolectin : bovine CL

(1 : 3, by wt); bovine heart polar phospholipid extract
(BHPPE); and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospha-

rac-(1-glycerol)] (POPG) : 1-palmitoyl-2-oleoyl-sn-glycero-

3-phosphoethanolamine (POPE) : 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) (3 : 1 : 1, by wt).

3.6. Partial trypsinolysis of F1Fo-ATPase
Trypsin (3.5 ml; 1 mg ml21 in 1 mM hydrochloric acid) was

added to a sample of bovine F1Fo-ATPase (350 ml,

2 mg ml21) in 20 mM Tris–HCl, pH 7.4, containing DDM

(0.3%; w/v) to give a trypsin : F1Fo-ATPase ratio of 1 : 200

(w/w). Samples (50 ml) were removed at various intervals

up to 360 min, and proteolysis was terminated by addition

of a fivefold excess (w/w) of bovine pancreatic trypsin

inhibitor (5 mg ml21 in water).

3.7. Protein analysis
Samples of mitochondria, mitochondrial membranes, puri-

fied F1Fo-ATPases and products of partial trypsinolysis

of bovine F1Fo-ATPase were analysed by SDS–PAGE in

10–15 per cent acrylamide gradient gels, and the proteins

were detected with Coomassie blue dye. Proteins in stained

bands were identified by mass mapping of tryptic peptides

[27]. Partial proteolysis products of coupled and uncoupled

samples of bovine F1Fo-ATPase were precipitated with etha-

nol, the subunits of F1Fo-ATPases and the products of

partial proteolysis of bovine F1Fo-ATPase were separated by

RP-HPLC and their intact protein masses were measured

‘online’ to the column with a Quatro Ultima triple quadru-

pole mass spectrometer with electrospray ionization

(Micromass), as described previously [28].

3.8. Preparation of liposomes
Chicken egg phosphatidylcholine and E. coli polar lipid

extract dissolved in chloroform were mixed in a ratio of

1 : 3 (w : w). The lipid composition was chosen in order to

maximize coupling in the liposomes. The particular phospho-

lipid mixture does not compare with the lipids present in the

mitochondrial membrane but has been used extensively

before in reconstitution studies [29]. The solvent was evapor-

ated in a stream of nitrogen, and the dried phospholipids

were re-dissolved in an equivalent volume of water. Unilamel-

lar liposomes of uniform size were prepared by a passage of the

solution five times through a polycarbonate filter (0.1 mm pore

size; Millipore Corporation). They were stored at 48C at a phos-

pholipid concentration of 20 mg ml21 in a buffer containing

20 mM MOPS, pH 7.4 and 50 mM KCl.

3.9. Reconstitution of F1Fo-ATPase into liposomes
Liposomes (400 ml) were de-stabilized in the presence

of samples of purified bovine F1Fo-ATPase (70 ml,

10 mg ml21) by addition of Triton X-100. F1Fo-ATPase was

purified in the absence of any phospholipids. The requisite

amount of Triton X-100 was calculated from the absorption

of the vesicles at 600 nm following addition of 400 ml of phos-

pholipid vesicles to 10 ml quantities up to 50 ml of 10 per cent

(w/v) Triton X-100. The volume of the mixture was adjusted

to 2.4 ml with 20 mM Tris–HCl, pH 7.4. The detergent was

removed by the gradual addition of Biobeads (Biorad Labora-

tories) up to 10 mg mg21 of detergent and then over 12 h up
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Figure 1. Purification of the F1Fo-ATPase inhibitor complexes from bovine, ovine, porcine and yeast mitochondria by nickel affinity chromatography. The inhibitor
was (a,b) I1 – 60GFPHis and (c) I1 – 60His. (a) Elution profile of the inhibited bovine F1Fo-ATPase-I1 – 60GFPHis complex monitored at 280 nm. (b) SDS – PAGE
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to a total of 20 mg of Biobeads per mg of detergent. The pro-

