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Abstract 

Thanks to significant improvements in the precision, accuracy, and usability of continuous glucose 

monitoring (CGM), its relevance in both ambulatory diabetes care and clinical research is 

increasing. Here we address the latter perspective and derive provisional reporting 

recommendations.  CGM systems have been available since around the year 2000, and used 

primarily used in people with type 1 diabetes.  In contrast to self-measured glucose, CGM can 

provide continuous real-time measurement of glucose levels, alerts for hypoglycemia and 

hyperglycemia, and a detailed assessment of glycemic variability. Through a broad spectrum of 

derived glucose data, CGM should be a useful tool for clinical evaluation of new glucose-lowering 

medications and strategies. It is the only technology that can measure hyperglycemic and 

hypoglycemic exposure in ambulatory care, or provide data for comprehensive assessment of 

glucose variability. Other advantages of current CGM systems include the opportunity for improved 

self-management of glycemic control, with particular relevance to those at higher risk of or from 

hypoglycemia.  We therefore summarize the current status and limitations of CGM from the 

perspective of clinical trials, and derive suggested recommendations for how these should facilitate 

optimal CGM use and reporting of data in clinical research. 

[193 words]  
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Current status of CGM 

Technical development 

Since CGM was first introduced, the underlying technology has undergone a multi-level 

improvement, to the extent that it now has significant potential not only for routine ambulatory 

diabetes management, but also for clinical research. In contrast with early CGM systems (1), 

overall accuracy of current devices stands around ±10%, reflecting almost a two-fold improvement. 

Furthermore, accuracy, precision, and specificity continue to improve (2-6), with particular 

emphasis on the hypoglycemic range. Additionally, the achievement of mean absolute relative 

difference (MARD) values less than ±10% has made modern CGM a useful basis for insulin dose 

titration and adjustment (7,8), provided the sensors are deployed for longer periods of time (9).  

Other continuing technological advances relate to user-friendly software, interface and displays, 

and to better data management/analysis software, extending to automatic CGM real-time data 

transfer via internet and smartphones (10). 

Continuing technical issues include the need for periodic recalibration (generally every 12 hours), 

usually by using SMPG measurements (Table 1). Factory calibration would eliminate an important 

source of human error or omission, and simplify use and clinical trial reporting. For it to be 

possible, in vivo sensitivity differences in sensors as well as sensitivity degradation of the sensor 

over time (bio-fouling) need to be minimized. As yet, factory calibration is a reality only for the 

“flash” glucose monitoring system (not US FDA approved) (2), and does not appear to be a priority 

for many developers, who are more focused on improving accuracy (11). Implantable CGM 

sensors have the advantage of no repeated sensor replacement in the shorter term (up to 3 

months of duration for available sensors and increasing duration under development), mitigating 

errors arising from sensor insertion (12). However, implantation involves some discomfort and 

inconvenience and requires a higher level of medical intervention (13,14).   

CGM measurement parameters for assessment of glycemic status 

Studies on the use of CGM in clinical settings have often been aimed at determining the accuracy, 

precision, and reliability of the system (see next section).  It has however also been judged mature 

enough to be used as a tool for assessment of glycemic variation when using different glucose-

lowering interventions in people with type 1 or type 2 diabetes (15-19).  As the devices provide 

repeated glucose estimates at very short intervals, a wide variety of derived glycemic status 

parameters can and have been used for reporting purposes. Despite recommendations for 

standardization of endpoints, no consistency has been reached, limiting comparability between 

CGM systems (20, 21). Thus, some studies use historical parameters such as the mean amplitude 

of glucose excursion (MAGE), standard deviation or coefficient of variation about mean plasma 

glucose level, or the mean of daily difference (MODD) (22).  Meanwhile, others use mean glucose 

level, low/high blood glucose indices, the percentage of time over/under a certain glucose level, the 
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area under the glucose-time curve (AUC) at certain time points of defined glucose levels, the mean 

subsequent sensor glucose nadir, the median time to postprandial peak glucose levels, or the 

number of excursions above and below some level (15-19, 23-25) (Table 2). This variability of 

reporting variables presently makes comparisons of CGM results between studies difficult, thus 

limiting generalizability, and preventing comparisons among trials, including formal meta-analysis 

and network analysis.  

