
MANAGING INFORMATION DIFFUSION IN ONLINE
SOCIAL NETWORKS VIA STRUCTURAL ANALYSIS

CHONGGANG SONG
Bachelor of Engineering

Nankai University, China

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2017

Supervisor:
Professor Wynne Hsu

Examiners:
Professor Tan Kian Lee

Associate Professor Stephane Bressan
Associate Professor Liu Qi, University of Science and Technology of China

Declaration

I hereby declare that this thesis is my original work and it has been written by
me in its entirety. I have duly acknowledged all the sources of information which
have been used in the thesis.

This thesis has also not been submitted for any degree in any university previ-
ously.

Chonggang Song
2017

ii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisors,
Professor Wynne Hsu and Professor Mong Li Lee for their continuous support
and valuable guidance. They have advised me with their immense knowledge,
given me freedom to choose my own topic of interest, shown infinite patience
when I had no research experience and made time for me whenever I asked for
a discussion. I could never have imagined any better advisor and mentor for my
doctoral study.

Besides my advisors, I would like to thank my thesis committee, Professor Kian-
Lee Tan and Professor Stephane Bressan for their insightful comments and con-
structive feedback that motivated me to refine my works.

I would like to thank my fellow labmates Dr. Zhao Gang, Dr. Li Furong, Dr.
Chen Wei, Dr. Zeng Zhong and Dr. Xu Enliang for the stimulating discussions,
for the warm encouragements when I met with setbacks and for all the fun
we had over the past few years. Thank you for infusing my Ph.D study with
colours and joy. I would also like to thank my roommate Mr. Huang Zhuqing
for persistently helping me when I was frustrated and selflessly sharing his life
experience when I feel at sea. Friendships with them will be one of the most
valuable things obtained during my Ph.D years.

Last but not the least, I would like to thank my parents for supporting me
unconditionally over the past 27 years. I could never have completed my Ph.D
degree without their love and understanding. They have been and will always
be my utmost aspiration in life.

iii

Abstract

With the advent of Web 2.0, social networks like Facebook and Twitter offer a
platform for millions of users to share information, accelerating the diffusion of
information among web users. Many studies have been conducted to understand
as well as control the information diffusion process. This thesis seeks to address
the challenge of developing methods for expanding as well as preventing informa-
tion diffusion in highly dynamic and time-sensitive online social networks. We
first identify users that are can boost the influence of some information to a spe-
cific region or across different communities in social networks. We then look at
the users that can help us block the diffusion of misinformation via immunization
or starting truth campaign from them.

To maximize the influence of good information, we first consider the task of
maximizing the number of participants in an event via propagating the event
information in a location-based social network. Consider an event that is taking
place at a specific position after a few days, we wish to propagate the event
information to the users that are located near the event venue before the event
taking place. This task is an extension of the tradition influence maximization
that asks for a set of k nodes in a given graph G, such that it can reach the
largest expected number of remaining nodes in G. Existing methods have either
considered that the influence be targeted to meet certain deadline constraint, or
be restricted to specific geographical region. However, considering the location
and deadline independently may lead to a less than optimal set of users. In this
thesis, we formalize the problem of targeted influence maximization problem in
social networks. We adopt a login model where each user is associated with a
login probability and he can be influenced by his neighbors only when he is online.
We develop a sampling based algorithm that returns a (1−1/e−ε)- approximate
solution. Experiments on real-world social network datasets demonstrate the
effectiveness and efficiency of our proposed method.

We then examine the users that are located between remote clusters in social
networks. The theory of brokerage in sociology suggests if contacts between two
parties are enabled through a third party, the latter occupies a strategic position
of controlling information flows. Such individuals are called brokers and they
play a key role in disseminating information. However, there is no systematic
approach to identify brokers in online social networks. We formally define the

iv

v

problem of detecting top-k brokers given a social network and show that it is NP-
hard. We develop a heuristic algorithm to find these brokers based on the weak
tie theory. In order to handle the dynamic nature of online social networks,
we design incremental algorithms: WeakTie-Local for unidirectional networks
and WeakTie-Bi for bidirectional networks. We use two real world datasets,
DBLP and Twitter, to evaluate the proposed methods. We also demonstrate
how the detected brokers are useful in diffusing information across communities
and propagating tweets to reach more distinct users.

To minimize the influence of misinformation, we first consider locating nodes to
immunize in computer/social networks to control the spread of virus or rumors.
In real-world contagions, nodes may get infected by external sources when the
propagation is underway. While most studies formalize the problem in a setting
where contagion starts at one time point, we model a more realistic situation
where there are likely to be many breakouts of contagions over a time window.
We call this the node immunization over infectious period (NIIP) problem. We
show that the NIIP problem is NP-hard and remains so even in directed acyclic
graphs. We propose a NIIP algorithm to select k nodes to immunize over a
time period. Simulation is performed to estimate a good distribution of k over
the time period. For each time point, the NIIP algorithm will make decisions
which nodes to immunize given the estimated value of k for that time point.
Experiments show that the proposed NIIP algorithm outperform the state-of-
the-art algorithms in terms of both effectiveness and efficiency.

Furthermore, we realize it is more effective to identify nodes to start a truth
campaign to block the spreading of rumor. Existing works on limiting misinfor-
mation propagation do not take into account the delays of information diffusion
or the time point beyond which propagation of misinformation is no longer crit-
ical. In this paper, we consider a more realistic situation where information is
propagated with delays and the goal is to reduce the number of rumor-infected
users before a deadline. We call this the Temporal Influence Blocking (TIB)
problem, and propose a two-phase solution called TIB-Solver to select k nodes
to start a truth campaign such that the number of users reached by a rumor
is minimized. Experiments show that the proposed TIB-Solver outperforms the
state-of-the-art algorithms in terms of both effectiveness and efficiency.