teoliposomes were centrifuged (60 000g, 45 min) and then re-

suspended in buffer (250 ml) containing 20 mM Tris–HCl,

pH 7.4.
3.10. Proton pumping coupled to ATP hydrolysis in
proteoliposomes

A portion of proteoliposomes (10 ml) were added to a

solution containing 20 mM MOPS, 20 mM KCl and 0.5 mM

valinomycin to give a final volume of 1 ml. 9-amino-6-

chloro-2-methoxyacridine (ACMA) was added to a final

concentration of 1 mM. The proton-pumping activity of the

F1Fo-ATPase was initiated by the addition of ATP to a final

concentration of 100 mM, and terminated by the addition of

either I1–60GFP or oligomycin, to final concentrations of

0.5 or 0.665 mM, respectively. The change in fluorescence at

excitation and emission wavelengths of 430 and 475 nm,

respectively, was measured in a Shimaduzu RF-5301 PC

dual wavelength spectrophotometer. ACMA binds to mem-

branes in the energized state and becomes quenched when

a pH gradient is established.
3.11. ATP synthesis in proteoliposomes
Purple membranes were purified from Halobacterium halobium
as described before [30], and bacteriorhodopsin was solubil-

ized in 2 per cent (v/v) Triton X-100. Proteoliposomes

containing both F1Fo-ATPase and bacteriorhodopsin were

prepared as described earlier, except that solubilized bacter-

iorhodpsin (300 ml; 2 mg ml21) was added also to the

reconstitution mixture. A portion of the resulting proteolipo-

somes (10 ml) was suspended in a solution containing 20 mM

Tris–HCl, pH 7.4, 200 mM phosphate and 200 mM ADP. The

stirred suspension (750 ml) was illuminated with a halogen

bulb. Samples (75 ml) were removed at various times and

quenched with 75 ml of aqueous trichloroacetic acid

(40 g l21). The ATP content was estimated by luciferin–luci-

ferase assay with an ATP Bioluminescence kit (Roche).
4. Results
4.1. Purification of inhibited and active F1Fo-ATPase
The F1Fo-ATPase inhibitor complex was purified from mito-

chondria from cows, sheep, pigs and S. cerevisiae (figure 1).

The average yields of the purified complexes from about

380 mg of total protein in phosphate-washed mitochondria

were 25, 10 and 16 mg for the bovine, porcine and ovine com-

plexes, respectively. The yield of the inhibited complex from

S. cerevisiae mitochondriawas 15 mg g21 of mitochondrial protein.

The inhibition of mitochondrial F1-ATPase by IF1 has been

reported to be reversed by a range of reagents [31–33]. They

include oxyanions such as sulphate, sulphite, bicarbonate,

borate, phosphate and pyrophosphate, and the chelating agent

EDTA. In an initial survey conducted in solution, each of them

was investigated, at various concentrations and under a variety

of conditions, as agents for releasing F1Fo-ATPase from the inhib-

ited bovine complex. From these investigations, EDTA was

identified as the reagent that released the highest activity of

F1Fo-ATPase. It probably acts by removal of magnesium ions

associated with nucleotides bound in the catalytic and non-cata-

lytic sites of the enzyme, resulting in the destabilization of the

interaction with the inhibitor protein. However, EDTA could

not be used for releasing the active enzyme from the inhibited

complex bound to a nickel–NTA column via the histidine tag

of the inhibitor protein, although borate was used successfully

to release the active enzyme (data not shown). Therefore, the

inhibited complex was bound to a column of immobilized gluta-

thione via the GST domain of I1–60GSTHis, and then the active

enzyme was released with EDTA (figure 2). The recovery of

active bovine F1Fo-ATPase from about 380 mg of protein in

the DDM extract of mitochondria was 11 mg, with a specific

activity of 4.0 mmol min21 mg21.

4.2. Subunit compositions of purified
F1Fo-ATPase complexes

The subunit compositions of the various purified complexes

were analysed by SDS–PAGE, and by mass-mapping the
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Table 1. Effect of phospholipids on the activity of bovine F1Fo-ATPase. The phospholipids were added to buffers used in the purification of the active enzyme
(see §3).

preparation additives
specific activity
(mmol min21 mg21)

oligomycin sensitivity
(% inhibition)

AS particles none 30.0+ 3.7a 91.0+ 1.5

DDM extract none 27.6+ 4.0a 83.8+ 4.7

F1Fo-ATPase none 4.4+ 1.3 8.6+ 3.1

F1Fo-ATPase asolectin 50 40

F1Fo-ATPase CL : PC : PEb 22.2+ 4.8 77.2+ 3.6

F1Fo-ATPase asolectin : CLc 49 75

F1Fo-ATPase BHPPE 16 66

F1Fo-ATPase POPC : POPG : POPEd 21.1+ 3.5 90.0+ 1.6

F1Fo-ATPase PL vesiclese 24.7 83
a10% of the membrane protein was assumed to be F1Fo-ATPase.
b3 : 1 : 1, by wt.
c1 : 3 w/w.
d3 : 1 : 1, by wt.
ePhospholipid (PL) vesicles are composed of chicken egg phosphatidylcholine and E. coli polar lipid (1 : 3, w/w).
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tryptic digests of the bands from the stained gels (figures 1

and 2; electronic supplementary material, tables S1 and S2).