Blood glucose control in diabetes is conventionally measured on the basis of risk of hyperglycemia 

(risk of vascular damage), risk of hypoglycemia, and associated risk of lifestyle disruption from 

glucose variability. This suggests that CGM outputs should primarily be directed to measures of 

hyperglycemic and hypoglycemic exposure, as would be, for instance, the area of the curve 

above/below some glucose threshold. A particular issue with such a measurement is that 

arithmetic averaging does not weight greater excursions more strongly than more minor 

excursions. 

A small study comparing basal insulins in people with type 1 diabetes provides useful illustration of 

some of the data that can be generated to inform clinical research assessments, but also some 

limitations (22).  It includes expected measurements such as times and areas above/below certain 

blood glucose cut-offs for hyper- and hypo-glycemia, as well as the glucose profiles through the 

day. Daily profiling of glucose variance was useful in illustrating the 

pharmacokinetic/pharmacodynamics effect of the different basal insulins studied – indeed this is 

true clinical pharmacodynamics, since the intent of injected insulin is to control diurnal glucose 

profile. However, using a diurnal profile, rather than the pre- and post-prandial approach usual for 

SMPG, means that prandial glucose excursions are smoothed out because of people eating meals 

at different times. So while the hyperglycemic excursion measurement provides useful data, its 

visual display is problematic, except where meal times are standardized, something that is 

unrealistic in ambulatory care. 

The article however does provide detailed and useful variability analysis (22).  Any glucose data 

point can be influenced by daily time differences, interpersonal variability, day-to-day variance (or 

even weeks and years), as by other factors like erratic insulin absorption and lifestyle.  However, 

for CGM the individual, the time unit (day), and the time of day are known, and thus Bergenstal and 

colleagues could estimate not only overall variability but also day-to-day variance, inter-personal 

differences, intra-day variability, each independently of the others, as well as the residual variation. 

This parameter could be estimated for any time of the day just as for SMPG (e.g. pre-breakfast, 

pre-injection, 03:00 h), but CGM allows extending the time period of interest (e.g. night time). 

However, since in ambulatory care time standardization of daily events is difficult to achieve, longer 

periods of data recording may need to be restricted, for example nocturnal hypoglycemia from 

24:00-06:00 h, to avoid contamination from late and early meals and injections. 

Clinical evidence of CGM-associated benefits 
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Prerequisites for optimal implementation of CGM as used in the studies below include adequate 

patient education, training, and support in regard of sensor insertion, calibration, and real-time data 

interpretation (26). Adequate patient education also implies proper training of medical staff (Table 

1).   

Advantage of CGM over conventional self-monitoring has been reported by a number of clinical 

trials for improved HbA1c levels, decreased time in hypo-/hyper-glycemic ranges, and reduction of 

hypoglycemic events in people with type 1 diabetes (26-35). CGM has been shown to improve 

HbA1c levels both in poorly controlled people (26) and in those with ‘good’ baseline HbA1c levels 

(27-29). The analysis of frequency of hypoglycemic events with CGM has shown no increase in 

hypoglycemia in any trial examining change in HbA1c levels (23, 29-33). Moreover, two other trials 

studying the time spent in the low glucose range reported a decrease of time in this range in the 

CGM group in comparison with self-monitoring alone, despite one study finding no significant 

difference in hypoglycemic event rate (27,28).   

An important factor influencing positive effects on HbA1c levels or time/frequency of hypoglycemia 

is duration of CGM use. Several studies have shown that only continuous and long-term use of 

CGM is advantageous for people with type 1 diabetes (23, 27-29).  

Furthermore, some studies have shown psychosocial benefits und QoL improvements from CGM 

use in people with type 1 diabetes (34,35). 

 

CGM in clinical trials of glucose-lowering agents 

CGM would appear to have considerable potential in optimizing the performance of clinical trials.  

