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Abstract 

Microstructural evolution on sintering of porcelain powder compacts using microwave 

radiation was compared with that in conventionally sintered samples. Using 

microwaves sintering temperature was reduced by ~ 75 °C and dwell time from 15 

min to 5 min while retaining comparable physical properties i.e. apparent bulk 

density, water absorption to conventionally sintered porcelain. Porcelain powder 

absorbed microwave energy above 600 °C due to a rapid increase in its loss 

tangent. Mullite and glass were used as indicators of the microwave effect: mullite 

produced using microwaves had a nanofibre morphology with high aspect ratio 

(~32±3:1) believed associated with a vapour-liquid-solid (VLS) formation mechanism 

not previously reported. Microwaves also produced mullite with different chemistry 

having ~63 mol% alumina content compared to ~60 mol% alumina in conventional 

sintered porcelain. This was likely due to accelerated Al+3 diffusion in mullite under 

microwave radiation. Liquid glass was observed to form at relatively low temperature 

(~900-1000°C) using microwaves when compared to conventional sintering which 

promoted the porcelains ability to absorb them. 
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I. Introduction 

 Use of microwaves for material processing has accelerated in recent years 

because they provide a promising alternative energy source potentially reducing total 

energy consumption [1-3]. Microwaves are absorbed directly in bulk materials allowing 

volumetric heating and inducing enhanced diffusion rates [2]. The materials are 

heated via dipole rotation under microwave field and lose their energy by collisions.  

Microwave sintering is also a selective heating process so that almost all 

microwaves are converted to energy. Since it is volumetric heating, the temperature 

profile in the sample bulk is inverse due to thermal heat loss at the sample surface 

(inside is hotter than surface); thus, a potential drawback of microwave heating, in 

samples with low thermal conductivity, is the ‘thermal runaway effect’ (an 

uncontrolled temperature rise inside the sample). Thermal runaway may lead to a 

non-uniform microstructure or localized melting [4, 5] but it can be mitigated by using 

the microwave heating associating with conventional firing process so called hybrid 

microwave heating  minimizing temperature gradient throughout a sample [6, 7] . 

 The successful application of microwave sintering depends on the dielectric 

properties of the materials—mainly dielectric constant, dielectric loss, loss tangent 

and penetration depth—at a certain microwave frequency (2.45 GHz is typically used 

for materials processing). The dielectric constant (    defines the ability of ions and 

dipole to reorient under an alternating electric field while dielectric loss (     

represents heat generation during material coupling with the alternating electric field. 

Both values are used to calculate loss tangent (      representing how much heat 

is generated in materials. The penetration depth (Dp) is defined as the distance 

which the intensity of the applied electromagnetic fields decays to 1/e. Generally, 

loss tangent ranging from 0.01-1 are suitable for microwave processing [8]. 

Furthermore, dielectric properties of most materials are temperature dependent 

resulting in more microwave energy is absorbed at elevated temperature. These 

changes of dielectric properties may also lead to thermal runaway. 

 Porcelains and their raw materials are  poorly microwave absorbing materials, 

all of which do not couple well with microwaves at room temperature but they can 
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effectively absorb microwaves above a critical temperature [9, 10] Thus, it is possible 

to process porcelains using microwaves at elevated temperature. Generally, 

porcelains are vitreous ceramics derived from triaxial mixtures of clay minerals, 

feldspars, and quartz. After heat treatment, fired porcelains comprise of mullite, glass 

and residual quartz [11-13].  Several chemical reactions occur during firing of 

porcelains including dehydroxylation of the clays from ~ 450-600 °C, glass formation 

by feldspar melting  at ~990-1050 °C (depending on its chemistry), and partial quartz 

dissolution >1200 °C [11, 13]. Mullite starts to form around 940-980 °C and different 

types of mullite are observed depending on sources. Primary mullite forms by the 

clay decomposition and found in the clay relicts while secondary mullite forms from 

the reaction of the clay and feldspar melt, and found in the glass region [12, 14]. These 

transformations can also change the dielectric properties of the porcelain being fired 

affecting its microwave absorbability. 