These analyses demonstrated that the known complement

of subunits of the enzyme was present in the purified

bovine-, sheep- and pig-inhibited complexes, and in the

active bovine complex, except for the membrane subunits

DAPIT and 6.8 kDa proteolipid [34]. It is known that these

two subunits are retained in the complex only when the

enzymes are purified with phospholipids in the buffers

throughout the preparation. The yeast genome does not

encode subunits that are equivalent to DAPIT and the

6.8 kDa proteolipid, and the purified yeast enzyme also

lacked the known subunits e, g and k, which, although

they were retained when a Triton X-100 extract of mitochon-

dria from S. cerevisiae was fractionated by anion exchange
chromatography [35], are weakly associated with the com-

plex. The separation of the subunits of the enzymes from

all four species by liquid chromatography (LC), coupled to

measurement of their intact masses by mass spectrometry,

confirmed their subunit compositions, and also confirmed

the presence of the hydrophobic subunits a and c, which con-

tain few tryptic cleavage sites and so are not readily

identifiable by mass mapping of tryptic peptides (see the

electronic supplementary material, table S1).

4.3. Oligomycin sensitivity of purified F1Fo-ATPase
Oligomycin inhibits ATP hydrolysis and synthesis, and is

thought to bind at the interface between the c-ring and subunit

a, and prevent rotation [36,37]. The sensitivity of ATP hydroly-

sis by the enzyme to oligomycin indicates the extent to which

ATP hydrolysis is coupled to proton translocation through the

membrane domain. When active bovine F1Fo-ATPase was pur-

ified in the presence of detergent (DDM) only, the sensitivity of

ATP hydrolysis to oligomycin was severely reduced (table 1).

This loss of oligomycin sensitivity was decreased to a greater

or lesser extent by the incorporation of various phospholipids

into the buffers used during affinity purification. The most

effective was a mixture of synthetic analogues of PE, PC and

PG, with 90 per cent of the hydrolytic activity being sensitive

to the inhibitor, and a mixture of CL, PC and PE was almost

equally effective (table 1). It should be noted that the inner

mitochondrial membrane comprises about 40–50 per cent PC

and PE, and approximately 15 per cent cardiolipin [38,39].

However, a greater percentage of cardiolipin was required in

order to achieve a high level of oligomycin sensitivity in the

purified enzyme (table 1).

In addition, enzyme prepared in the complete absence

of phospholipids has a large increase in oligomycin sensi-

tivity and ATP hydrolysis activity upon reconstitution into

phospholipid vesicles (table 1). Therefore, any decrease in

coupling and enzyme activity arising from removal of lipid

is not completely irreversible.
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4.4. Comparison of uncoupled and coupled F1Fo-ATPase
by limited proteolysis

Structural differences between uncoupled and coupled prep-

arations of active bovine F1Fo-ATPase were probed by limited

proteolysis with trypsin. Coupled enzyme (oligomycin sensi-

tivity of 90%) was prepared in the presence of phospholipids

(POPC : POPG : POPE, 3 : 1 : 1, by wt), whereas uncoupled

enzyme (oligomycin sensitivity of 6%) was prepared in the

absence of phospholipids. In these experiments, their pat-

terns of degradation resulting from mild exposure to

trypsin over a period of 3 h were compared. Analysis of the

products of degradation by SDS–PAGE (figure 3) demon-

strated that the peripheral stalk subunits b, d and F6 were

degraded in the uncoupled enzyme, whereas they were

resistant to trypsinolysis in the coupled enzyme. The sub-

units of the F1 domain and the OSCP component of the

peripheral stalk, which interacts directly with the F1

domain, were resistant to proteolysis in both samples.