As noted above, a key aspect is that, since CGM has been shown to improve HbA1c and 

hypoglycemia in type 1 diabetes, best outcomes in clinical studies can only be assured by 

deploying it as a tool to inform insulin dose adjustment and indeed assist appropriate lifestyle 

adjustments. As CGM is increasingly employed in clinical practice, its similar use in clinical trials 

becomes necessary to ensure their generalizability.   

More specifically, however, clinical trials depend on an optimal assessment of relevant outcomes, 

which for diabetes, in essence, are hyper- and hypo-glycemic excursions. To date, CGM would be 

the first and only tool that can follow these variables throughout the day (36). Further, and 

particularly in type 1 diabetes, glucose profiles differ markedly in the same individual between days 

(intra-individual variance), and while SMPG can provide a sense of this variation, CGM is the first 

and only approach that can truly measure it. 

This is particularly true for studies in ambulatory care where glycemic variability (glycemic 

excursions of different kinds) or hypoglycemia reduction (time and extent in the hypoglycemic 

range) are under investigation. The analysis of data from six CGM studies on people with type 1 
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diabetes that included a reference blood glucose measurement concluded that CGM is a 

meaningful primary outcome measure for clinical trials in the appropriate settings (37). In that 

analysis, CGM-based outcomes had a high concordance with those based on classical reference 

methods. Even though this study found a certain degree of inaccuracy and underestimation of 

hypoglycemic/hyperglycemic extremes with CGM measurements, study design can compensate 

for these, either by augmenting patient number or by increasing study duration (37). Meanwhile, 

the wealth of information obtained on duration of such excursions cannot be obtained by other 

methods.   

In the last decade, a number of clinical trials have made use of CGM as an outcome evaluation 

method. For example, a single-day study of 26 type 2 diabetes patients assessed postprandial 

excursions and glycemic variability with CGM to determine efficacy differences between mitiglinide 

and sitagliptin, alone or in combination (38). The 24-hour CGM data analysis showed that both 

mitiglinide and the combination treatment produced lower glycemic variability (24-h glucose 

variability reflected by MAGE, SD and CV (%); p < 0.001) as well as decreased postprandial 

glucose excursion (AUC, p<0.001) and a more statistically significant change from baseline in 

postprandial hyperglycemia than sitagliptin alone (combination p=0.044; mitiglinide p<0.001).  

Moreover, the CGM measured mean 24-h blood glucose level decreased more significantly in the 

combination group than in the sitagliptin group (p=0.009), even when the time spent in the ideal 

glucose range (70-140 mg/dl) was not significantly improved in any group. Clearly, the wealth of 

data provided by CGM allows a deeper characterization of glucose variability than achievable by 

other methodologies. 

In short-term studies, CGM has been used to examine changes to postprandial glucose 

excursions.  In a 72-h study (allowing the time of some meals to be standardized and recorded) as 

many as 260 people with type 2 diabetes used CGM in a study of GLP-1 receptor agonist action 

(39).  The data showed significant effects on post-meal glucose increment as 0-4 h AUC, with 

confidence intervals suggestive of good statistical performance (95% CI vs degludec –21.1, –4.7 

mg/dl; vs liraglutide –10.1, 6.7 mg/dl). Data was presented for all three main meals.  Short-term (3-

day) CGM has also been use to compare the meal glucose excursions of conventional oral agents 

(40). 

CGM may, however, have even more utility in longer duration and more complex studies. As noted 

above, it has been used for comparison of measures of hyperglycemic and hypoglycemic 

excursions and aspects glucose variability, including graphical displays, in a study comparing a 

new basal insulin analogue to the established analogue in the treatment of people with type 1 

diabetes (22). This study is a good example of one of the advantages but also a disadvantage of 

CGM: the breadth of data it provides, and the large number of derived parameters that can be 

calculated (22).  Another study focused on hypoglycemia outcomes when the timing (or omission) 

of the last meal of the day is altered in people treated with basal insulin (41).  The study took place 
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over three days, repeated three times (9 days total recording time), in 20 people with type 2 

diabetes. CGM allowed the assessment of several aspects of hypoglycemia, and notably revealed 

that the principal effects of the meal timing changes were observed much later during sleep, 00.00 

and 06.00 h, a finding that would have been difficult to replicate with other methodologies. 