 Uses of microwave energy to sinter porcelains have been reported. Menezes 

et al.[15] successfully produced different porcelain bodies including sanitaryware, 

dental and electrical porcelains using a 2.45 GHz hybrid microwave sintering system 

(infrared heat and a susceptor were used). Water absorption was at the same level 

as in conventionally sintered porcelain, but the maturing temperature of microwave 

sintering was higher ~20 °C compared with the conventional one. However, 

substantial reduction of dwell time was observed with microwave sintering. 

Microwave sintering of high voltage porcelain insulators  found better properties 

(density, modulus of rupture, and dielectric strength) compared to conventional 

sintered at the same maturing temperature, and the firing time was reduced ~80% 

[16].  

Shawn et al., [17] successfully produced a large-cross section (12 cm of 

diameter) electrical porcelain insulator using Microwave Assisted Technology (MAT), 

a combination of electric furnace and microwave heating, with 5 times shorter 

processing time compared to the conventional process. 

Santos et al.,[18] developed a multimode cavity (2.45 GHz) microwave oven 

which was capable of firing porcelain tableware with a SiC slab  as a support. The 

microwave sintered porcelains showed similar impact resistance, porosity, water 

absorption, and phase compositions to conventionally sintered porcelains. The 

microwave sintering process was faster resulting in lower processing costs. An 

important aspect of their work was the effect of microwave power distribution in the 
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cavity resulting in homogeneity on the sample. A critical problem in microwave 

sintering was thermal runaway due to inhomogeneous microwave absorption. To 

combat this Monteiro et al.,[19] developed a control system which created a uniform 

electromagnetic field and therefore more uniform heating, even at high heating rates. 

Even, there were several studies dealing with the microwave sintering of porcelains 

but none have reported in detail the effect of microwave heating on microstructural 

evolution, thus in the present study the effect of microwave radiation on mullite 

formation, and porcelain densification will be discussed. 
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II. Experimental 

The raw material used in this work was spray dried porcelain powder provided 

by a tile manufacturer, used in as-received form without any reprocessing consisting 

of kaolinite, albite and quartz. The powder was uniaxially cold-pressed using 35 MPa 

into 13 mm diameter and 7 mm thick pellets in a steel die. The pellets were dried 

overnight at 110 °C and stored in an oven until further experiments.  

Thermal behaviour of the spray dried powder, with mean particle size (D50) of 

10 µm, was characterised by using a simultaneous thermogravimetry-differential 

thermal analyzer (TG-DTA, Netzsch STA 449C, Jupiter, Selb, Germany) under 

continuous air flow at a rate of 50 ml/h from 25-1200 °C at a heating rate of 10 

°C/min and instrument cooling rate. 

The pellets were sintered under air in a single mode cylindrical microwave 

cavity operating in the TE111 mode with a resonant frequency of 2.45 GHz [20]—a 

quartz tube was used as sample holder (Fig.1a). The furnace E-field has maximum 

(Er and Eφ components) in the center, where the samples are located [21]. The final 

temperatures reached were 850, 900, 1000 and 1100 °C using a heating rate of 

~30 °C/min with 5 min of holding time at the respective temperatures. The 

temperature of the sample was monitored using an infrared radiation thermometer 

(Optris CT-Laser LT, 8–14 µm), focused on the sample surface. Since the interior 

temperature was higher than that in the surface of the samples. Thus, a simple 

simulation work was performed using a finite element analysis (FEA) software 

package, COMSOL Multiphysics V. 5.2a to show the temperature profile. 