Subunit c also resisted proteolysis, but this observation is

unsurprising as the C-terminal a-helices of the subunit,

which form the external exposed surface of the assembled

c-ring, contain few trypsin cleavage sites. In both samples,

the small membrane subunits, e, f, g and A6L, were obscured

in the gel by the bovine pancreatic trypsin inhibitor, and

the Fo component subunit a, which stains poorly with the

Coomassie blue dye, was difficult to discern. Therefore,

in order to be able to examine the effect of proteolysis

more comprehensively, samples of proteolysis products

taken at the various time-points were separated by LC and

analysed by mass spectrometry (see the electronic sup-

plementary material, figures S1–S4). In the electronic

supplementary material, tables S3 and S4, the results of

these analyses are presented as a summary of when the

intact subunits in the uncoupled and coupled enzymes

were last observed during the 3 h period of proteolysis,

when the various specific fragments resulting from
proteolysis were first detected and when they were last

observed. The data for the first 2 h of degradation of the

intact peripheral stalk and Fo subunits from uncoupled

and coupled enzymes are compared in figure 4. Figure 4 con-

firms that the peripheral stalk subunits b, d and F6 are more

susceptible to proteolysis in the uncoupled enzyme than

in the coupled enzyme, and a similar trend was found with

the Fo subunits, a, g and A6L. The Fo subunits e and f were

degraded rapidly in both samples, and the intact proteins

were not detected after 10 min of proteolysis, implying

that they are similarly exposed in both the coupled and

uncoupled preparations. Figure 4 also confirms that the

OSCP subunit is resistant to proteolysis.
4.5. Proton-pumping and ATP synthesis activities of
bovine F1Fo-ATPase

In order to demonstrate that the ATP hydrolase activity of the

purified bovine F1Fo-ATPase was coupled to proton pump-

ing, the enzyme purified in the presence of phospholipids

(POPC : POPG : POPE, 3 : 1 : 1, by wt) was reconstituted into

phospholipid vesicles. The presence of a proton-motive

force generated by ATP hydrolysis was demonstrated with

the fluorescent probe, ACMA (figure 5). The proton-pumping

activity was inhibited by IF1 and by oligomycin, inhibitors of

the F1 and Fo domains of the enzyme, respectively.

The purified bovine F1Fo-ATPase was also capable of

synthesizing ATP. This property was demonstrated with

phospholipid vesicles into which the F1Fo-ATPase and bacter-

iorhodopsin had been co-reconstituted. On illumination with

white light, ATP was synthesized in a linear manner, but only

in the presence of IF1 to prevent ATP hydrolysis by the small

amount of uncoupled enzyme that was present in the prep-

aration (figure 6). In the absence of white light, or in the

presence of an uncoupler, only traces of ATP were detected.

The ATP hydrolysis activity for reconstituted enzyme were

25 and 24.7 mmol min21 mg21 for enzyme purified in the

presence and absence of phospholipids, respectively.
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formation of a proton-motive force dependent on ATP hydrolysis was mon-
itored from the change of fluorescence of ACMA. The enzyme was inhibited
with (a) oligomycin and (b) the ATPase inhibitor protein, I1 – 60GFP.
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5. Discussion
The affinity purification of F1Fo-ATPases from mitochondria

using the high selectivity of bovine inhibitor protein IF1 is a

rapid and versatile procedure. As demonstrated here, it pro-

vides a ready means of purifying the inhibited and the

active enzyme, on a scale compatible with structural analysis,

from bovine, ovine, porcine and yeast mitochondria. Given

the high conservation of the sequences of IF1 in vertebrates,

and of the a- and b-subunits with which they interact in

the F1 domain of the enzyme [40], it is likely that the pro-

cedure has a wide applicability for purifying vertebrate

F-ATPases. Although the F1 sequences are also highly con-

served in fungi, the sequences of their IF1 proteins are rather

less well conserved; yet the bovine IF1 provides the means of

purifying the yeast F1Fo-ATPase, and the procedure works

well with other fungi also (T. J. Charlesworth, I. M. Fearnley,

J. V. Bason, M. J. Runswick and J. E. Walker 2013, unpublished

data). Thus, the method appears to have general applicability in

many multi-cellular and unicellular eukaryotes. A few excep-

tions have arisen among the invertebrates, but in these cases

the use of mutated forms of bovine IF1 or the endogenous IF1

provides variant avenues that can be explored.

