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Abstract: Contact Angle Hysteresis (CAH) is critical to the hydrophobicity of a 

surface, which describes the dynamic characteristic of droplets. In this paper, two 

different micro-structured surfaces respectively with micro-channel and micro-pillar 

structures (20 samples for each structure, with a range of channel and pillar widths 

between 25 to 250 μm) were fabricated by mechanical micro-milling process to 

investigate the effect of structural parameters on hydrophobicity of surfaces. It was 

found that the solid fraction plays a decisive role for a surface in the transition from 

being hydrophilic to hydrophobic. Quantitative interpretation was conducted and a 

dynamic methodology was established based on the physical nature of the 

controllable motion of a droplet. The five key states of a droplet including the initial, 

pre-forward, forward, pre-backward and backward were the main focus of this 

research. The prediction results based on the established model showed good 

consistency with experiments. The proposed model can estimate the advancing and 

receding angles very well. The outcome of this research will lead to new 

methodologies for preparing hydrophobic surfaces with micro-machining technology 

and play an important theoretical guiding role in fabrication of superhydrophobic 

surfaces. 

 

KEYWORDS : Hydrophobic surface, Contact angle hysteresis,  Advancing angle, 

Receding angle, Micro-milling. 



 

1. Introduction 

For rough or chemically heterogeneous surfaces, metastable phenomenon for the 

wetting system may occur. The variations of the contact angle are within a range 

which corresponds to a series of dynamic contact angles [1-2].The maximum value of 

contact angle before the drop advances is called advancing angle, and the minimum 

value of the contact angle before the drop retracts is called receding angle [3-4]. 

Contact angle hysteresis (CAH) is considered to be the difference between the 

advancing angle and the receding angle. The CAH reveals the contact angle spectrum, 

within which drops are inhibited of motions. The advancing angle reflects the 

property of hydrophobicity, while the receding angle indicates the property of 

hydrophilicity [5].  

The use of superhydrophobic surfaces is essentially self-cleaning in nature [6]. 

Most reported studies have applied superhydrophobic surfaces to increase the extent 

of hysteresis on neighboring hydrophobic or hydrophilic regions [7]. In recent years, 

with the rapid development of science and technology, ultra-precision machining 

technology is promising for potential applications in the hydrophobic surface field [8]. 

Compared with other methods, high speed micro-milling process receives more 

attention due to its high machining accuracy, processing efficiency, simple preparation, 

relatively low cost and fewer limitations on processing materials [9]. 

In order to understand the nature of the hydrophobicity, the formation mechanism 

and the wetting phenomena, quantitative research has been carried out [10-11]. The 

Wenzel model [12] and the Cassie-Baxter model [13] have been used to interpret the 

phenomenon that the rough surface can increase the contact angle. However, the CAH 

in these two situations is far different with each other. Johnson and Dettre [14] found 

that when the surface roughness is relatively small, the droplet resting on the surface 

is in the Wenzel state. The CAH increases significantly with the increase of surface 

roughness. However, the CAH decreases rapidly when the surface roughness exceeds 

a certain value. The rapid decrease of the CAH is due to the fact that the droplet has 

changed into the Cassie-Baxter state. Compared with the Wenzel state, the trapped air 



in a rough surface can reduce the adhesion between the liquid droplet and solid 

surface for the Cassie-Baxter state. Suzuki et al. [15] evaluated the dynamic CAH of 

water droplets on a silicon surface that had been treated with fluoroalkyl silane. 

Results implied that the sliding acceleration of the water droplets on hydrophobic 

surfaces is controllable by changing the pattern structure of the surface and its 

chemical composition. Eral et al. [16] proposed a brief introduction of the CAH 

starting from a description of the physical phenomena. The model for implementing 

the CAH into relevant physical phenomena was then introduced. The influences of the 

CAH on several physical phenomena relevant for industrial applications such as 

sliding drops, coffee stain phenomenon, curtain and wire coating techniques were 

explained. Mundo and Palumbo [17] pointed out that the measurements of the CAH 

included static mode and dynamic mode. The static mode can be realized by simply 

placing a liquid drop on the surface. The dynamic mode was consistent in forcing the 

probe liquid to advance and retract, and then recording the angles of the liquid front 

corresponding to these variations. 

