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DECOMPOSITION OF CONGRUENCE MODULAR

ALGEBRAS INTO ATOMIC, ATOMLESS LOCALLY

UNIFORM AND ANTI-UNIFORM PARTS

Abstract

We describe here a special subdirect decomposition of algebras with modular

congruence lattice. Such a decomposition (called a star-decomposition) is based

on the properties of the congruence lattices of algebras. We consider four proper-

ties of lattices: atomic, atomless, locally uniform and anti-uniform. In effect, we

describe a star-decomposition of a given algebra with modular congruence lattice

into two or three parts associated to these properties.

Keywords: universal algebra, algebraic lattice, congruence lattice, atomic
lattice, modular lattice, uniform lattice, subdirect product, star-product,
decomposition of algebra

1. Introduction

In this paper we study properties of modular algebraic lattices in order to
obtain a ⊛-decomposition of algebras into factors with specific congruence
properties. The famous Grätzer-Schmidt theorem states that every alge-
braic lattice is the congruence lattice of an algebra, so we study algebraic
lattices having in mind congruence lattices. In [8] there was introduced a
notion of a ⊛-product of algebras as a special kind of a subdirect product.
In the same paper, a notion of dimension of algebras was given and, in
the case of algebras with modular congruence lattices, the description of a
⊛-decomposition of algebras into one-dimensional factors (i.e. algebras with
their congruence lattices being uniform) and the one (if exists) 0+-factor
(i.e. algebra with its congruence lattice being anti-uniform) was described.
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Modular lattices are very interesting because many algebraic structures
(groups, rings, modules, vector spaces, lattices, Boolean algebras) have
modular congruence lattices.

We consider four properties of elements in lattices, namely, being an
atom, uniform element, uniform atomless element and anti-uniform ele-
ment. In Section 2 we recall some useful notions and facts of universal
algebra and lattice theory and we give also useful notions and facts con-
cerning ⊛-decomposition (from [8]). Section 3 contains technical results for
modular algebraic lattices which are used in formulation and proving main
results of this paper, i.e. ⊛-decomposition theorems, in the last section.

2. Preliminaries

An algebra A of type F is an ordered pair (A,F ), where A is a nonempty
set and F is a family of finitary operations on A.

A binary relation θ on A is called a congruence on an algebra A of type
F if it is an equivalence relation on A satisfying the compatibility property
i.e. for each n-ary operation f ∈ F and elements ai, bi ∈ A, if (ai, bi) ∈ θ
holds for i = 1, . . . , n then (f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ. The set of all
congruences on an algebra A is denoted by ConA. It is known that ConA
ordered by inclusion is an algebraic lattice which is called the congruence
lattice of A. The least element 0 is the identity relation and the greatest
element 1 is A × A. According to terminology like ‘congruence modular
algebra’ and ‘congruence distributive algebra’, we will say that an algebra
is a congruence ‘Property’ algebra if its congruence lattice has the property
‘Property’.

An algebra A is a subdirect product of a family (Ai)i∈I of algebras
if A is a subalgebra of the product

∏
(Ai)i∈I and the projection maps

πi : A → Ai are epimorphisms for each i ∈ I.
We use two important properties of congruences. The first one states

that if θ =
⋂
{θi}i∈I , then A/θ is a subdirect product of the algebras

(A/θi)i∈I . Hence if 0 =
⋂
{θi}i∈I , then A is a subdirect product of the

quotient algebras (A/θi)i∈I . The second one is The Correspondence The-
orem which states that for any algebra A and θ ∈ ConA the interval [θ, 1]
is isomorphic to ConA/θ.

We assume throughout the paper, that L is an algebraic lat-

tice with the least element denoted by 0 and the greatest element

denoted by 1, and where 0 6= 1.
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This yields that if such an L is a congruence lattice of an algebra A,
then A is nontrivial, i.e. it has at least two elements. If L is algebraic then
it is complete by definition. In complete lattices we have

∨
∅ = 0,

∧
∅ = 1,∨

L = 1,
∧
L = 0.

For facts not recalled here see [1], [3], [8].

2.1. Omitting relation, uniform and anti-uniform elements

The relation of omitting elements is a kind of complementation. We say
that an element y ∈ L omits x ∈ L iff y ∧ x = 0. An element y ∈ L omits
a nonempty subset X ⊆ L iff y omits every element x ∈ X. If X = ∅ then
every element y ∈ L omits X.