Contents

List of Figures viii
List of Tables x
List of Algorithms xi

1 Introduction 1
1.1 Research Challenges 2

1.1.1 Maximizing the Influence of Good Information 2
1.1.2 Minimizing the Influence of Misinformation 4

1.2 Thesis Contributions 8
1.3 Organization of the Thesis 10

2 Related Work 11
2.1 Modeling Information Diffusion 11

2.1.1 Explanatory Models 11
2.1.2 Predictive Models 12

2.2 Identifying Influential Spreaders 14
2.2.1 Centrality-based Approach 14
2.2.2 Diffusion Model-based Approach 15

2.3 Preventing Misinformation Propagation 19
2.3.1 Pre-emptive Approach 19
2.3.2 Immunization Approach 20
2.3.3 Truth-Campaign Approach 20

3 Targeted Influence Maximization 22
3.1 Problem Definition 22
3.2 Proposed Approach 23

3.2.1 Generation of WRR Trees 24
3.2.2 Greedy Selection 27
3.2.3 Estimation of θ 31
3.2.4 Time Complexity of Target-IM 34

3.3 Experiments 35
3.3.1 Experiments with Deadline and Location 36
3.3.2 Experiments with Location only 39
3.3.3 Experiments with Deadline only 40

3.4 Summary 42

vi

Contents vii

4 Identifying Brokers in Dynamic Social Networks 43
4.1 Problem Definition and Analysis 43
4.2 Proposed Approach 45

4.2.1 Incremental Methods 50
4.3 Experiments 59

4.3.1 Effectiveness Experiments 59
4.3.2 Sensitivity Experiments 60
4.3.3 Scalability 62
4.3.4 Applications of Brokers 63

4.4 Summary 67

5 Node Immunization over Infectious Period 68
5.1 Problem Definition 68

5.1.1 Problem Analysis 69
5.2 Algorithms 71

5.2.1 Single time point NIIP 72
5.2.2 Estimation of k’s distribution over τ 77
5.2.3 NIIP over infectious period 77

5.3 Experiments 83
5.3.1 Experimental Setting 83
5.3.2 Effectiveness Experiments 85
5.3.3 Efficiency 87

5.4 Summary 89

6 Temporal Influence Blocking 90
6.1 Problem Definition and Solution Overview 90
6.2 Estimating Nodes’ Threat Levels 92
6.3 Selecting Truth Seed Set 94

6.3.1 WRR Tree Generation 95
6.3.2 Node Selection 98

6.4 Experiments 101
6.4.1 Comparative Experiments 103
6.4.2 Sensitivity Experiments 107
6.4.3 Efficiency 107

6.5 Summary 109

7 Conclusion and Future work 110
7.1 Conclusion 110
7.2 Future Work 111

References 112

List of Figures

1.1 Example Location-Based Social Network 3
1.2 Example Social Network with Broker 5
1.3 Example Network with Rumor Breakouts in Two Time Steps 6
1.4 Example Network with Time Delays 8

3.1 Illustration of Generating WRR Tree. 25
3.2 Illustration of Updating Weights in a WRR Tree. 29
3.3 Effect of k (α = 10). 37
3.4 Effect of α (k = 50). 38
3.5 Runtime when login(v) = 1 for all v and α =∞. 39
3.6 Performance when login(v) = 1 for all v and α =∞. 41
3.7 Runtime when f(γ, lv) = 1 for all v (k = 50). 41
3.8 Performance when f(γ, lv) = 1 for all v (α = 10). 42

4.1 Construction of G′ from G. 44
4.2 Percentage of opinion leaders and brokers versus weak ties in DBLP. 46
4.3 Example of two users with weak ties. 47
4.4 Illustration of WeakTie algorithm (best viewed in color). 49
4.5 Effect of Adding Edges (best viewed in color). 50
4.6 Illustration of WeakTie-Local algorithm (best viewed in color). 53
4.7 Illustration of cases A1, A2 and A3 (best viewed in color). The new yellow group

is formed in (b). The blue group is strengthened in (c). Blue group merge with green

group in (d) and (e). 55
4.8 Illustration of cases D1, D2 and D3 (best viewed in color). The green group is

removed in (b). The blue group is weakened in (c). The blue group split into blue and

yellow groups in (d) and (e). 57
4.9 Quality of returned solutions. 61
4.10 Effect of τ . 62
4.11 Scalability. 63
4.12 Precision of detected spanners in DBLP. 64
4.13 Coverage of detected spanners in Twitter and Foursquare. 64
4.14 Number of users reached in Twitter. 66
4.15 Number of communities reached in Twitter. 66

5.1 Construction of G′ from G. 70

viii

List of Figures ix

5.2 Overview of proposed approach. 71
5.3 Dava algorithm for the example network. 72
5.4 Illustration of computing ru. 73
5.5 Updated ru and scores after u6 is immunized. 76
5.6 Estimating Distribution of k. k = 4, τ = 3. 78
5.7 Illustration of NIIP algorithm. 82
5.8 Performance of different algorithms. τ = 1 and α = 0. 86
5.9 Performance of different algorithms. τ = 10 and α = 0.05. 88
5.10 Performance of NIIP given different distribution of k. τ = 10 and α = 0.05. 89

6.1 Framework of Proposed Approach 91
6.2 Example network and its DAG 92
6.3 Generation of a WRR tree 96
6.4 Updating node scores 100
6.5 Save Ratio as k varies (login=1, α =∞). 104
6.6 Save Ratio as k varies (random login, α =∞). 105
6.7 Save Ratio as k varies (random login, α = 10). 106
6.8 Save Ratio as α varies (random login, k = 30). 107
6.9 Save Ratio of TIB-Solver and its variants (random login, α = 10). 108
6.10 Runtime as k varies (random login, α = 10). 108
6.11 Runtime as α varies (random login, k = 30). 109

List of Tables

3.1 Characteristics of Datasets 35

5.1 Summary of Notations 69
5.2 Dataset Summary 83
5.3 Execution time (minutes) k = 100, τ = 1 and α = 0. 87

x

List of Algorithms

2.1 Greedy Algorithm for IM 16

3.1 Target-IM 24
3.2 WRRGenerate(G, α) 26
3.3 GreedySelect(T , k, f()) 30

4.1 WeakTie-Local 51
- Function Updatescore(u, G) 52
4.2 WeakTie-Bi 54
4.3 AddCases (e) 56
4.4 RemoveCases(e) 58

5.1 S-NIIP algorithm 75
- Function ProcessUpdate(UpdateList) 75
- Function Immunize(u) 76
5.2 NIIP algorithm 79
- Function ComputeVector(v) 80
- Function ProcessUpdate’(UpdateList) 80

6.1 Compute Threat Levels 94
6.2 Generate a WRR tree 99
6.3 TIB-Solver 102

xi

Chapter 1
Introduction

With the rapid development of online social networks, the way people receive and spread
information has been dramatically changed. Web users post timelines on Twitter1, share
photoes on Instagram2 and join events posted on Facebook3. All these social network ser-
vices allow users to view, reply to as well as share others’ posts, enabling popular information
to be viewed and shared by an enormous number of users [BRMA12, LXC+14].