Several researchers studied various theoretical bases for analytical models to 

investigate the effects of structure on surface hydrophobic properties. Miwa et al. [18] 

investigated the relationships between the sliding angle, the contact angle and the 

surface structure. A mathematical description of the relationships among them has 

been established. Results showed that the sliding angles of water droplets decrease 

with increasing contact angles. The surface structures, which can trap air, are 

important for the preparation of low sliding angle surfaces. Lv et al. [19] established 

an explicit analytical model to predict the sliding angles based on the observed 

mechanisms. With the proposed model, the sliding angle was determined by the 

fraction of water-solid interface area and Young’s contact angle. A number of pillar 

and channel structured surfaces with different area ratios and different sizes have been 

investigated. Wang et al. [20] and Cai et al. [21] investigated the dynamic wetting 

behavior and water drops on micro-grooved surfaces. It was found that the dynamic 

advancing angle increases with the increase of the drop velocity and the receding 

angle decreases with it [20]. For droplets with different sizes, on the same substrate, 



the advancing angle and the receding angle slightly changed, but the CAH basically 

remained unchanged. Zhang et al. [22] proposed a three dimensional model based on 

the scanning electron microscopy of cicada wings to determine and explain the CAH 

in quantity. However, the established model was limited to explain some special 

circumstances which contain a number of empirical parameters. 

This paper aims to investigate the effect of different micro-structures on 

hydrophobicity of surfaces based on the analysis of a number of hydrophobic surfaces 

fabricated under micro-milling process. The qualitative analysis based on experiments 

was conduct to reveal the impact mechanism of the structural parameters on 

hydrophobic performance. A comprehensive hydrophobic theory was established to 

explain the quantitative relationship between micro-structures and wetting 

performance of the rough surface. The established dynamic methodology model can 

clarify the importance of geometric scales on preparing a superhydrophobic surface. 

The established theoretical model can also be used to explain the wettability of rough 

surface and provide guidance on the preparation of superhydrophobic surfaces. Fig. 1 

shows the general framework of this research. 
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The advancing angle is the contact state when the droplet resting on a rough 

surface is about to move with the volume of droplet increasing as shown in Fig. 2. 

The receding angle is the contact state when the droplet resting on a rough surface is 

about to move with the volume of droplet decreasing. The advancing angle is always 

larger than the receding angle. CAH is the difference between the two angles. The 

magnitude of the CAH represents the degree of difficulty for a droplet to separate 

from the surface. As the CAH increases, it becomes more difficult for the droplet to 

separate from the surface. When the CAH is small to a certain level, it is easy for the 

droplet to separate from the surface, and in this case the surface has the properties of 

self-cleaning [23-24]. 

     

(a) Advancing state of droplet on rough surface (b) Receding state of droplet on rough surface 

Fig. 2 Dynamical motion of droplet on rough surface  

In this paper, two different micro-bump structures including micro-channel and 

micro-pillar structures are fabricated and analyzed. This paper proposes a 

3-dimensional channel and a 3-dimensional pillar structure illustrated in Fig. 3 (a) and 

Fig. 3 (b), respectively. These structures can be simplified into a 2-dimensional 

system by analyzing the system along specific planes, e.g. at y=0, as illustrated in Fig. 

3 (c).  
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Fig. 3 Typical channel and pillar surface micro-structure 

 

2.2 Experiments procedure 

The material removal process strongly influences the functionality of the 

machined surfaces. Micro-milling process is the physical treatment for the surface. 

The material removal can be realized based on the nature of phenomena of 

mechanical forces. Micro-milling process is believed to be able to get desirable 

shapes, geometrical accuracy and surface integrity to the maximum extent. 

Additionally, by using micro-milling process, there are lower environmental impacts 

than the surface modification approaches including materials treatments. 

In this paper, experimental work has been carried out to investigate the effect of 

different micro-structures on advancing and receding angles through micro-milling 

process. PMMA was selected as workpiece to reduce the manufacturing error and 

defects for its characteristics of good transparency and easy to process. The workpiece 

was machined on a KERN 2522 micro-milling center as shown in Fig. 4 [25]. The 

cutting tool selected was a double-edged solid cemented carbide micro-milling cutter 

with diameter of 0.1mm. The experiments were carried out with a constant feed rate 

(600mm/min) and a constant spindle rotation speed (30000r/min). 

(b) 3-dimensional micro-pillar structure (a) 3-dimensional micro-channel structure 

(c) Schematic cross section of micro-texture 



 
Fig. 4 Micro-milling center 

The micro-channel structure and micro-pillar structure were machined as shown in 

Fig. 5. The micro-channel structure was completed through one pass in vertical 

direction and the micro-pillar structure was completed through two passes in vertical 

and horizontal directions.  