In terms of their chemical purity, as judged by SDS–

PAGE analysis and mass spectrometric analysis, the current
preparations of the inhibited complex, captured by nickel affi-

nity chromatography using the His-tag at the C-terminus of

the I1–60GSTHis, at least equal the purity of earlier prep-

arations purified by a combination of ion exchange and gel

filtration chromatography [41]. In both cases, traces of impu-

rities still persist. By contrast, in the most pure active enzyme

preparation, where the inhibited complex was captured on a

column of immobilized glutathione via the GST domain of

the I1–60GSTHis inhibitor, these trace impurities were essen-

tially absent. However, the earlier preparation and the

present preparation made in the presence of phospholipids

differ most strikingly in their ATP hydrolase activity, and

in the coupling of ATP hydrolysis to proton pumping as

indicated by the degree of sensitivity of the ATP hydrolase

activity to inhibition by oligomycin. The sensitivity of

the activity to oligomycin of enzyme that had been affinity-

purified in the presence of synthetic phospholipids is

comparable with that of the enzyme in vesicles made from

the inner membranes of mitochondria (table 1). This same

affinity-purified preparation reconstituted into liposomes

generated a proton-motive force driven by ATP hydrolysis,

and made ATP in the presence of a proton-motive force gen-

erated independently by bacteriorhodopsin. This latter

experiment could only be made to work by inhibiting the

ATP hydrolase activity of the remaining low levels of

uncoupled enzyme with the inhibitor protein. The ATP

synthesis activity of the reconstituted enzyme (purified in

the presence of phospholipids) is 0.36 mmol min21 mg21,

approximately 70 times lower than the specific activity of

25 mmol min21 mg21 of ATP hydrolysis by the same reconsti-

tuted enzyme. Hence, traces of uncoupled enzyme will mask

any synthesis of ATP driven by the proton-motive force.

The same demonstration of ATP synthesis by the bovine

F1Fo-ATPase co-reconstituted with light-driven bacterio-

rhodopsin to generate the proton-motive force was

influential in establishing Mitchell’s chemiosmotic hypothesis

[42]. This experiment could only have succeeded with an

enzyme preparation that was completely coupled. It should

be noted that the enzyme in mitochondrial membranes at
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the start of the purification has an ATPase activity that is not

100 per cent sensitive to oligomycin (table 1). Therefore, it is

possible that a quantity of uncoupled F1Fo-ATPase exists in

mitochondrial membranes.

The molecular basis of uncoupling of proton-motive force

and hydrolysis of ATP by F1Fo-ATPases has been little dis-

cussed and investigated previously. In the 1960s, Kagawa &

Racker demonstrated that both the OSCP and F6 were

required for reconstituting bovine F1-ATPase with Fo to

form a coupled F-ATPase complex [43,44]. In the 1990s, it

was realized from other reconstitution experiments [45–47]

that the OSCP and F6 together with subunits b and d form

a separate substructure of the F-ATPase from the central

stalk subunits g, d and 1. From these observations, the con-

cept emerged of the stator, where the peripheral stalk

(subunits b, d, OSCP and F6) links the external surface of

the F1 domain to the a subunit in the Fo domain, distinguish-

ing them functionally from the rotor (consisting of the central

stalk attached to the c-ring). The limited proteolysis exper-

iments described here add to the molecular understanding

of coupling and uncoupling. They illustrate that the struc-

tures of parts of the stator domains differ significantly in

the uncoupled and coupled F1Fo-ATPase. Uncoupling is

accompanied by an increased susceptibility to proteolysis in

parts of this structure. Presumably, this effect reflects a

change in structure involving the region of contact between

the c-ring and subunit a that provides an essential link in
the transmembrane proton translocation pathway in the

coupled enzyme. It is apparent from current structures of

the intact bovine enzyme at 18 Å resolution determined by

electron cryomicroscopy [48] that this region of contact is

not extensive, but an intact stator is required to maintain

the integrity of the transmembrane proton pathway. Increas-

ingly, it is becoming evident that the integrity of this

pathway depends upon the presence of bound phospholipids,

and especially cardiolipin [10]. Prolonged exposure of the

enzyme to detergents, or short-term exposure to relatively

high concentrations of many detergents, displaces the bound

phospholipids and appears to change the structure of the

stator, disrupting the proton pathway and rendering

the enzyme uncoupled. In the present rapid-affinity chromato-

graphy conducted in the presence of exogenous phospholipids,

loss of bound phospholipids is avoided, and the coupling of

the enzyme is retained. In future studies, it will be essential

to define the bound phospholipids and to understand their

roles in maintaining the coupled interface.
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