Given the impact of online social networks in disseminating information, many researchers
have conducted extensive studies to understand the propagation of information. The diffu-
sion of information over social networks is the process that some news, innovations or ad-
vertisements starting from some users on a social platform propagates through the network
via social behaviors like sharing, liking and messaging. Information diffusion has attracted
many research interests such as modeling the propagation process, predicting influential
users and preventing the spread of misinformation.

Researchers often model social networks as a graph with nodes and edges. Each node repre-
sents an individual user while the edges between any pair of users stand for the relationships
(e.g. friendship, kinship, trade relations etc.). An edge from user u to v represents that user
u follows user v, and we say u is a follower of v and v is a followee of u. There have been a
variety of techniques to capture the diffusion process with the graph representaion of social
networks [KKT03, AH11, WWX12]. The most prevalent model that has been studied is the
Independent Cascade (IC) model [KKT03]. We will speak of each individual node as being
active (influenced by some information) or inactive. In the IC model, we start with an initial
set of active nodes and the diffusion process unfolds in discrete time steps according to the
following randomized rule: when a node v first becomes active at time step t, it is given a
single chance to activate each currently inactive neighbor w; it succeeds with the influence
probability p(v, w) independently of the history thus far. If w has multiple newly activated
neighbors, their attempts are sequenced in an arbitrary order. If v succeeds, then w will

1http://www.twitter.com/
2https://instagram.com/
3http://www.facebook.com/

1

Chapter 1. Introduction 2

become active in step t + 1, but, whether or not v succeeds, it cannot make any further
attempts to activate w in subsequent rounds. The process runs until no more activations
are possible.

With the IC model, we are able to simulate the propagation of some information and measure
the influence of it by counting the number of users reached. Many techniques have been
developed to manage the diffusion of information given different incentives. On one hand,
we want to maximize the influence of good information such as news, innovations as well
as marketing advertisements. On the other hand, we wish to minimize the influence of
misinformation such as malicious rumors. In the following section, we introduce the main
research challenges in managing information diffusion from those two aspects.

1.1 Research Challenges

In this section, we elaborate the research challenges in maximizating the influence for good
information and minimizing the influence of misinformation.

1.1.1 Maximizing the Influence of Good Information

Influence maximization (IM) [DR01, KKT03] is a fundamental data mining problem that
finds k nodes in a given network G whose adoptions of some ideas, opinions or innovations
can trigger the largest expected number of adoptions by the other nodes. This problem has
been extensively studied and applied to web applications such as viral marketing. Kemp et
al. [KKT03] proved that the basic influence maximation problem is NP-hard and provided a
(1−1/e− ε)-approximate solution by greedily selecting k nodes where each node maximizes
the marginal gain of influence spread. Since then, many methods have been developed to
improve the efficiency while maintaining the quality of returned nodes [BBCL14, CWW10,
DSGZ13, LKG+07, TSX15, TXS14, YMPH16]. In the following, we discuss two unhandled
challenges in broadcasting information.

Challenge One: Considering Temporal and Geographical Information. Recently,
researchers have realized that in real life, most influence maximization applications have
associated deadlines [CLZ12, CDPW14, LCXZ12]. For example, a department store plans
to have a Christmas sale from 21st Dec to 25th Dec. If the news of this event reaches
a user after 25th Dec, then this information has zero value to the user since the sale is
already over. As such, the authors in [CLZ12, CDPW14, LCXZ12] take into consideration
the deadlines, as well as possible delays in the information diffusion process, and propose
heuristic algorithms to solve this deadline-aware influence maximization problem.

Furthermore, [LCF+14] showed that location is also important in influence maximization
tasks and aimed to find k users who can maximize the number of influenced users within a

Chapter 1. Introduction 3

specific geographical region. They extend the heuristic MIA algorithm introduced in [CWW10]
by counting only the users in the target region when computing the influence spread of each
node. [ZCL+15] defined a location-based influence maximization model to take into account
the probability that online influence will translate to sales in a physical shop. This requires
altering the target of the influence maximization to find users whose location preferences
are close to the physical shop.

U7

U9

U8

U10

U11

U13U12

U14

U16

U20

U19

U22

U3

U4

U6

U5

U2

U18

U17 U21U15

U1

Figure 1.1: Example Location-Based Social Network

Figure 1.1 shows the locations of users on a social network where the edges denote the
direction of influence. Suppose an event organizer is hosting an upcoming event at a location
indicated by the blue pin, and he has the budget to broadcast the event information to only
one user in the social network. To simplify discussion, we assume that if two users u and v
are connected by an edge, then it takes one time point for u to influence v. For example,
it will take two time points for user u1 to influence u5 (via u4). Further, only users in the
red circled region are willing to travel to the event location. Then location-based influence
maximization methods will select u7 as he can reach the largest number of users in the red
circled region. However, if we impose a deadline of 2 time points, then u1 can only influence
4 nodes in the region. On the other hand, time-critical influence maximization solutions
will select u15 as he can influence 9 nodes in 2 time points as u15 is located at the center
of a cluster of nodes. Note that none of the influenced nodes are in the red circled region.
Both approaches have missed the optimal user u8 who is able to influence 5 other nodes in

Chapter 1. Introduction 4

the targeted region within 2 time points.