CGM was also used to characterize two therapeutic combinations in 63 newly diagnosed people 

with type 2 diabetes, which showed significant decreases from baseline values in derived plasma 

glucose parameters, differences between therapies, and in glucose fluctuations and hypoglycemia 

(42). 

Studies have also been performed using CGM in special populations.  One such was a small study 

(n=10) of a DPP-4 inhibitor in people having hemodialysis (43).  Area under the glucose-time curve 

(AUC) and the fasting plasma glucose were assessed showing statistically significant changes 

(uncontrolled) on both dialysis and non-dialysis days.   

A SGLT2-blocker study in people with type 1 diabetes used CGM to assess fasting plasma glucose 

(FPG), postprandial glucose excursion measured as AUC, the percentage of time over/under a 

certain level, and MAGE, among others (44). Statistically significant effects were shown for mean 

daily glucose level and time within the target glucose range, and time in gross hyperglycemia 

(>180 mg/dl) compared with placebo. 

 

Benefits and concerns of CGM 

Among the reasons why CGM could potentially be beneficial for clinical trials on glucose-lowering 

agents are its potential to reduce both duration of studies and number of participants, as suggested 

by some of the statistically significant results above (36). In ambulatory studies, CGM may come to 

replace SMPG profiles performed 7-9 times a day, with their problems as to timing and adherence 

(45, 46). Reasonably, much more data on hypoglycemic excursions should become available, both 

at night and during the day, though the statistical power of this data has yet to be tested.  

Moreover, with CGM much more detailed quantification of glycemic variability is possible, and with 

standardized meal times a more detailed description of postprandial glycemic excursions (47).  

However, CGM does have limitations (Table 1). One such is the lack of regulatory acceptance of 

CGM data in the USA except for adjunctive purposes, albeit this is similar to the situation for 

SMPG. Appropriate use of the technology requires a high level of education in the practical 

handling of the equipment and data management, for both patients and study personnel (36). 

Managing patient expectations is important to ensure balancing the additional effort associated 

with potential intrusiveness, data overload and alarm fatigue with increased confidence over 

diabetes management, ability to respond quickly to blood glucose information and reduced anxiety 

associated with diabetes management (34). Calibration still represents a clear complication to data 

analysis/interpretation, and is dependent on another patient-performed technology (SMPG). 



8 
 

Calibration of CGM at manufacture should solve this problem in time. Data management tools are 

still in evolution, being constantly improved by the development of new software, as well 

techniques for data transmission and sharing (14). Issues of accuracy and precision do still arise 

with CGM, at least by comparison with SMPG, and this may be more problematic at the extremes 

of glucose excursions (MARDs of most devices are above 10% at the extremes), an issue more for 

safety considerations rather than efficacy outcomes. It is therefore important that performance of 

systems used in clinical trials should be properly documented and in the public domain.   

To date, however, the greatest issue for CGM in clinical trials is that of end-point selection. The 

huge variability of reported outcomes limits comparability between trials and generalizability of 

study results (36).  

Lastly, there are concerns over CGM-driven glycemic outcomes. With one exception, none of the 

studies mentioned above report on blinding/masking of participants to CGM results (42). Therefore, 

even when patients were often instructed to continue with their usual exercise and diet routine (38, 

39, 42, 44), it cannot be completely discarded that glycemic improvement is not due to CGM 

informed decisions on self-management of diabetes. It is also possible that CGM naïve people 

would misinterpret the data to the detriment of their blood glucose control. For an accurate 

evaluation of the impact of glucose control agents on glycemic variation when using CGM, 

adequate patient education and blinding to the data are of great importance.  

 

Recommendations 

To be useful and valid in clinical trials use of CGM needs to be better standardized. To that end, 

we propose some suggestions on how CGM should be used in clinical studies, and how data 

should be reported (Table 3). 