For any subset X ⊆ L there exists a maximal element omitting X. The
set of all maximal elements omitting X is denoted by MX and elements
of this set are denoted by MX . If X = {x} then the set of all maximal
elements omitting x is denoted by Mx and Mx denotes any element of Mx.

We consider also maximal elements in L omitting a given element MX

using notation M⊛

X for any element of the set MMX
. Exceptionally, if X =

{x} then for a given Mx, M⊛
x denotes any element of the set M

⊛
x (Mx) =

{z ∈ MMX
: x ≤ z}. Consequently, for given MX and M⊛

X ∈ MMX
, the

symbol M⊛⊛

X denotes any element of the set M
⊛

MX
(M⊛

X ).
For example, look at the lattice on Fig.1. Here Ma = Mα∧a =

{b, c}, M⊛
a = M⊛

α∧a = a and M
{a,b} = c, M⊛

{a,b}
∈ {a, b}. It is shown

in [8] that in algebraic modular lattices, for any fixed MX , MX = M⊛⊛

X

independently of the choice of M⊛

X . Moreover, MX is uniquely determined
for any X in algebraic distributive lattices.

We recall here the definition of a uniform element in a lattice, known
from papers of Grzeszczuk and Puczy lowski [4], [5]. An element u ∈ L\{0}
is uniform in L if x ∧ y 6= 0 for any x, y ∈ (0, u]. A lattice L is uniform if
1 is uniform.

The set of all uniform elements in L will be denoted by U(L). The
set of all atoms of L will be denoted by A(L). Every atom is uniform, so
A(L) ⊆ U(L). A lattice L is atomic if for any x ∈ L \ {0} there is an atom
a ∈ L such that a ≤ x. A lattice L is atomless if A(L) = ∅. A uniform
element u will be called atomless, if the interval [0, u] is an atomless lattice.
The set of all atomless uniform elements in L will be denoted by N(L), and
obviously, N(L) ⊆ U(L). Thus A(L)∩N(L) = ∅ and A(L)∪N(L) ⊆ U(L).

A lattice L is locally uniform if for any x ∈ L \ {0} there exists a u ≤ x
such that u ∈ U(L).
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Every chain lattice is uniform. The lattice of all subgroups of the
group of integers Z is atomless uniform. The lattice of all subgroups of
the group Z ×Z is locally uniform, but not uniform. Generally, the lattice
of all subgroups of the power Zn, n ≥ 2, is locally uniform and there are
infinitely many uniform elements in Zn.

An element t ∈ L \ {0} is anti-uniform in L iff U([0, t]) = ∅. The set
of all anti-uniform elements in L is denoted by T (L). By definition every
anti-uniform element in L omits U(L), thus U(L) ∩ T (L) = ∅. A lattice L
is anti-uniform if 1 is anti-uniform. The Lindenbaum-Tarski algebra with
an infinite set of variables is an anti-uniform lattice.

An element e ∈ L is called essential in L if x ∧ e 6= 0 for every
x ∈ L \ {0}. The 1 is essential in L. If an x is essential in L then Mx = 0.
We say that an element e ∈ L is essential in an element a ∈ L iff e ≤ a
and e is essential in the interval [0, a] ⊆ L.

2.2. Modular lattices

A lattice L is modular iff for any x, y, z ∈ L,

if z ≤ x then x ∧ (y ∨ z) = (x ∧ y) ∨ z.

Recall some properties of modular lattices.

M1 A lattice L is modular iff it satisfies the shearing identity:
x ∧ (y ∨ z) = x ∧ ((y ∧ (x ∨ z)) ∨ z)

M2 A lattice L is modular iff it satisfies the identity:
(x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ (x ∨ z))

M3 For any modular lattices L the Isomorphism Theorem holds, i.e. for
any a, b ∈ L the intervals [a, a ∨ b] and [a ∧ b, b] are isomorphic and
the isomorphism is ϕb(x) = x ∧ b, while the inverse isomorphism is
ψa(x) = x ∨ a.

We give below two facts (see [8]) useful in our proofs.