This example shows the need to consider both time constraint and geographical region
when solving a targeted influence maximization problem. We consider a user is influenced
if his neighbors have propagated information of an event to him. A user is registered if he
is influenced and has decided to participate in the event. Unlike traditional IM problem
trying to influence the largest number of users online, the targeted influence maximization
problem aims to identify k users that result in most registered participants.

Challenge Two: Influencing Remote Users. In social theory, transmitting actors that
enable the contacts between other parties are referred to as brokers. Sociologists have long
recognized that such users, situated between otherwise disconnected or remote users, possess
advantageous positions [Bur07]. On one hand, such users serve as bridges and enable the
interaction between their neighbors; on the other hand, they can access remote information
sources and control the information flow between them.

Consider the example social network shown in Figure 1.2. This example uses the same
network as in Figure 1.1 without the underneath map as there is no location constraint.
PageRank based algorithms will select u15 because it is incident with other high-degree
nodes. Methods that utilize betweenness measure will find u2 since it carries the shortest
paths between the two clusters of nodes. However, we note that the removal of u2 or u7
does not have much impact on their neighbors as the neighbours can still reach other users
without significant increase in the distance.

On the other hand, the situation is different for u1. We see that u1 enables u4, u5 and u6

to reach u15 and its neighbours within 3 or 4 hops. However, when u1 is removed, u4, u5
and u6 need to travel a very long distance to reach u7 and its neighbors. We say u1 is the
broker that brings remote nodes close to others. With the online social networks playing
an increasingly significant role in spreading news and opinions, identifying such brokers is
clearly advantageous. Information disseminated through these users have a much higher
chance of reaching distant users whereas the centrality-based nodes may not reach those
isolated individuals.

This example shows the role played by brokers in enabling the diffusion of information
between remote clusters of users. Unlike traditional centrality-based measures that find
nodes seated within a dense cluster, we aim to identify the brokers who largely reduce the
pair-wise distance between other nodes in the network.

1.1.2 Minimizing the Influence of Misinformation

With the advent of the Internet, everyone is connected. This enables the data generated by
any user to be easily accessed by other users all over the world. Despite the convenience and
ease in sharing information, this has also led to the fast propagation of virus in computer

Chapter 1. Introduction 5

U7

U9

U8

U10

U11

U13U12

U14

U16

U20

U19

U22

U3

U4

U6

U5

U2

U18

U17 U21U15

U1

Figure 1.2: Example Social Network with Broker

networks as well as rumors in the information networks. For example, when the Malaysia
Airlines Flight 370 was reported missing on the morning of March 8th 2014, millions of
messages flooded the social network. A message saying “Flight MH370 has resurfaced and
landed safely in Nanming, China." received millions of shares before it was proven to be a
rumor. This is not only a waste of resources in information dissemination, but also causes
confusions as well as panics in a very short time. In order to reduce the impact brought
about by such epidemics, researchers study the problem of minimizing the influence of
misinformation. The works in [KSM09, SHL15b, ZP15, WCF+16, ZP14b] have identified
nodes/edges to be immunized such that rumors cannot propagate via these nodes/edges.
Other works in [HSCJ11, TNT12, TBM10, BAEA11, CCRea11] focus on starting truth
campaigns to combat rumors. They select a small set of users to spread the truth and
assume that when a user is aware of the truth, s/he becomes immune to the rumor. In the
following, we discuss the challenges in advancing these two tasks by considering temporal
aspects of rumor breakouts and propagation.

Challenge One: Considering Infectious Period in Immunization. Given a graph,
which nodes should we immunize so that the maximum number of nodes will remain healthy
under attacks? In computer networks, a computer is healthy if it is not infected with some
malware and in social networks, a user is said to be healthy if he/she does not share/re-tweet
any rumor message. In the former case, immunizing a node may mean the shutting down
of certain host servers, while in the latter case, this could mean the suspension of a user’s
account.

Chapter 1. Introduction 6

Existing works have mostly focused on immunizing nodes before the virus/rumor starts
spreading [CHbA03, TPT+10, WCWF03]. Recently, the realization is that it is more prac-
tical and meaningful to identify nodes to immunize while the attack is underway. Zhang et
al. [ZP14a] formalize the problem of node immunization as follows: given a social network
and prior information about which are the infected nodes, select k nodes to immunize such
that the number infected of nodes is minimized.

We further recognize that when an attack happens in the real world, there is a time period
where multiple independent sources may actively infect different nodes [MZL12]. This in-
fectious period is often observed in the early stage of a contagion [BAH12]. For example,
mendacious messages about MH370’s safe landing in Nanming were posted by many users
independently, citing different websites, in the first six hours of its attack. This will create
a problem when the resources available for immunization are limited.

U1

U4

U7

U5

U2

U8

U3

U9 U10

U6 U11 U12

(a) u1 infected at t = 1

U1

U4

U7

U5

U2

U8

U3

U9 U10

U6 U11 U12

(b) u5 and u7 immunized

U1

U4

U7

U5

U2

U8

U3

U9 U10

U6 U11 U12

(c) u12 infected at t = 2

U1

U4

U7

U5

U2

U8

U3

U9 U10

U6 U11 U12

(d) u2 and u11 immunized

Figure 1.3: Example Network with Rumor Breakouts in Two Time Steps

We will illustrate this issue with an example shown in Figure 1.3a where u1 is the initial
infected node (marked in red). Suppose the infectious period is 2 time points and u12

becomes infected at the second time point. We also assume we only have enough resources
to immunize 2 nodes. Looking at time point 1, we would choose u5 and u7 and save the
nodes colored in green (Figure 1.3b). However, when u12 becomes infected at time point
2, we have no resource to immunize additional nodes, as a result, the saved nodes are once
again infected, leaving us with only 2 healthy nodes (Figure 1.3c). On the other hand, if we

Chapter 1. Introduction 7

immunize only u2 at time point 1 and then immunize u11 at time point 2, we would have 4
healthy nodes at the end as shown in Figure 1.3d.

This example motivates us to consider the entire infectious period on the whole when making
decision as to which nodes to immunize. Hence, we propose the node immunization over
infectious period problem and identify the k nodes to immunize within the infectious period
so as to minimize the number of rumor infected nodes.