Electromagnetic parameter used in the simulation were relative permittivity of the air 

in the cavity=1.0. Cavity walls was perfectly conducting. Heat transfer parameters 

were (1) heat capacity= 920(J/kg·K), (2) thermal conductivity = 0.582(W/m·K), (3) 

electrical conductivity=0.014(S/m), and density= 2.003 (g/cm3). 

 Initially, pellets were exposed to the microwaves with neither insulation nor 

susceptor used. As a result, they were not sintered uniformly. A small well-sintered 

region (~5 mm3) in the middle of the sample indicated a need to modify the setup as 

presented in Fig.1b. Finally, silicon carbide powder as susceptor and alumina 

insulation were used to promote uniform temperature distribution (Fig.1b). For 

comparison, the same porcelain pellets were conventionally sintered at 850, 900, 
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1000, 1100, 1175 and 1200 °C using a heating rate of 10 °C/min with 15 min hold at 

each temperature. 

Apparent bulk density (ABD) and water absorption (WA) of dense samples 

were obtained using an ASTM standard (C20-00) immersion method. The samples 

were cut prior performing ABD and WA measurements to prevent error from seal 

surfaces. Phase analyses of the sintered samples were carried out using X-ray 

diffraction (XRD, Bruker D2 Phaser, Madison, WI, USA). XRD data were collected 

from 15° to 65° 2θ with CuKα radiation (λ=0.154 nm) at 30kV and 10 mA with a step 

size of 0.03° and a count time of 1 s.  Diffraction patterns were analyzed using 

commercial software (X’pert high score plus software, Pan Analytical). Mullite 

chemistry was calculated from the XRD line broadening using Ban and Okada 

equation [25]. The sample surfaces were ground and polished using silicon carbide 

abrasive sheets (800,1200, 2400 and 4000 grits) and the polished surfaces were 

etched using 5% HF for 15 seconds to reveal their microstructures. Microstructures 

were examined using a scanning electron microscope, SEM, (Auriga: Carl Zeiss; 

Oberkochen, Germany) at an accelerating voltage of 5 kV, under high vacuum mode 

and using secondary electron imaging (SEI).  
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Fig.1. a) schematic view of the microwave sintering cavity, b) the sample 

environment in the microwave cavity. 
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III. Results and discussion 

Fig.2 shows development of ABD and WA as a function of sintering 

temperature for conventionally and microwave sintered samples. Densification of the 

porcelain using microwave energy started at relatively low temperature (~850 °C, 

surface temperature measured using the pyrometer) compared with samples fired in 

the absence of microwave radiation, which started to densify at ~1100 °C. However, 

it is noted that inside temperature under microwave irradiation was higher than that 

at the surface. Thus, a FEA work was performed to estimate the interior temperature. 

Fig.2 also suggests that the estimated temperature for densification process under 

microwave sintering was about 100°C higher than that measured using the 

pyrometer. Thus, an estimated temperature curve was added to represent inside 

temperature of the sample sintering under microwave radiation. Therefore, 

densification of this porcelain under microwave radiation started at ~ 950°C and 

achieved full densification at ~1100°C which was ~75°C lower than that in the 

conventional sintering process. 

 

Fig.2. a) ABD and b) WA of conventionally (CS) and microwave sintered (MWS) 

porcelains as a function of temperature. Note that 10°C/min and 15 min dwell were 

used in CS while 30°C/min and 5 min dwell were used in MWS. 

Fig.3a reveals the sample’s surface temperature of 850°C monitored using 

the pyrometer corresponding to ~1100°C of the inside temperature estimated by 

FEA. It can be seen that the microstructure in Fig.3a was in good agreement with the 

simulation work (Fig.3b). The interior temperature (at well sintered region) was about 

100-250°C higher than that measured at the sample surfaces. This observation also 

agreed with the microstructure of the sample showing a bisque-characteristic at the 
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top surface. At the middle of the sample, the estimated temperature was about 

1100°C which indicated by the well-sintered microstructure. At the bottom of the 

sample, large bubbles were observed indicating high temperature (>1175°C, the 

optimum firing temperature of the sample under a conventional firing process), the 

FEA result showed temperature as high as 1300°C. It is important to note that 

porcelains densify via viscous flow mechanism thus, forming large among of liquid 

glass phase is the main factor. Since the melting process of feldspars is a 

thermodynamically limited therefore it is independent on the energy routes 

introduced to the system. In other words, the densification temperature (melting of 

feldspars) of the both processes were not much different which is about ~75°C.  