Study protocol, Methods section 

To ensure high quality CGM data from clinical trials, the study protocol should detail different 

aspects of the estimation of plasma glucose through measurement of interstitial glucose levels: 

• The CGM system used needs to be described in detail, including device and manufacturer, and 

version number 

• Information on the setting and patient population: in-patient or out-patient setting, description of 

care team and program, whether a CGM education program is provided, characterization of 

participants and any specific indications for CGM; and whether CGM was used to modulate 

continuous subcutaneous insulin infusion (‘‘sensor-augmented pump’’), or as a component of a 

closed-loop system 

• Whether CGM was used real-time or blind: if real-time, were study participants familiar with use 

of CGM data to modulate insulin doses and lifestyle changes, or newly instructed 
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• Quality and characteristics of education/training of study participants in performing and 

interpreting CGM (if real-time) 

• Input of CGM outputs into any therapy dosing schedule or algorithm, both by the study 

participant and in telephone and clinic visits;  which actions are to be taken in response to low 

(or high) CGM read-outs  

• If relevant, details of any special meal or physical activity studies, type of time standardization 

and exclusion/handling parameters for data from subsequent time periods (e.g. overnight or for 

24 hours) within longer-term CGM data 

• Description of application of CGM: When was CGM initiated, and for how long performed  

• Methods of calibration and the devices employed to that aim 

• Definition of CGM adequate performance, namely protocol-determined criteria for data 

inclusion for analysis; for example, data might have to be 70 % complete in any time period 

analyzed over the projected duration of CGM use   

• The statistical tools used in preparing CGM data for reporting in the Results section (see 

below): this might include any averaging technique, cut-offs used to assess high and low 

glucose excursions, definitions of hypoglycemia, analyses of glucose variation and the 

terminology used to describe its different parameters, as well as methods of handling missing 

data 

• The status of any outcomes from CGM (primary, secondary, descriptive, safety). 

Results section: methodological and outcome measures 

The following topics should be addressed in the Results section: 

• Percentage of participants in each study arm having valid CGM data according to protocol-

determined criteria, and thus used in further statistical analysis (see above)  

• Analytical performance of CGM systems (correlation/deviation between CGM and SMPG 

values) 

• Classical clinical trial outcomes not dependent on CGM, including HbA1c, pre-breakfast self-

measured plasma glucose, hypoglycemia incidence and event rates according to severity and 

specific definitions, and adverse events    

• CGM output should be reported as plasma glucose, since even though glucose levels are 

measured in interstitial fluid, the output of CGM is calibrated to plasma glucose; similarly to 

SMPG where plasma glucose is reported from a whole blood specimen   

• Measures of glucose excursions: for standardization, we suggest the measurement of time and 

area above and below glucose thresholds, the latter being the best correlate of hyperglycemia 

and hypoglycemia exposure; we are not mandated to advise on appropriate cut-offs, but >140 
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mg/dl and <70 mg/dl approximately define the upper and lower limits of physiological glucose 

levels in healthy people; so for standardization purposes these should be reported even if other 

cut-offs are judged more relevant to study aims and are also included; hyperglycemic and 

hypoglycemic excursions have different clinical meaning and should be reported separately, 

even if also described as an aggregate ‘outside the normal range’;  other parameters such as 

mean of glucose excursions or number of dips into hypoglycemia may be considered at 

investigator (protocol-defined) discretion 

• Hyperglycemia cut-offs other than 140 mg/dl have been described in the literature, notably 8.0 

mmol/l and 180 mg/dl (21, 45).  Especially these may be more useful in people with type 1 

diabetes, so use of such cut-offs is additionally recommended, provided they are pre-defined 

and >140 mg/dl is also reported, and pending further discussion and consensus in the diabetes 

community 

• Hypoglycemia cut-offs other than 70 mg/dl (3.9 mmol/l) have been used both for sensitivity 

analyses and for primary hypoglycemia reporting (46, 47); use of the alternative cut-off of 56 

mg/dl (3.1 mmol/l) is therefore also recommended as an addition, pending further discussion; 

further cut-offs can be included if judged relevant to study aims, and according to study-

protocol 

• At present there is no standard for reporting hypoglycemia unawareness, where excursions to 

low glucose levels or different duration and extent are found on CGM without symptoms of 

hypoglycemia being reported;  we suggest that pending such standards, the number of days or 

nights at least one such episode occurs is reported and analyzed 

• Variability of glucose levels should only be employed for the precise analysis conducted; most 

useful are within-day, within-person daily variability (fluctuations across 24-hours, although 

sometimes a shorter part of the day may be analyzed), and within-person inter-day variability 

(erratic control) which can be reported for daily means or for particular time periods (e.g. 

nocturnal or pre-breakfast).  Furthermore, we recommend avoiding use of the term ‘variability 

of plasma glucose levels’. 