 

(a)micro-channel structure            （b）micro-pillar structure 

Fig. 5 Micro-channel structure and micro-pillar structure 

When the machining process is completed, the finished surface has to be deburred 

to eliminate the effect of burrs on contact angle. At first, the machined surface was 

lightly brushed to remove most burrs with a 0.05mm ultrafine brush. Then the 

machined surface was treated with alcohol ultrasonic cleaning for 30 minutes. Fig. 6 

shows the comparison graph of the surfaces before and after burr removal. Finally, the 

machined surface was washed by de-ionized water in ultrasonic cleaning tank to 

remove impurities on the surface.  
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(a)No deburring surface（b）Deburring surface 

Fig. 6 Comparison graph before and after burr removal 

The static and dynamic contact angles were obtained through an optical contact 

angle measuring instrument. In the process of measurement, the workpiece was fixed 

on the measuring platform. The test liquid is deionized water with density 

ρ=996kg/m
3
, surface tension σ=0.07275N/m, viscosity μ=0.001kg/ms, and the initial 

droplet volume is 2μL [25]. Before the cutting experiments, the un-machined original 

sample was tested, and the average contact angle was about 80º. 

Fig. 7 plots the measured advancing contact angle and receding contact angle as a 

function of a droplet volume on a micro-pillar structure with c=150μm, and 

e=h=100μm. The advancing and receding angle were measured through Pendant Drop 

method by the way of increasing or reducing the volume of the droplet. For the 

advancing angle, the droplet was gently deposited on the substrate and increased in 

steps through an automatic dispensing syringe. When a small drop is deposited on the 

surface, a static contact angle was formed between the advancing and receding values 

for the rough substrate. The advancing angle was measured after each 0.5 micro-Liter 

volume increment. The drop volume was increased up to about 5μL. As the drop 

volume increased, the apparent angle increases until it reaches the maximum static 

angle which is defined as advancing angle. Once the advancing angle is reached, 

further increase in volume does not significantly change the apparent angle of the 

droplet. Fig. 7 gives an advancing angle 137ºfor a droplet on the rough substrate. 

Receding contact angle measurements were then conducted by removing water from 

the droplet in steps. The apparent contact angle was measured after each volume 

reduced. For the receding angle, the volume reduction began from the last drop 

obtained in the advancing angle. The receding angle is found to be about 130º. The 



difference between the advancing and receding values is a measure of the hysteresis.  

 

Fig. 7 Advancing and receding contact angle measurements for a droplet  

 

3. Experimental results analysis 

3.1 CAH analysis for micro-channel and micro-pillar structures 

The samples of micro-channel structures were processed into 10 groups with 

100μm constant height of channel and 100μm constant width of valley.  

Table 1 Processing parameters for micro-structure 

Number of sample 1 2 3 4 5 6 7 8 9 10 

Width of peak/μm 25 50 75 100 125 150 175 200 225 250 

The processing parameters were shown in Table 1. In order to investigate the 

effects of micro-structure on wetting behavior of hydrophobic surface, the width of 

peak increased arithmetically from 25μm to 250μm. 

Fig. 8 shows the obtained micro-channel structure under optical microscope. 
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Fig. 8 Obtained micro-channel structure under optical microscope 

The micro-channel structures can create droplet anisotropy [26]. Hence, the 

dynamic contact angles in micro-channel directions and its perpendicular directions 

are different. In this paper, only the dynamic contact angle in the direction of 

micro-channel was investigated which got the same projection as micro-pillar 

structure in xoz plane as shown in Fig. 3. 

The samples of micro-pillar structure processed of a total of 10 groups with a 

constant height and spacing of pillar of 100μm. The width of pillar increases from 

25μm to 250μm arithmetically. The micro-pillar structures are isotropic. Hence, the 

dynamic contact angles are identical in two directions.  

Fig. 9 shows the obtained micro-pillar structure under optical microscope. 

 

 

Fig. 9 Obtained micro-pillar structure under optical microscope 
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Fig. 10 shows the comparison of the dynamic contact angles for two different 

micro-structures. Values of contact angles were obtained by averaging over 6 

measurements and error bars were added in Fig. 10.  

  

(a) CAH changes with width of peak/pillar  (b) Contact angle changes with widths 

Fig. 10 Effect of micro-structure on dynamical contact angle. Error bars indicate SD (n=6, 

p<0.05)  

By comparing the experimental results as shown in Fig. 10, it can be seen that the 

advancing and receding angles decrease with, while the CAH increases with, the 

increase of the peak width for both micro-channel and micro-pillar structures.  