FM1 Let L be a modular lattice. Let a, b, c ∈ L \ {0} be such that a∧ b =
a∧ c = b∧ c = 0 and let α = (a∨ b)∧ (c∨ b) > b. Then α∧ a 6= 0 and
α ∧ c 6= 0 and the intervals [0, α ∧ a], [b, α], [0, α ∧ c] are isomorphic
(see Fig. 1.).

FM2 Let L be a modular lattice. Then

1. x ∨Mx is essential in L for any x,Mx ∈ L,

2. if ∅ 6= X ⊆ L then MX ∨M⊛

X is essential in L for any MX ,M⊛

X .
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Fig. 1.

2.3. Independent sets, star-sets and star-products

The idea of introducing independent sets has its origin in linearly inde-
pendent sets of vectors. There are several definitions of independent sets
in lattices (see e.g. [3], [6], [9], [5]). We say that a subset X ⊆ L \ {0}
is independent if |X| = 1, or |X| > 1 and for every x ∈ X it holds that
x ∧

∨
(X \ {x}) = 0.

We will use notation y =
∧

(Y \ {y}) and Y = {y : y ∈ Y }.
For any independent set X = {xi}i∈I , we use the symbol MX

i to denote
any maximal element omitting xi such that

∨
(X \ {xi}) ≤MX

i .

Definition 2.1. [8]

1. Let X,Y ⊆ L and X = {xi}i∈I , Y = {yi}i∈I . We say that the pair
(X,Y ) is a star pair (a ⊛-pair) in L iff

(a) X is an independent set in L such that
∨
X is essential in L,

(b)
∧
Y = 0,

(c) yi is a maximal element omitting xi such that
∨

(X \ {xi}) ≤ yi
is essential in yi, for every i ∈ I.

2. We say that Y = {yi}i∈I is a star-set (a ⊛-set) in L iff (Y , Y ) is a
⊛-pair in L.

3. An algebra A is a star-product (a ⊛-product) of algebras (Ai)i∈I if A
is a subdirect product of this family such that the set Y = {kerπi}i∈I

of congruences on A is a ⊛-set. If A is a ⊛-product of algebras
(Ai)i∈I we use notation ⊛(Ai)i∈I .
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Directly from definition we have that for any algebra A, if Y = {θi}i∈I

is a ⊛-set in ConA then A ≃ ⊛(A/θi)i∈I .
It is worth mentioning here that every ⊛-set Y is irredundant, that is,∧

Y = 0 and
∧

(Y \ {y}) = y 6= 0 for any y ∈ Y . Moreover, if |Y | > 1 then
y 6= 0 and y is not essential in L for every y ∈ Y .

Theorem 2.2. [8] Let L be a modular lattice. Then

1. if X is an independent set in L and y∧
∨
X = 0 for some y ∈ L\{0},

then {y} ∪X is independent in L,

2. X is a maximal independent set in L iff X is an independent set and∨
X is essential in L,

3. If X is a maximal independent set in L such that |X| > 1, then
{MX

x }x∈X is a ⊛-set, and if L = ConA then A ≃ ⊛
(
A/MX

x

)
x∈X

,

4. {MX ,M
⊛

X} is a ⊛-set in L for any ∅ 6= X ⊆ L. So, if L = ConA
then A ≃ A/MX ⊛A/M⊛

X .

3. Four kinds of elements and their properties in

modular lattices

We assume in this section that L is an algebraic modular lattice. We
consider here four properties of elements in L, namely, belonging to one of
the sets A(L), N(L), T (L) or U(L). If there is no confusion, we omit the
symbol of the lattice L in notation of omitting elements, for example, we
write MA instead of MA(L) and M⊛

A instead of M⊛

A(L) etc.

The following two facts follow directly from definition:

Fact 3.1. For any x ∈ L

1. if x ∈ U(L) then x 6∈ T (L),

2. if x ∈ T (L) then x 6∈ P (L) for any P ∈ {A,N,U},

3. if x ∈ A(L) then x 6∈ P (L) for any P ∈ {N,T},

4. if x ∈ N(L) then x 6∈ P (L) for any P ∈ {A, T}.

Fact 3.2. Let P,Q ∈ {A,N, T}, P 6= Q and x ∈ P (L).