 

Fig.3. (a) microstructure of the microwave sintered sample using 30°C/min, 10 min 

dwell at surface temperature of 850°C. (b) FEA result showing the temperature 

profile which agrees with the actual sample. 

 Conventionally sintered samples reached their maximum ABD (2.40 g/cm3) 

after firing at 1175 °C whereas the microwave sintered sample reached its maximum 

ABD (2.36 g/cm3) at 1100 °C, beyond these temperatures the ABD decreased. The 

WA of the samples sintered using microwave was lower than the conventionally 

sintered samples from 950-1100 °C indicating these samples had better degree of 

densification, but once the samples reached their maximum ABD, conventionally 

sintered samples had WA of 0.1% while microwave sintered samples had WA of 

0.8%. The difference of maximum ABD and WA resulted from the different 

microstructure of the samples as shown in Fig.4. Furthermore, increasing WA 

associated with decreasing ABD was due to a bloating effect which is a common 

phenomenon when porcelains are fired beyond the optimal temperature [12-14]. 

 Fig.4a compares the thermal profile of the fully sintered samples sintered 

using conventional (10 °C/min, 1175 °C, 15 min dwell) and microwave (30 °C/min, 

1100 °C, 5 min dwell) processes. Excluding the cooling step, the densification was 3 
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times shorter by microwave processing to produce fully dense sample compared to 

the CS process. SEI (Fig.4b) reveals distinct microstructures. CS samples were 

dense with small pores (<30 μm of diameter) were observed in the glass matrix 

whereas MWS samples contained large pores (>300 μm of diameter) which was due 

to over firing. The large pores in the MWS samples were formed in liquid glass melt 

during microwave radiation and those large pores represented an overfiring 

temperature. It was reasonable that melting of feldspar produced liquid glass 

changing the sample dielectric properties [23] , so that the sample absorbed more 

microwave energy, thus the temperature rose uncontrollably.  

 

Fig.4. a) Sintering curves of conventional and microwave heat treatments, b) SEM-

SEI images of conventionally sintered (CS) and microwave sintered (MWS) porcelain 

samples. 

The thermal behaviour of the green porcelain powder conventionally sintered 

(Fig.5) reveals total weight loss ~5%, 1% from physically-bound evaporation, and 4% 

from chemically-bound water decomposition from the clays. The two large 

endothermic peaks arose from evaporation of physically-bound water at 100-200 °C 

and dehydroxylation of chemically-bound water of the clay between 450-600 °C. 

However, the endothermic peak of the α-β quartz inversion at 573 °C was masked 

by overlap with the clay dehydroxylation peak. The small exothermic peak around 

~940 °C suggested initial formation of the spinel-alumina phase from the clay 

species [11-14, 28, 29]. This thermal behaviour implied that changing thermal behaviour 

of the powder at elevated temperature changed its ability to absorb microwaves. 

Fig.6 shows dielectric behaviour of the porcelain sample under alternating electric 

field of 1 MHz. Fig.6a presents the calculated loss tangent of the porcelain powder 
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from room temperature to 900 °C using              , where   is overall electrical 

conductivity, f is frequency of alternating electric field, and    is permittivity of free 

space (ε0 = 8.85x10−12 F·m−1). The electrical conductivity of the porcelain sample 

was obtained elsewhere [30]. 

 

Fig.5. Thermal behaviour (TGA and DTA) of porcelain powder. 