As Fig.10 shows, when width of peak is smaller than 75μm, the contact angle is 

very large and the CAH becomes very small for micro-channel structure. It can be 

explained by the fact that with the increase of width of peak, solid fraction increases, 

which in turn increases the CAH and weakens the hydrophobic of the surface. Based 

on analysis of the curve’s slope, as Fig. 10(a) shows, the same conclusions can be 

drawn. When the width is no more than 75μm, the slope k is about 0.07. With increase 

of the width, k decreases to 0.046. It means the variation of the contact angle and the 

CAH are not prominent as the peak width increases.  

For the pillar structure, as shown in Fig. 10, the critical value for the width of 

pillar is 100μm. When it is larger than 100μm, the contact angle and the CAH change 
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slowly. When it is smaller than 100μm, the contact angle becomes very large and the 

CAH becomes very small, and the surface has changed to be a hydrophobic surface. 

This also can be explained in the view point of curve’s slope, as shown in Fig. 10. 

When pillar width is no smaller than 100μm, the slope k is about 0.075. With increase 

of width, k decreases to 0.04. 

From Fig. 10, it can also be seen that for the same PMMA matrix, when micro 

parameters keep consistent, the pillar structure has larger contact angle and smaller 

CAH than that of channel structure which can make the surface more hydrophobic. 

Qualitative analysis was conducted based on the droplet baseline on micro-structures. 

3.2 Qualitative analysis of droplet baseline 

The contact line means one or more space curves for solid, liquid and vapor phase 

contact with each other [27]. The motions of the contact lines for pillar and channel 

structure were investigated as shown in Fig. 11.  

  

Fig. 11 Bottom view of droplet baseline for pillar and channel surfaces 

In Fig.11, it can be seen that for the droplet resting on pillar substrate, it is almost 

a sphere, and the contact area for the droplet and the surface is reduced. The 

interaction between solid and liquid is also decreased. While for channel surface, the 

shape of the contact line slightly deviates from circular. For a droplet resting on pillar 

surfaces, the movement is independent with sphere, and its main motion is 

characterized by rolling style instead of sliding. That is the reason why the droplet has 

larger contact angle and smaller CAH on pillar surface. According to the principle of 

optimization, for hydrophobic surface with the maximum apparent contact angle and 

the minimum CAH, pillar structure is more favorable for hydrophobicity. 

Fig. 12 shows a sequence of snapshots of the contact line near the edge of the 

Advancing and receding  

x 
x 

y 

y 

y 

x 

y 

Advancing and receding  

Contact line for pillar  Contact line for channel 



droplet. 

   

Fig. 12 Contact line near the edge of the droplet for pillar structure 

As Fig. 12 shows, the line recedes in abrupt steps of the size of c+e in x direction, 

and remains pinned for a period before next step. While in this situation, the contact 

line slides in y direction, and the contact line is intermittent. According to Reference 

[28], when the contact line is continuous, the droplet on solid surface is not easy to 

roll, and the CAH is larger; when the contact line is intermittent, the droplet on solid 

surface is easy to roll, and the CAH is smaller. In most situations, this is wrought by 

the existence of composite wetting mechanism. 

 

4. Dynamic modeling of contact angle hysteresis 

To quantitative analysis the effect of micro-structure and parameters on the CAH, 

five key states of the droplet including the initial, pre-forward, forward, pre-backward 

and backward were taken as the objects to investigate the wetting phenomena of 

hydrophobic surfaces. During the research, the three-dimensional water drop was 

analyzed in a two-dimensional manner through cross section views of the droplet. The 

cross section for the water droplet resting on micro-structures is shown in Figure 13. 

4.1 Advancing state 

Fig. 13 shows the droplet in transition to advancing state. When water is injected 

and the droplet comes forward. In Fig. 13, h is the height of the channel, c represents 

the width of peak and e represents the valley width.  
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Fig.13 Advancing state for a droplet 

 

Fig. 13(a) shows the initial stable state with apparent contact angle θs. H1 is the 

height of droplet at initial state. O1 is the center of droplet. r1 is the radius of contact 

line among liquid, vapor and solid, and h1 is the distance between droplet center to 

solid surface. R1 is the radius of the initial droplet, which can be calculated through 

sphere volume formula: 3

4

3



V
R1  , where V is the volume of the initial droplet. 