Discussion/Conclusion section 

An essential point in the discussion of a trial involving CGM use should be the potential impact of 

CGM on the study results, and hence their generalizability. Such areas might include lifestyle 

behaviors, dose and therapy changes, and hypoglycemia detection. This might include 

comparisons to previous research performed without CGM, or under different conditions of use. 

Furthermore, in line with recommendations for reporting of SMPG use in clinical research (45), 

patient compliance and overall impact of CGM use on trial outcomes should be discussed. 
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Conclusion 

In the appropriate setting, CGM may be a very useful tool for providing relevant information on 

hyperglycemia, hypoglycemia and glucose variability in clinical trials of glucose-lowering agents. 

This is particularly true to studies performed in ambulatory care and for those answering research 

questions related to variability and hypoglycemia reduction, both for people with type 1 and 2 

diabetes. However, the nature and extent of the data generated mean that the technology is 

presently ahead of our ability to establish which output parameters are relevant and most useful. In 

time, reduction of trial duration and participant numbers seem likely, offsetting some of the cost of 

the technology itself. We suggest that, pending broader and more formal consensus, the 

recommendations above should improve on the potential of CGM to advance our understandings 

of new and established therapies in quality clinical trials.   
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Table 1. Some limitations on the use of current CGM systems in clinical trials 

 

 

  

Domain Limitations of CGM 

Technical Need for regular recalibration by SMPG 

Lack of long-term stability 

Require user insertion – potential for error 

Not implantable 

Lower accuracy/precision at extremes of glycemia 

Evolving data communication systems 

Necessary process Extended period (continuous/long-term) of use 

Adequate professional (trial staff) training needed 

Adequate patient education, training, and support 

Management of patient expectations 

Limited available patient reported outcomes presently 

Blinding/masking of patients to CGM results 

Reporting  Diverse reporting variables for glucose excursions 

Lack of agreement on thresholds  

Diverse glucose variability reporting parameters 

Lack of system comparability 

Averaging with time hides glycemic excursions 

Visual display of glycemic excursions 

Diverse statistical tools including data averaging  
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Table 2.  Common metrics used in the analysis of CGM data  

Term/metric Detail and caveats 
System performance  

Mean absolute relative 
difference (MARD) 

Absolute deviation of CGM glucose measurement from a reference 
system.  May be calculated for different ranges of plasma glucose 
(e.g. low);   

Glucose control measures  
Mean blood (plasma) glucose 
(MBG, MPG);  Total area 
under glucose concentration 
curve 

Mean of data over a defined period.  Concatenates hyperglycemic 
and hypoglycemic excursions (cf HbA1c).  CGM, like self-measured 
glucose, is reported as plasma glucose, but the term ‘blood’ is often 
casually and incorrectly used 

Glucose concentration curve 
area above a pre-defined 
threshold for a defined time 
period 

Hyperglycemic deviation of glucose concentration multiplied by time; 
if the time base is the same as the time units, is the same as the 
average excursion; can be limited to a particular time of day, e.g. 
post-prandial; no weighting is given to more extreme levels  

Glucose concentration curve 
area below a pre-defined 
threshold for a defined time 
period 

Hypoglycemic deviation of glucose concentration multiplied by time; 
if the time base is the same as the time units, is equivalent to the 
average excursion; can be limited to a particular time of day, e.g. 
nocturnal; no weighting is given to more extreme levels;  

Time above or below some 
pre-defined threshold 

Usually given as percentage of some defined time period; takes no 
account at all of the magnitude of the excursion  