 

Fig.6. (a) Calculated loss tangent (tan  ) of the porcelain sample as a function 

temperature, the inset shows detail at 400-500°C, and (b) the temperature profile of 

microwave sintering (1000°C, 30°C/min, 5 min dwell) shows 2 humps at 600 and 

800°C (interior temperature) corresponding to the rapid change of the tan  . 

Generally, microwave energy is effectively absorbed at 0.01-5 [4] of loss 

tangent. In this study, the porcelain sample did not absorb microwave energy well 

from 100-600 °C since its loss tangent was low (<0.001), meaning that sample 
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temperature increased slowly from room temperature until ~ 600°C. Above 600°C, 

the loss tangent increased exponentially rapidly elevating sample temperature 

(indicated by the peak ~ 600 °C in Fig.6b). The second peak at 800 °C in Fig.6b was 

attributed to strong microwave absorbtion due to increasing loss tangent resulting 

from liquid formation from albite melting.  

Microwave energy thus produced dense porcelains with promising physical 

properties at similar temperature compared with the conventional sintering process 

but microwave substantially reduced processing time. Change of sample loss 

tangent played an important role in the microwave absorbability and temperature 

increase. Liquid formation (albite melt) contributed most to the densification of 

porcelains since it quickly changed the loss tangent. Porcelain samples could be 

heated from room temperature in a microwave single mode cavity but to produce 

homogeneous samples insulation and susceptor were required. 

In this work, only fully dense CS and MWS samples were used to study the 

effect of microwaves on microstructural changes (Fig. 7). The low magnification SEI 

images (Fig. 7a, c) reveal etched microstructures containing mullite, quartz, and 

glassy phase.  CS samples were dense containing mullite and partially dissolved 

quartz in the glass matrix while MWS samples contained networks of mullite needles 

grown in the glass matrix. High magnification SEI images (Fig. 7b, d) reveal 

distinctive mullite morphologies. Mullite crystallite size in CS samples were 71(±11) 

nm whereas MWS samples were 56(±9) nm (Fig. 8a). CS samples, however, 

contained low aspect ratio mullite needles (~9±2:1) while MWS produced fibre-like 

mullite with high aspect ratio (~32±3:1) (Fig. 8b).  

Mullite in porcelains can be differentiated by its aspect ratio. Iqbal and Lee 

proposed a  notation considering the aspect ratio in which  type I mullite (primary 

mullite) exhibits low aspect ratio (1-3:1), type II (secondary mullite) has aspect ratio 

of 3-10:1, and type III (secondary mullite) possesses very high aspect ratio (>30:1) 

[12]. Thus, the mullite formed in this porcelain via MWS was type III whilst CS sample 

was type II.  

Mullite crystallite size was also investigated via XRD peak broadening using 

the Scherer’s equation for the (110) plane peak. Calculating the full width half 

maximum (FWHM) indicated the average mullite crystallite size of CS samples was 

~39(±3) nm while MWS sample was ~28(±3) nm. However, mullite crystal sizes 
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observed from SEM and XRD were different. This may arise from the different 

sampling volumes of each technique, nonetheless the trends were the same.  

 

Fig.7. SEM-SEI images of CS and MWS porcelain samples, a) and c) low 

magnification images showing overall phase content, and b) and d) high 

magnification images showing the distinctive mullite morphologies. 

Mullite usually has acicular morphology with the long fibre axis being the 

crystal c-axis [24]; the c-axis has higher free energy than those in the [hk0] directions. 

Fig. 9a reveals an unusual mullite morphology growing inside a bubble in a MWS 

sample. Mullite fomred in the bubbles was believed to grow via a Vapour-Liquid-

Solid (VLS) mechanism [31, 32]. Mullite then continually grew in [001] direction in to the 

air which had nuclei randomly precipitated on the needles (Fig. 9b-c). These nuclei 

may assist the growth of high aspect ratio needles. This feature was not observed in 

CS samples. Also, the formation of mullite via VSL had been not reported in 

conventional sintering of porcelains.  
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Fig.8. Histograms present (a) crystallite size, and (b) aspect ratio of mullite formed in 

the porcelain samples under conventional and microwave sintering using SEM 

analysis. 