Challenge Two: Blocking Misinformation in Time Delayed Diffusions. Instead
of immunizing some nodes or edges, the works in [HSCJ11, TNT12, TBM10, BAEA11,
CCRea11] focus on starting truth campaigns to combat rumors. They select a small set of
users to spread the truth and assume that when a user is aware of the truth, s/he becomes
immune to the rumor. Budak et al.[BAEA11] formally define the problem of eventual
influence limitation or influence blocking maximization in order to identify the set of nodes
to broadcast the truth information and minimize the spread of rumor. They design a
Multi-campaign Independent Cascade model, in which both rumor and truth campaigns are
actively propagating in the network. They propose heuristic methods based on centrality
measures for finding the truth starters.

Recent studies [MSM15, CGD12] have recognized that the diffusion of information is time-
sensitive, in particular, the propagation of information may incur a certain amount of time
delay [CLZ12, CDPW14]. Unfortunately, existing works [HSCJ11, TNT12, BAEA11] study-
ing the EIL problem do not consider the time aspect of the propagation process. As a result,
the nodes selected by existing methods are not optimal when time delays are introduced.

Figure 1.4 shows the same example network as in Figure 1.3. To illustrate the temporal effect.
we associate each edge (u, v) with a value indicating the the time taken for information to
diffuse from node u to v. Suppose u1 is the rumor starter, and we can select only one node
to start a truth campaign. If we do not consider time delays, we would select u7 which would
prevent u8, u9 and u10 from being influenced by the rumor since these nodes are nearer to
u7. However, if we consider time delay, then we should select u5 because any information
from u5 will reach u8 first before the rumor from u1 can reach u8 via u7. In so doing, we
prevent an additional node u6 from being influenced by the rumor. We say that u6, u8, u9
and u10 have been saved.

Further, we observe that there is a deadline beyond which a rumor will lose its effect naturally.
For example, in the case of an election, once the voting day is over, any rumors concerning the
candidates will have no effect on the outcome. Under such scenarios, we should minimize
the number of users affected by rumors before the deadline. In Figure 1.4, if we set the
deadline to 8, then we should start the truth campaign at u2 instead of u5 as this would
prevent two nodes (u3 and u4) instead of one node (u6) from being affected by the rumor
within the deadline. Note that any rumor from u1 can only affect the nodes u7, u8, u9 and
u10 after the deadline, which will not affect the election outcome.

Chapter 1. Introduction 8

U1

U4

10

1

4

3

U7

U5

U2

U8

U3

U9

3

2 4 U10

3

2

U6
2

Deadline = 8

U11 U12

20

20

20

20

Figure 1.4: Example Network with Time Delays

Clearly, taking into account time delays and deadline to minimize the effect of rumors can
result in very different solutions even in the same network. With this in mind, we study the
temporal influence blocking problem that aims to minimize the number of nodes influenced
by misinformation given time delays and deadline.

1.2 Thesis Contributions

This thesis aims to elevate the research of managing information diffusion from two aspects:
maximizing good influence and minimizing bad influence. Specifically, the contributions of
this thesis can be summarized as follows.

• We formalize the targeted influence maximization problem and show it is NP-hard. We
introduce the weighted reverse reachable (WRR) trees and develop a sampling-based
approximate algorithm called Target-IM that considers the event location and deadline.
This algorithm generates a pool of WRR trees and greedily selects k nodes that can
cover the largest number of WRR trees. Given a social network G = (V,E) where V
is the set of nodes and E is the set of edges, our proposed algorithm Target-IM is able
to return a (1− 1/e− ε)-approximate solution in O(k2(|V |+ |E|)log|V |/ε2) time. The
experimental results on real-world datasets demonstrate that Target-IM outperform
the state-of-the-art approaches.

• We formally define the problem of finding top-k brokers in social networks and show
its NP-hardness as it can be reduced from the k-densest subgraph problem. In order
to tackle this problem, we design a heuristic solution to find the top-k brokers based
on the theory of weak ties [Gra83]. We propose a connection-aware scoring function
and design an algorithm called WeakTie to find the top-k brokers. Further, in order to
handle the highly dynamic nature of social networks, we also develop incremental al-
gorithms: WeakTie-Local for unidirectional networks and WeakTie-Bi for bidirectional

Chapter 1. Introduction 9

networks. Finally, we demonstrate the effectiveness of the proposed approach and
show how the brokers can be useful in two information diffusion tasks: (a)structural
spanner detection and (b) mention recommendation. We found our detected brokers
improve the precision of spanner detection by 35%. For mention recommendation, bro-
kers can help diffuse a message to users located far away from the author and reach
23% more distince users.

• We formalize the problem of node immunization over an infectious period where we
are allowed to distribute the immunization resources. We show that the problem
is NP-hard and present the NIIP algorithm. Our assumption is that the resources
available for immunization are limited, that is, we only have resources to immunize k
nodes. Hence, we propose a simulation-based approach to estimate how k should be
distributed over the infectious period. At the same time, we design a scoring function
to model a node’s immunization ability in the network. Based on the estimated value
of k at time point t, denoted as kt, we select kt nodes with the highest scores for
immunization at time point t. After immunizing these nodes, we consider the new
infected nodes and update the scores of all the affected nodes. The process repeats
until we have selected k nodes to immunize. We conduct extensive experiments on
several real world datasets covering computer networks, information networks and
social networks to demonstrate the efficiency and effectiveness of the proposed NIIP
algorithm.

• We study the temporal influence blocking problem to select the best k nodes to start
a truth campaign so as to minimize the number of nodes influenced by rumors in
the presence of time delays before some deadline α. We call this problem Temporal
Influence Blocking (TIB). We present a sampling and greedy-based solution which
consists of two phases. In the first phase, we evaluate the threat level of each node
at each time point. In other words, we estimate how many nodes could possbily
be influenced by a node if it is infected by rumor. In the second phase, we utilize
weighted reverse reachable (WRR) trees to determine the set of nodes that can reach
other nodes before the rumor starters reach them. We introduce a scoring function
to estimate the expected number of nodes that can be saved by a node before a
deadline. We generate a pool of WRR trees and greedily select k nodes with the
highest scores as the final output. We conduct extensive experiments on multiple real-
world social network datasets to demonstrate the effectiveness and efficiency of our
proposed solution.