1. If x′ ∈ L \ {0} is such that x′ ≤ x then x′ ∈ P (L).

2. if y ∈ Q(L) then x ∧ y = 0.

The following fact is a simple consequence of Fact 3.2.
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Fact 3.3. For any P ∈ {A,N, T} and for any y ∈ L \ {0}

1. if x ∈ P ([0, y]) then x ∈ P (L),

2. if x ∈ P (L) and x ∧ y > 0, then x ∧ y ∈ P ([0, y]).

Proposition 3.4. For any x ∈ L \ {0} there exists an x′ ∈ L \ {0} with
x′ ≤ x such that

1. x′ belongs to exactly one of the sets U(L), T (L),

2. x′ belongs to exactly one of the sets A(L), N(L), T (L),

3. MU ∧MT = 0 for any MU ,MT ,

4. MA ∧MN ∧MT = 0 for any MA,MN ,MT .

Proof. Let x ∈ L \ {0}. If x ∈ T (L) then by definition x′ 6∈ U(L) for
every x′ ≤ x. If x 6∈ T (L) then there is a u ∈ U(L) such that u ≤ x. If
u ∈ N(L) then u 6∈ A(L). If u 6∈ N(L) then there is an a ∈ A(L) such that
a ≤ u ≤ x. For the proof of (iii) assume that 0 6= x ∈ MU ∧MT . Then
x ∈MU omits all uniform elements, so, by definition, x ∈ T (L) and hence
x ∧MT = 0. A contradiction. The proof of (iv) is analogous.

To simplify formulation and proofs of some results we use the following
terminology:
Let {P,Q,R} = {A,N, T}. We say that a lattice L:

• is satisfying P iff P (L) 6= ∅ and Q(L) = ∅ = R(L),

• is satisfying {P,Q} iff P (L) 6= ∅ 6= Q(L) and R(L) = ∅.

The next fact shows how some properties of lattices are expressed in this
terminology:

Fact 3.5. L is satisfying:

1. A iff L is atomic,

2. N iff L is atomless locally uniform,

3. T iff L is anti-uniform,

4. {A,N} then L is locally uniform,

5. {N,T} then L is atomless,

6. {A, T} then L has no atomless uniform element.

Proof. The proof, based on Proposition 3.4, is very simple. We show
(i) as example. If L is satisfying A then A(L) 6= ∅ and T (L) = ∅ = N(L).
Then for any x ∈ L \ {0} there is an atom a ≤ x and thus L is atomic. If



206 Bogdan Staruch and Bożena Staruch

L is atomic then for any x ∈ L \ {0} there exists an atom a ≤ x. Hence
A(L) 6= ∅ and T (L) = ∅ = N(L) and thus L is satisfying A.

Fact 3.6. For any P ∈ {A,N, T} and any x ∈ L \ {0}, if L is satisfying P
then [0, x] is satisfying P .

It is worth mentioning here that the four properties, that we describe
in this paper, are preserved by isomorphism. We point out here a useful
fact concerning isomorphisms and intervals.

Fact 3.7. Let a, b, c, d ∈ L and a < b, c < d. Assume that [a, b] ≃ [c, d],
where φ : [a, b] → [c, d] is the isomorphism. Let P,Q ∈ {A,N, T}, P 6= Q.
Then

1. p ∈ P ([a, b]) iff φ(p) ∈ P ([c, d]),

2. [a, b] is satisfying P iff [c, d] is satisfying P ,

3. [a, b] is satisfying {P,Q} iff [c, d] is satisfying {P,Q}.

Lemma 3.8. Let P,Q ∈ {A,N, T}, P 6= Q. Then for any MP ,M
⊛

P the
following holds:

1. MP ∧ q > 0 for any q ∈ Q(L),

2. M⊛

P ∧ p > 0 for any p ∈ P (L),

3. M⊛

P ∧ q = 0 for any q ∈ Q(L).