 

Fig.9. Vapour-Liquid-Solid growth mechanisms of mullite needles under microwave 

radiation: (a) mullite initially formed in a bubble surrounded by liquid glass phase, (b) 

mullite needles further grow in bubbles, (c) mullite nuclei precipitated on the mullite 

needles, and (d) the cartoon diagram showing the growth mechanism. 

XRD results (Fig. 10a) reveal MWS samples show larger mullite integrated 

peak areas suggesting that mullite in this sample formed more than that in the CS 

samples in agreement with the SEM Image of Fig. 7. CS samples contained smaller 

peaks of residual albite but not observed in MW samples. It can be deduced that 

microwave enhanced mullite formation especially from the clays which can be seen 
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from the microstructures. Number of mullite formed on the clays was more than that 

form in the glassy phase. In this case, increasing mullite fraction mainly increased 

from transformation of clays by microwave enhanced reaction rates. It was possible 

that alumina in albite may be little responsible for mullite formation (in this time 

range) because there was some of residual albite observed in the MWS sample. A 

similar result reported that microwave can enhance formation of mullite because a 

selective heating, and accelerated the nucleation and growth of mullite and changed 

the mullite formation route of kaolinite [33].  

Moreover, the chemical analysis result shows that mullite in MWS samples 

has more Al+3 than that in CS sample suggesting that mullite should firstly forms via 

clays decomposition rather than in the liquid glass melt because clays have more 

molar fraction of alumina compared with the alumina in glass melt. So, it can be 

conclusive that alumina in albite may be little responsible for mullite formation under 

microwave radiation in this time scale. 

  Chemistry of mullite was calculated using the method of Ban and Okada [25] 

showing molar percent of alumina in mullite. MWS sample mullite had ~63 mol% of 

alumina compared to ~60 mol% alumina in CS mullite. However, the crystal 

structures of the mullite in both samples were orthorhombic rather than tetragonal as 

indicated by the split of (120) and (210) XRD peaks (Fig. 10b and c). The reason 

why the mullites had different alumina contents may be explained by the effect of the 

microwave radiation. Formation of MWS mullite was accelerated by reduction of the 

reaction barriers of Al+3 ions diffusion in the mullite structure [26] which can also be 

deduced from its fibrous morphology. Moreover, since the liquid glass formed earlier 

in MWS samples so that the mullite crystals had more time to grow and 

accommodate alumina into their structures. Thus, MWS mullite had alumina content 

more than its stoichiometry. Another possibility was the temperature of mullite 

formation under microwave might be low to obtain the stoichiometric mullite (60 

mol%) [27]. 
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Fig. 10. a) XRD of CS and MWS porcelain samples. Mullite formed under both 

conditions is identified as orthorhombic mullite by the split of (120) and (210) peaks 

revealed in b) CS, and c) MWS. 

 

Conclusions 

Porcelain samples were fully sintered using microwave radiation at 1100 °C, a 

temperature ~75 °C lower than when using a conventional sintering process. Liquid 

glass phase started to form at ~900-1000°C under microwave radiation while ~1100 

°C was required using conventional sintering. Mullite, moreover, formed under 

microwave radiation had small crystallite size (76 nm) but high aspect ratio (>30:1) 

compared to mullite from the conventional process. Mullite chemistry in both 

samples was slightly different; the microwave sintered samples had higher alumina 

content (~63 mol%) while conventionally sintered samples had stoichiometric mullite 

(~60 mol%). Both mullites, however, had orthorhombic crystal structure. Formation of 

mullite was enhanced by microwave energy and may also arise via a vapour -liquid- 

solid mechanism. 
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