Chapter 1. Introduction 10

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows:

• Chapter 2 presents a review of existing works on modeling propagation process, iden-
tifying influential users and preventing the spread of misinformation.

• Chapter 3 defines the targeted influence maximization problem that considers deadline
and locations of users. This work is published in Proc. of 25th ACM International
Conference on Information and Knowledge Management [SHL16].

• Chapter 4 defines brokers in social networks and propose heuristic methods for identi-
fying them in dynamic social networks. This work is published in Proc. of 24th ACM
International Conference on Information and Knowledge Management [SHL15a].

• Chapter 5 introduces the node immunization over infectious period problem and de-
scribes how we manage to assign immunization nodes over time to limit the spread of
misinformation. This work is published in Proc. of 24th ACM International Confer-
ence on Information and Knowledge Management [SHL15b].

• Chapter 6 introduces the temporal influence blocking problem that considers time
delays and deadline in blocking the diffusion of misinformation with truth campaigns.
This work is published in Proc. of 33rd IEEE International Conference on Data Engi-
neering [SHL17].

• Chapter 7 concludes this thesis and discusses future work.

Chapter 2
Related Work

Online social networks play a significant role in the dissemination of information at large
scales. Much effort has been made in order to observe, analyze and understand this phe-
nomenon, ranging from information diffusion modeling to influential spreaders identification.
In this section, we review the existing efforts around managing information diffusion in on-
line social networks.

2.1 Modeling Information Diffusion

Nowadays online social networks allow millions of users to produce and consume content on
a global scale. News, events as well as rumors happen and diffuse in online social networks
everyday and researchers have devoted much effort to capture and understand their diffusing
patterns.

An online social network is formally represented by a graph where nodes are users and
edges are relationships. Users publish messages to share different kinds of information, and
followers of post authors can see the message and further choose to share it with their
followers if they are interested. Globally, the content produced by the members of an online
social network can form a sequence of sharing behaviors, with later people watching the
content of earlier people. This phenomenon is called information cascade.

Modeling how information spreads is of great interest for understanding the formation of a
popular event, stopping the spread of viruses and analyzing how misinformation spread. In
this section, we first introduce the explanatory models that infers the underlying information
cascade given a sequence of activations, and then discuss the predictive models that aim to
predict how a specific diffusion process would unfold in a given network.

2.1.1 Explanatory Models

Explanatory models aim to trace the path of a information based on given data. Gomez et
al. [GRLK10, GRBS11] propose to explore correlations in nodes infection times to infer the

11

Chapter 2. Related Work 12

structure of the spreading cascade. They assume that activated nodes influence each of their
neighbors independently with some probability. Thus, the probability that one node had
transmitted information to another is decreasing in the difference of their activation time.
They propose an iterative algorithm NETINF based on submodular function optimization
for finding the spreading cascade that maximizes the likelihood of given data. They extend
their work by modeling the likelihood of a node infecting another at a given time via a
probability density function depending on infection times and the transmission rate between
the two nodes. They develop NETRATE to infer pairwise transmission rates and the graph
of diffusion by formulating and solving a convex maximum likelihood problem.

Both NETINF and NETRATE consider the underlying network is static but real-world
social networks evolve very quickly. Gomez et al. [GRLS13] extend NETRATE and propose
a time-varying inference algorithm, INFOPATH, that uses stochastic gradients to provide
online estimates of the structure and temporal dynamics of a network that changes over
time.

In order to tackle the data aquisition bottleneck caused by crawling API limitations, Choud-
hury et al. [DCLS+10] analyze how missing data impacts the results of inferring diffusion
paths. Based on experiments on Twitter data, they find that sampling methods that con-
sider both network topology and users’ attributes such as activity and localization allow
capturing information diffusion with lower error in comparison to naive strategies, like ran-
dom or only activity-based sampling. Given that some data will often be missing during
crawling, Sadikov et al. [SMLGM11] develop a method based on a k-tree model to estimate
the properties of the full diffusion cascade, such as its size or depth given only part of the
actual activation sequence.

2.1.2 Predictive Models

Predictive models aim to predict how diffusion will unfold in a given network if some nodes
are initially influenced. Independent Cascade (IC) model [GLM01] and Linear Threshold
(LT) model [Gra78] are the two most widely used models. They assume the existence of
a static graph structure underlying the diffusion and focus on the patterns of the diffusion
process. They assume the diffusion takes place in a directed graph where each node can be
activated or not with a monotonicity assumption, i.e. activated nodes cannot be deactivated
any more. The IC model requires a diffusion probability to be associated to each edge
whereas the LT model requires an influence degree to be defined on each edge and an
influence threshold for each node. For both models, the diffusion process proceeds iteratively
in a synchronous way along a discrete time-axis, starting from a set of initially activated
nodes, commonly named early adopters [Rog04]. In the IC model, the newly activated nodes
try once to activate their neighbors with the probability defined on the edge linking them at
each iteration. In the LT model, at each iteration, the inactive nodes are activated by their

Chapter 2. Related Work 13

activated neighbors if the sum of influence degrees exceeds their own influence threshold.
Successful activations are only effective at the next iteration. In both models, the process
ends when no new transmission is possible, i.e. no node is newly activated at the current
iteration.

Galuba et al. [GAC+10] use the LT model to simulate the graph of diffusion given the early
adopters. Their model relies on parameters such as information virality, pairwise users’
degree of influence and users’ probabilities of adopting any information. The LT model is
fitted on the data describing the beginning of the diffusion process by optimizing the param-
eters using the gradient ascent method. However, LT cannot reproduce realistic temporal
dynamics. Saito et al. [SKOM09, SNK08, SOY+11] relax the synchronicity assumption of
traditional IC and LT graph-based models by proposing asynchronous extensions. They
proceed iteratively along a continuous time axis and require the same parameters as their
synchronous counterparts plus a time-delay parameter on each edge of the graph. They
provide a method to learn the functional dependency of the model parameters from nodes’
attributes. They formulate the task as a maximum likelihood estimation problem and an
update algorithm that guarantees the convergence is derived. However, they only experi-
ment with synthetic data and fail to provide a practical solution. Guille et al. [GH12] also
model the propagation process as asynchronous independent cascades. They develop the T-

BAsIC model (i.e. Time-Based Asynchronous Independent Cascades), where parameters
are not fixed numerical values but functions depending on time. The model parameters
are estimated from social, semantic and temporal nodes’ features using logistic regression.
Based on the IC and LT models, the works in [BKS07, BFO10] design the Competitive
Independent Cascade (CIC) model and Competitive Linear Threshold (CLT) model. The
influence rules of CIC and CLT models are the same as in IC and LT models respectively.
The difference is that in the competitive models, multiple parties are trying to broadcast
their own information and nodes influenced by any party will not be influenced by other
parties in future.