Proof. (i) Let q ∈ Q(L). If MP ∧ q = 0 then MP ∨ q > MP . By
maximality of MP there exists a p ∈ P (L) such that p ≤MP ∨q. Use FM1,
where a = q, b = MP , c = p. Then α = (MP∨q)∧(MP∨p) = MP∨p > MP .
Then α∧ p = (MP ∨ p)∧ p = p and α∧ q = (MP ∨ p)∧ q = q′ ≤ q and thus
[0, p] ≃ [0, q′], which contradicts Fact 3.2 since p ∈ P (L) and q′ ≤ q 6∈ P (L).
(ii) Let p ∈ P (L) and assume that M⊛

P ∧ p = 0. Then M⊛

P ∨ p > M⊛

P and
hence MP ∧ (M⊛

P ∨ p) > 0. Notice also that p ∧ (MP ∧ (M⊛

P ∨ p)) ≤
p ∧MP = 0. Now use FM1, where a = MP , b = p, c = M⊛

P . Then by M2,
α = (MP ∨ p) ∧ (M⊛

P ∨ p) = p ∨ (MP ∧ (M⊛

P ∨ p)) > p. Hence there is an
isomorphism φ : [0,MP ∧ α] → [0,M⊛

P ∧ α] and MP ∧ α > 0. Thus there
exists an x ∈ [0,MP ∧ α] and R ∈ {A,N, T} \ {P} such that x ∈ R(L)
according to Proposition 3.4. Thus φ(x) ∈ [0,M⊛

P ∧ α] ∩ R(L). In view of
(i) we have φ(x) ∧MP > 0. Therefore M⊛

P ∧MP > 0, a contradiction.
(iii) Let q ∈ Q(L). If q ∧ M⊛

P = q′ > 0 then q′ ∧ MP = 0 and hence
q′ ∨MP > MP . By maximality of MP there exists a p ∈ P (L) such that
p ≤ q′∨MP . Thus, using M1 we get 0 < p′ = M⊛

P ∧p ≤M⊛

P ∧ (MP ∨ q′) =
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M⊛

P ∧ ((MP ∧ (M⊛

P ∨ q′))∨ q′) = M⊛

P ∧ ((MP ∧M⊛

P )∨ q′) = M⊛

P ∧ q′ = q′.
Hence p′ ≤ q′, but p′ ≤ p ∈ P (L) and q′ ≤ q 6∈ P (L). A contradiction.

Lemma 3.9. Let {P,Q,R} = {A,N, T}. Then

1. for any MP ,M
⊛

P there exist MQ,MR such that M⊛

P = MQ ∧MR,

2. if L is satisfying {P,Q} then {MP ,MQ} is a ⊛-set in L,

3. if A(L), N(L), T (L) are all nonempty then for any MT there exist
MA,MN such that {MT ,MA,MN} is a ⊛-set in L.

Proof. (i) If P (L) = ∅ then MP = 1 and M⊛

P = 0, and by Proposi-
tion 3.4, 0 = MP ∧MQ ∧MR = MQ ∧MR. Let A(L), N(L), T (L) be all
nonempty. By Lemma 3.8 M⊛

P omits Q(L)∪R(L), so there are MQ ≥M⊛

P

and MR ≥ M⊛

P . As MQ ∧MR omits MP and M⊛

P ≤ MQ ∧MR, by maxi-
mality of M⊛

P we get M⊛

P = MQ ∧MR.
(ii) follows from (i), since MR = 1 and then M⊛

P = MQ. Due to Theo-
rem 2.2 {MP ,MQ} is a ⊛-set in L.
(iii) Let us take MT ,M

⊛

T and choose MA,MN as in (i).
Let Y = {MT ,MA,MN}. First we show that that Y is a maximal inde-
pendent set in L. Recall that (see page 203) Y = {MT ,MA,MN}, where
MT = MA ∧MN = M⊛

T , MA = MN ∧MT , MN = MA ∧MT .
It is easy to see that MA ∧MN = 0. Moreover,
MT ∧ (MA ∨MN ) = M⊛

T ∧ ((MT ∧MN ) ∨ (MT ∧MA)) ≤M⊛

T ∧MT = 0.
Due to Theorem 2.2 (i) Y is an independent set.

Now, we show that
∨
Y is essential in L. Let x ∈ L \ {0}, then by

Proposition 3.4 there exists an x′ such that 0 < x′ ≤ x and x′ belongs to
exactly one of the sets T (L), A(L), N(L).

If x′ ∈ T (L) then 0 < x′ ∧M⊛

T = x′ ∧MT .

If x′ ∈ A(L) then 0 < x′∧MT ∈ A(L) then 0 < (x′∧MT )∧MN = x′∧MA.