Time within some pre-defined 
range 

Usually given as percentage; choice of range open to manipulation 
to show good/poor results  

Time to peak (nadir) and peak 
(trough) level 

Conventional pharmacodynamic measures used in clinical 
laboratory challenge studies (e.g. meal challenges) 

Number of excursions above 
or below some pre-defined 
level 

A single excursion is time since crossing a threshold till return to that 
same threshold; fails to account for extended excursions 

Low/high blood (plasma) 
glucose indices 

Attempts to weight measurements for more extreme excursions; 
quantitative pathophysiological basis is uncertain 

Glucose variability measures  
Standard deviation (SD) or 
coefficient of variation (CV) of 
blood (plasma) glucose  
(SDBG, SDPG, CVBG, 
CVPG) 

SD from mean level, and CV as percentage of mean level; can be 
restricted to a time of day; independent of direction of glucose 
excursions 

Within-day, within person 
glucose variability 

A measure of mean changes usually over 24-hours, but can be 
restricted to other periods 

Between day, within person 
glucose variability (erratic 
glucose control) 

May use variability between the average for each day in one person, 
but can be restricted to other time intervals (e.g. nocturnal, pre-
breakfast, pre-dosing);  

Mean of the daily differences 
(MODD) Similar to previous parameter 

Mean amplitude of the 
glucose excursion (MAGE) 

Direction-independent (absolute) deviation from the mean glucose 
level (or from some other level, baseline or pre-determined) ignoring 
levels within 1SD 

Graphical displays Combined display by time of glucose control (mean of time) and 
between person, between day variability (study SD) at all time 
points; likely to create certain average basal and post-meal values 
due to between and within person variation in times of eating, thus 
flattening glucose excursions  

Other parameters have been proposed such as M-value, J-index, CONGA, ADRR, Lability/HYPO 
score, and GRADE, but have not been widely adopted.  See references (48, 49) 
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Table 3. Summary of recommendations on reporting of CGM methods and results when 

used in clinical trials 

Manuscript 

Section 

Information domain Example of detail 

 Introduction Purpose of CGM in 
study 

Secondary endpoints, hypoglycemia detail  

 Methods 
  

Make and version of 
CGM technology 

Manufacturer; read-out system 
Calibration methodology 
Criteria for successful use in the individual  

  
Setting of CGM 
utilization 
 
 
 
 

In-patient or ambulatory care   
Education to participants and investigators 
Injection therapy and dose algorithms; meal-time dose 
calculator; open-loop pump; closed loop functions 
Real-time or blinded  
Duration/timing of implementation  

  Classic glucose control 
data 

Including HbA1c, pre-breakfast SMPG, hypoglycemia 
incidence and event rates, and status of these outcomes in 
results hierarchy 

  

Data analysis 

Use of any averaging function 
Statistical outputs such as time in range and area above and 
below cut-offs; other outputs 
Parameters of glucose variability and how they are 
calculated 
Whether outputs are primary, secondary, or 
observational/safety 
Definitions and standards of hypoglycemia used 

Results 

Methodological 

Percent of participants with successful CGM implementation, 
duration of implementation 
Deviation between CGM and SMPG calibration 
measurements 
Use of CGM in dose or therapy changes 

 Classic glucose control 
outcomes 

See Methods above 

 

CGM outcomes 

Time in/out of range, and area/average glucose out of range 
high and low separately using default cut-offs of 140 mg/dl 
and 70 mg/dl 
Similar data using cut-offs of investigator choice appropriate 
to study question and technology under investigation 
CGM-based hypoglycemia data by time of day as 
appropriate to study, and to include glucose nadirs and 
presence or absence of symptoms during low excursions 
Within-patient, within-day glucose variability, and between 
day (average day) within-patient variability.  Such other 
within-patient variability for defined time periods (e.g. night or 
pre-breakfast) as pre-determined and appropriate to study.  

Discussion  Impact of CGM findings on study findings using conventional 
measures 
Generalizability of findings to people not using CGM (if real-
time and dose/therapy adjustment utilized) 
Limitations of CGM: extent of usable data, calibration 
findings, extreme glucose excursions 
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