The above mentioned models are based on a specific network structure. Some other ap-
proaches are non-graph based. They do not assume the existence of a specific graph struc-
ture and have been mainly developed to model epidemiological processes. SIR and SIS are
the two popularly studied models [Het00, New03], where S stands for “susceptible”, I for
“infected” and R for recovered. In both models, nodes in the S class switch to the I class
with a fixed probability β. Then, in SIS, nodes in the I class switch to the S class with
a fixed probability γ, whereas in the case of SIR they permanently switch to the R class.
The percentage of nodes in each class is expressed by simple differential equations. Both
models assume that every node has the same probability to be connected to another and
thus connections inside the population are made at random.

Leskovec et al. [LMF+07] propose a simple and intuitive SIS model that requires a single
parameter β. It assumes that all nodes have the same probability β to adopt the information

Chapter 2. Related Work 14

and nodes that have adopted the information become susceptible at the next time-step (i.e.
γ = 1). Wang et al. [WWX12] propose a Partial Differential Equation (PDE) based model
to predict the diffusion of an information injected in the network by a given node. The
topology of the network is considered only in terms of the distance from each node to the
source node, i.e. shorter distance from the seed node indicates higher probability of being
influenced.

2.2 Identifying Influential Spreaders

Influence Maximization (IM) is the problem of choosing the most potential individuals in a
network to spread out information in order to trigger a widespread adoption of a product.
This problem has applications in viral marketing, where a company may wish to spread
the advertisement of a new product via the most influential individuals in popular social
networks. With online social networking sites such as Facebook and Twitter attracting
hundreds of millions of people online each day, this motivates the research community to
conduct extensive studies on various aspects of the influence maximization problem. There
are two major types of approaches for identifying influential users in a social network. In
this section, we first introduce the centrality-based approach that analyzes nodes’ structural
properties for measuring their influence, and then discuss the diffusion model-based approach
that adopts a particular diffusion model, such as the IC or LT model, and computes high
influence nodes based on it.

2.2.1 Centrality-based Approach

A large body of studies use the centrality measures to estimate the influence of a user.
Centrality measures include degree [OAS10], betweenness [Fre77], closeness[Dan06] and so
on. High degree nodes correspond to users with many connections to his/her friend, high
betweenness nodes correspond to users who carry the largest amount the shortest paths
traversing through them, and, high closeness nodes correspond to the users whose overall
sum of distance to all other nodes is the smallest. Such measures estimate the general
importance of nodes in a network but such importance does not entirely reflect the diffusion
ability of users on social platform.

Kitsak et al. [KGH+10] show that the best spreaders are not necessarily the most connected
people in the network. They find that the most efficient spreaders are those located within
the core of the network as identified by the k-core decomposition analysis [Sei83]. Basically,
the principle of the k-core decomposition is to assign a core index to each node such that
nodes with the lowest values are located at the periphery of the network while nodes with
the highest values are located in the center of the network. The innermost nodes thus
forms the core of the network. Brown et al. [Fen11] observe that the results of the k-shell

Chapter 2. Related Work 15

decomposition on Twitter network are highly skewed. Therefore, they propose a modified
algorithm that uses a logarithmic mapping, in order to produce fewer and more meaningful
k-shell values.

Cataldi et al. [CDCS10] propose to use the well known PageRank algorithm [Pre02] to assess
the distribution of influence throughout the network. The PageRank value of a given node is
proportional to the probability of visiting that node in a random walk of the social network,
where the set of states of the random walk is the set of nodes. [CSH+14, SGaMZ13] also
design PageRank-based algorithms that iteratively updates the score of each node based on
previous diffusion behaviors to identify users for viral marketing.

Other researchers have identified users that are located at critical positions in the network
for diffusing information [LLS11, NPW01, WLG+13]. Cui et al. [CWL+11] and Luo et al.
[LOTW13] focus on identifying influential retweeters. They examine the author’s followers’
retweet history, active time and interest to identify influential retweeters who are able to
accelerate the diffusion of information. The work in [SS12] defines the importance of nodes
based on the direction of information flow and whether the end users are members in the
same community. [LT13] assumes that the set of communities is known and proposes two
methods i.e. MaxD and HIS to find users who connect different communities and are re-
sponsible for information diffusion across communities. In the first method MaxD, the idea
is to remove one node at a time such that the removal of this node will lead to the max-
imum decrease in the minimum cut in the given set of communities. The second method
HIS looks for nodes that are incident with high degree nodes in different communities. The
above mentioned methods aim to identify nodes that can maximize the influence for a cer-
tain individual or community, and may not be optimal for maximizing influence over the
entire network.

2.2.2 Diffusion Model-based Approach

Kempe et al. [KKT03] propose to use the IC and LT (previously described in Section 2.1.2)
models to tackle the influence maximization problem. This problem asks, for a parameter
k, to find a k-node set of maximum influence in the network. The influence of a given set
of nodes corresponds to the number of activated nodes at the end of the diffusion process
according to IC or LT model, using this set as the set of initially activated nodes. They
provide an approximation for this optimization problem using a greedy hill-climbing strategy
based on submodular functions. In [KKT03], they define a function f that evaluates the
influence of a given set of seed nodes by running Monte Carlo simulations a large number of
times. Let G be the input network, the greedy algorithm for influence maximization problem
is illustrated in Algorithm 2.1. Ever since, much research interest has been aroused to either
improve the efficiency of the IM algorithm or to extend the IM problem by incorporating
more constraints such as topic and temporal aspects.