If x′ ∈ N(L) then 0 < x′∧MT ∈ N(L) then 0 < (x′∧MT )∧MA = x′∧MN .

Thus x ∧
∨
Y 6= 0. Hence by Theorem 2.2, Y is a maximal independent

set. Thus, to prove that Y is a ⊛-set, we have to show that for any

P ∈ {A,N, T}, MP = MY

MP

. So, let {P,Q,R} = {A,N, T}. Then MP ≥

MQ ∨MR = (MP ∧MQ)∨ (MP ∧MR), and MP omits MP . Hence MP ≤

MY

MP

, for any P ∈ {A,N, T}. Obviously, MT = MY

MT

= M⊛

U , so we will

show this equality for MA and MN .
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If MA < x ≤ MY

MA

, then there exists an a ∈ A(L) such that a < x and

a ∧MN > 0 and a ∧MT > 0. Thus
0 < a = (a ∧MN ) ∧ (a ∧MT ) = a ∧ (MN ∧MT ) ≤MY

MA

∧MA = 0. This

yields a contradiction. Similarly, if MN < x ≤ MY

MN

, then there exists

n ∈ N(L) such that n < x and n ∧ MA > 0 and n ∧ MT > 0. Thus

0 < (n ∧MA) ∧ (n ∧MT ) = n ∧ (MA ∧MT ) ≤MY

MN

∧MN = 0.

Finally, {MT ,MA,MN} is a ⊛-set in L.

Lemma 3.10. For any P ∈ {A,N, T} and MP ,M
⊛

P

1. if A(L), N(L), T (L) are all nonempty then

(a) [0,MP ] and [M⊛

P , 1] are satisfying {Q,R} = {A,N, T} \ {P},
(b) [MP , 1] and [0,M⊛

P ] are satisfying P ,

2. if L is satisfying {P,Q}, then

(a) [0,MP ] and [M⊛

P , 1] are satisfying Q,

(b) [MP , 1] and [0,M⊛

P ] are satisfying P .

Proof. (i) (a) If x ∈ P ([0,MP ]) then x ∈ P (L), but MP omits P (L), so
P ([0,MP ]) = ∅. Let {Q,R} = {A,N, T} \ {P}. If x ∈ Q(L) or x ∈ R(L)
then 0 < x ∧ MP ∈ Q(L) or 0 < x ∧ MP ∈ R(L). Hence [0,MP ] is
satisfying{Q,R}. Then by the Isomorphism Theorem [M⊛

P ,MP ∨ M⊛

P ]
is satisfying {Q,R}. Thus Q([M⊛

P , 1]) 6= ∅ and R([M⊛

P , 1]) 6= ∅, and
P ([M⊛

P ,MP ∨M⊛

P ]) = ∅.
If x ∈ P ([M⊛

P , 1]), then M⊛

P < x′ = (x ∧MP ) ∨M⊛

P ≤ MP ∨M⊛

P , and
x′ ≤ x, thus x′ ∈ P ([M⊛

P ,MP ∨M⊛

P ]) = ∅. A contradiction. Other state-
ments have analogous proofs.

There are some interesting consequences of the last proposition, be-
cause we obtain some ‘bottom’ parts of the lattice, which have specific
properties, and similarly, ‘top’ parts. The ‘bottom’ parts have a crucial
role in finding bases and dimensions of lattices (see [8]). The ‘top’ parts
are used in ⊛-decompositions of algebras. For example, if L is locally uni-
form not atomic nor atomless, then L has a ‘bottom’ atomic part [0,MN ]
and a ‘bottom’ atomless part [0,MA] and has a ‘top’ atomic part [MA, 1]
and a ‘top’ atomless part [MN , 1].
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4. Star-decomposition of congruence modular algebras

We apply the results of the last section to congruence lattices of con-
gruence modular algebras. The following proposition, which describes
⊛-decomposition of algebras into congruence atomic, congruence atomless
locally uniform and congruence anti-uniform parts, is a straightforward
consequence of Lemmas 3.9, 3.10 and the Correspondence Theorem.