According to Fig. 13(a), there is: 

ss1 sinR)sin(Rr  11                     (1) 

With water added, Fig. 13(b) shows pre-advancing state with an advancing angle 

θa. In Fig. 13(b), H2 is the height of droplet at pre-advancing state. O2 is the center of 

droplet. r2 is the radius of contact line among liquid, vapor and solid, and h2 is the 

distance between the droplet center and the solid surface for pre-advancing state. 

In this situation, the volume of the droplet keeps increasing but the position of the 

drop does not change. Hence, r1 equals to r2. 

According to Fig. 13 (b), there is: 

s1 sinRrr 12                       (2) 

The volume of droplet can be calculated as: 
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Fig. 13 (c) shows the advancing state while the droplet already moved, and the 

contact angle backed to the apparent contact angle θs. In Fig. 13(c), H3 is the height of 

droplet at the advancing state. O3 is the center of droplet. r3 is the radius of contact 

line among liquid, vapor and solid, and h3 is the distance between the droplet center 

and the solid surface for the advancing state. 

In this situation, water cannot be added anymore, so the volume of the droplet is 

equal to that of situation of pre-advancing state.  

And in Fig. 13 (c), there is: ssinRr 33   

The volume of droplet can be calculated as: 
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The relationship between R3 and R1 can be expressed as: 
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In Eq. 10, acos 3
 and scos 3 have little effect on results, hence, it can be 

expressed as: 
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According to Fig. 14, the parameters of droplet rest on micro-structured surface 

can also be got as following: 
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where n represents the number of valley. 
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Substituting Eq. 11 into Eq. 14, 
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The relationship between advancing angle θa and apparent contact angle θs can be 

expressed as: 
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When apparent contact angle θs is known, Eq. 17 can be used to calculate the 

advancing angle. 

4.2 Receding state 

Fig.14 shows the receding state. At the receding state, water is being extracted and 

the droplet is receding. 



 

Fig. 14 Receding state for droplet 

Fig. 14 (a) shows the initial stable state with apparent contact angle θs. 

While in Fig. 14 (a), there is: 
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In Fig. 14 (c), the receding radius can be expressed as: 
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The parameters of droplet resting on micro-structured surface can be got as 

following: 
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When apparent contact angle θs is known, Eq. 23 can be used to calculate the 

receding angle. 

In general situation, assuming the entire composition and micro-nano structure 

keep consistent, the relationship between the contact angles on hydrophobic surface 
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can be expressed as:  

rsa    

Normally the apparent contact angle is no more than 170°. Stepping technique 

was adopted to derivate the expression for the apparent contact angle, the advancing 

angle and the receding angle in this range. The numerical solution for advancing angle 

and receding angle as shown in Eq.17 and Eq.23 can be expressed as following:  
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The error for the predicted advancing and receding angles caused by constant can 

be ignored due to the relationship between apparent contact angles, which can be 

obtained through arcsine operations. For θα and θs were in the second quadrant, they 

can calculated through Eq. 26 and Eq. 27. 
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Hence, the CAH can be expressed as: 
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According to Cassie-Baxter model, for micro-channel structure, the actual ratio of 

solid-liquid contact area and the projection for the droplet projected on bottom can be 

expressed as: 

ec

c
fb


                            (29)

 

Put fb into Cassie-Baxter model, the apparent contact angle for micro-channel 

structure can be calculated: 
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(30) 

For micro-pillar structure, the fraction of the solid/liquid interface fb can be 

calculated through Eq. 37 according to Fig. 15. 

 

Fig. 15 Solid fraction for micro-pillar structure 
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Put fb into Cassie-Baxter model, the apparent contact angle for micro-pillar 

structure can be got: 
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4.3 Prediction results analysis 

Substituting Eq. 30 and E. 32 into Eq. 26, Eq. 27 and Eq. 28, the graph 

demonstrating the relationship between advancing, receding angle, the CAH and area 

fraction for micro-channel and micro-pillar structures can be derived. 

The effect of micro-structure parameters on the area fraction is shown in Fig. 16, 

where the area fraction is plotted against the width of peak according to Eq. 29 and Eq. 

31 for micro-channel and micro-pillar structures respectively. 

 

Fig. 16 Relationship between width of peak and area fraction 
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theoretical model. The CAH shown in Fig. 17 (a) calculated with Eq. 28 was the 

difference between Eq.26 and Eq.27 (the advancing angle and the receding angle). In 

order to present it clearly, the difference was marked in Figure 17 (b) to correspond 

the value of the CAH in Fig. 17 (a). 

 

(a) CAH changes with width of peak/pillar  (b) Contact angle changes with widths 

Fig. 17 Relationship between width of peak/pillar and contact angle 

In Fig. 17 (a), xn(n=1~10) and yn(n=1~10) represent the value of the calculated 

CAH for micro-channel and micro-pillar structures, which corresponds to the 

xn(n=1~10) and yn(n=1~10) in Fig. 17 (b) that is the difference between the calculated 

advancing angle and receding angle.    

From Fig. 16 and Fig. 17, it can be seen that the area fraction increases with the 

width of micro-structure when volume of droplet remains constant. For micro-channel 

and micro-pillar structures, the apparent contact angles decrease with the increase of 

area fraction. When area fraction tends to 0, the apparent contact angle is close to 180

º theoretically. From Fig. 17 (a), it can be seen that the CAH increases with the 

increase of area fraction. Meantime, the CAH and the area fraction are constraints 

with each other and show a similar trend, which means both of them have an 

increment or decrement operations at the same time.  

From Fig. 16 and Fig. 17, it can be seen that the solid area fraction for 

micro-channel structure corresponds to 0.42 when width of peak is 75μm. The 
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apparent contact angle and the CAH is close to 130º and 10º respectively. As shown 

in Fig. 17 (b), when the width of peak is greater than 75μm, the apparent contact 

angle and the CAH change slowly. Hence, solid fraction with the value of 0.42 will be 

the best choice for micro-channel structure. When the solid fraction is too low, the 

mechanical properties of the surface are difficult to achieve. With the area fraction 

increases, it is difficult to satisfy the requirements of hydrophobicity. For micro-pillar 

structure, when the width of peak is 100μm, the solid area fraction corresponds to 

0.25, which is the critical value for machining of hydrophobic surface. These results 

confirmed the possibility of the transition from hydrophilic to hydrophobic. 

To make intuitive comparisons between the experimental results and the 

calculated results, the results in Fig. 11 and Fig. 17 were incorporated into Fig. 18 as 

shown in following. 

 

(a) Contace angle changes for channel structure  (b) Contact angle changes for pillar structure 

Fig. 18 Comparison of experimental results and calculated results for micro-channel and 

micro-pillar structure 

In Fig. 18, it can be seen that experiment results and prediction model results got 

good consistent with each other. The difference between experimental and prediction 

results mainly comes from two aspects. First, the vibration of the machine tool could 

create a difference between the design size and final size created features which can 

change the contact angle. The second is that, the advancing angle and receding angle 

were obtained by adding or reducing volume of the drop. In practice, it is difficult to 
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insert the needle into the center of the droplet, which is another error source for the 

experimental results.  

Based on the analysis, it can be concluded that the variety of area fraction can 

emphasize the effect of micro-structure on hydrophobic properties. It is an important 

aspect to select an appropriate micro-structure to improve the hydrophobic properties. 

It should also be noted that, the rough surface structure can endow hydrophobic 

properties for surface, but appreciatively leads to poor mechanical properties for the 

surface. Hence, there exist the optimal structure parameters for fabricating 

hydrophobic surfaces.  

The trends of Fig. 18 agree with the results from Rodríguezvalverde [28], Lv [19], 

Xiu [29] and Wang [30] who also investigate the CAH on hydrophobic surfaces. The 

difference is that these established models contains a number of empirical parameters, 

while the prediction model established in this paper utilize numerical analysis and can 

be used to explain the wettability of rough surfaces.  

 

5. Conclusions 

In this paper, two different micro-structured hydrophobic surfaces were machined 

though micro-machining process. The advancing and receding angles were measured 

through Pendant Drop method by the way of increasing or reducing the volume of the 

droplet. A transient state equation has been established to describe the advancing and 

the receding motion of droplets resting on hydrophobic surfaces with the hysteresis 

phenomenon. The five key states of the droplet including the initial, pre-forward, 

forward, pre-backward, backward were taken as the objects of this research. The 

effects of structure parameters on hydrophobicity were discussed qualitatively and 

quantitatively. The results indicated that the hydrophobic properties of the surface 

depend on the micro-structure. The solid fraction played a decisive role in the 

transition from being hydrophilic to hydrophobic, which existed different degrees of 

difference for different morphologies. Smaller solid fraction resulted in a larger 

contact angle and a smaller CAH. For different micro-structures, the hydrophobicity 

of the surface could be controlled by adjusting the structure parameters.  
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