Theorem 4.1. Let A be a nontrivial congruence modular algebra and L =
ConA. Let {P,Q,R} = {A,N, T}. Then

1. if L is satisfying {P,Q} then A ≃ A/MP ⊛ A/MQ and A/MP is
congruence satisfying P and A/MQ is congruence satisfying Q,

2. if A(L), N(L), T (L) are all nonempty, then for any MT there ex-
ist MA,MN such that A ≃ A/MT ⊛ A/MA ⊛ A/MN , and A/MT

is congruence anti-uniform, A/MA is congruence atomic, A/MN is
congruence atomless locally uniform.

Substituting for P,Q, some properties from {A,N, T} we can obtain
the following:

Corollary 4.2. Let A be a nontrivial congruence modular algebra and
L = ConA.

1. If L is satisfying {A,N} then A is congruence locally uniform and
A ≃ A1 ⊛A2, where A1 is congruence atomic and A2 is congruence
atomless locally uniform.

2. If L is satisfying {N,T} then A is congruence atomless and
A ≃ A1 ⊛A2, where A1 is congruence atomless locally uniform and
A2 is congruence anti-uniform.

3. If L is satisfying {A, T} then A has no atomless uniform element
in its congruence lattice and A ≃ A1 ⊛A2, where A1 is congruence
atomic and A2 is congruence anti-uniform.

4. If A(L), N(L), T (L) are all nonempty, then A ≃ A1 ⊛ A2 ⊛ A3,
where A1 is congruence anti-uniform, A2 is congruence atomic, A3

is congruence atomless locally uniform.

The next proposition answers the question if properties of factors in
a subdirect decomposition of the given algebra can be preserved in some
⊛-decomposition of this algebra.
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Theorem 4.3. Let A, B1 and B2 be nontrivial congruence modular alge-
bras. Assume that A is a subdirect product of algebras B1 and B2. Then

1. if A is congruence satisfying {P,Q}, and B1 is congruence satisfying
P and B2 is congruence satisfying Q, then there exist algebras A1, A2

such that

(a) Ai is a homomorphic image of Bi for i = 1, 2,

(b) A1 is congruence satisfying P , A2 is congruence satisfying Q,

(c) A ≃ A1 ⊛A2,

2. if A(L), N(L), T (L) are all nonempty, and {P,Q,R} = {A,N, T},
and B1 is congruence satisfying P and B2 is congruence satisfying
{Q,R}, then there exist algebras A1, A2 such that

(a) Ai is a homomorphic image of Bi for i = 1, 2,

(b) A1 is congruence satisfying P , A2 is congruence satisfying {Q,R},
(c) A ≃ A1 ⊛A2.

Proof. In both cases, let θ1 = kerπ1, θ2 = kerπ2, where πi is the i-th
projection from A onto Bi. Then θ1 ∧ θ2 = 0 and θ1, θ2 < θ1 ∨ θ2.
(i) By the Correspondence Theorem [θ1, 1] is satisfying P , so [θ1, θ1∨ θ2] is
satisfying P , and thus [0, θ2] is satisfying P . Similarly, [θ2, 1] is satisfying
Q, hence P ([θ2, 1]) = ∅. Then P ([θ2, θ1 ∨ θ2]) = P ([0, θ1]) = ∅. Thus θ1
omits P (L), so θ1 ≤ MP for some MP . On the other side θ2 omits MP ,
so θ2 ≤ M⊛

P for some M⊛

P . Moreover, [MP , 1] is satisfying P , [M⊛

P , 1] is
satisfying Q and {MP ,M

⊛

P } is a ⊛-set in L. Hence A1 = A/MP is a ho-
momorphic image of B1 and A2 = A/M⊛

P is a homomorphic image of B2

and A ≃ A1 ⊛A2.
(ii) Analogously, there exist MP ,M

⊛

P such that θ1 ≤ MP , θ2 ≤ M⊛

P ,
and moreover, [MP , 1] is satisfying P , [M⊛

P , 1] is satisfying {Q,R} and
{MP ,M

⊛

P } is a ⊛-set in L. Hence A1 = A/MP is a homomorphic image
of B1 and A2 = A/M⊛

P is a homomorphic image of B2 and A ≃ A1 ⊛A2.

Notice that MP ,M
⊛

P are uniquely determined in distributive algebraic
lattices, so all the ⊛-decompositions described in this section are uniquely
determined for congruence distributive algebras e.g. lattices and Boolean
algebras.
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