Chapter 2. Related Work 16

Algorithm 2.1: Greedy Algorithm for IM

input :G, k, f
output : Seed Set S

1 Initialize S = ∅
2 while |S| ≤ k do
3 select u← argmaxw∈S−V (f(S ∪ {w})− f(S))
4 S = S ∪ {u}
5 end
6 Return S;

Improving IM algorithm

Leskovec et al. [LKG+07] exploit submodularity to develop an efficient algorithm called
Cost-Effective Lazy Forward (CELF) selection algorithm, based on a lazy-forward optimiza-
tion in selecting seeds. The idea is that marginal gain of a node in the current iteration
cannot be better than its marginal gain in the previous iterations. This optimization avoids
the recomputation of marginal gains of all the nodes in any iteration, except the first one.
In [LKG+07], the authors empirically shows that CELF dramatically improves the efficiency
of the greedy algorithm. Other optimization based on the CELF algorithms are developed
in [GLL11, ZYF+14].

Kimura et al. in [KS06] assumes that each node is activated only through the shortest
paths from an initial active set and develop the Shortest-Path Model (SPM) and SP1 Model
(SP1M). These two models are special cases of the IC model. The idea is that the majority
of the influence flows through shortest paths. In SPM, only the most efficient information
spread can occur. SP1M, which slightly generalize SPM, instead considers the top-2 shortest
paths from one node to another. For these models, the influence of each target set S can be
exactly and efficiently computed, and the provable performance guarantee for the natural
greedy algorithm can be obtained.

Based on the above contribution in SPM and SP1M, Chen et al. [CWW10, CWY09, CYZ10]
extend this idea by considering Maximum Influence Paths (MIP) instead of shortest paths.
A maximum influence path between a pair of nodes is the path with the maximum propaga-
tion probability from one node to another. The main idea of this heuristic scheme is to use
local arborescence structures of each node to approximate the influence propagation. The
maximum influence paths between every pair of nodes in the network can be computed by
the Dijkstra shortest-path algorithm [Che03]. Then they ignore the MIPs with probability
smaller than a influence threshold θ, which effectively restrict influence to a local region.

Chapter 2. Related Work 17

When considering the influence propagation through these local arborescences, the diffusion
model refers to the Maximum Influence Arborescence (MIA) model [CWW10]. However,
these heuristics would not perform well on high influence graphs, that is, when the influ-
ence probabilities through links are large. Wang et al. [WCSX10] propose an alternative
approach. They argue that most of the diffusion happens only in small communities, even
though the overall networks are huge. Taking this as an intuition, they first split the net-
work into smaller communities, and then, restrict the influence spread to the community to
which the node belongs to compute the marginal gain of a prospective seed node. Dinh et
al. [DNT12] discover that the propagation in a social network often fades quickly within
only few hops from the sources, counteracting the assumption on the self-perpetuating of
influence considered in some literature. They investigate the cost-effective massive, and
fast propagation (CFM) problem and proposed an algorithm VirAds to minimize the seed-
ing cost and to tackle the problem on large-scale networks. In early stages, the algorithm
behaves similar to the degree-based heuristics that favors vertices with high degree. How-
ever, after a certain number of vertices have been selected, VirAds will make the selection
based on the information within d-hop neighborhood around the considered vertices, which
is different from degree-based heuristic that considers only one-hop neighborhood.

The above mentioned methods adopt a greedy framework that, at each iteration, adds in
one node with the highest estimated influence. Much effort has been made to accelerate
computation by estimating the seed set’s influence more efficiently. However, most of those
the estimations are wasted since, in each iteration of a greedy approach, we are only in-
terested in the node set with the largest expected spread. Borgs et al. [BBCL14] make a
theoretical breakthrough and present a Reverse Influence Sampling (RIS) algorithm for in-
fluence maximization under the IC model. It avoids estimating the influence for all possible
node sets, the limitation of the greedy approach, by introducing the reverse reachable (RR)
set defined as follows.
Definition 1. Let v be a node in network G, and g be a graph obtained by removing each
edge e in G with 1 − p(e) probability. The reverse reachable (RR) set for v in g is the set
of nodes in g that can reach v. (That is, for each node u in the RR set, there is a directed
path from u to v in g.)

By definition, if a node u appears in an RR set generated for a node v, then u can reach v
via a certain path in G. As such, u should have a chance to activate v if we run an influence
propagation process on G using {u} as the seed set. Borgs et al. [BBCL14] show a result
that is consistent with the above observation: If an RR set generated for v has β probability
to overlap with a node set S, then, when we use S as the seed set to run an influence
propagation process on G, we have β probability to activate v. Based on this result, RIS
algorithm runs in two steps: it first generates a certain number of random RR sets from
G, and then, it selects k nodes to cover the maximum number of RR sets generated. They
show that their algorithm returns a (1− 1

e − ϵ)-approximate solution with at least 1− n−l

Chapter 2. Related Work 18

probability, and prove that it is near-optimal. Their method was adopted and accelarated
by Tang et al. [TSX15, TXS14]. Nguyen et al. [NTD] further improve the efficiency of
RIS algorithm by developing a SSA sampling framework that largely reduced the number
of generated RR sets.

Extending IM problem

Apart from improving the efficiency of IM solutions, some other works have extended in-
fluence maximization problem by incorporating more realistic aspects. Li et al. [LCF+14]
consider influencing the set of users within a given region and extend the heuristic method
in [CWW10] to calculate the regional incremental influence of a user. They further an-
alyz the upper and lower bounds of a user’s incremental spread to prune out users with
low influence. Zhou et al. [ZCL+15] introduce a function to measure the likelihood of a
user’s offline adoption of a product given the locations of the user and the product. The
works in [DYM+14, FCBM14, YDG+15] study influence propagation in event-based social
networks by analyzing users’ behaviors for predicting user interest in the nearby events.

The works in [CLZ12, CDPW14, LCXZ12] recognize the significance of considering deadline
in influence maximization tasks. Chen et al. [CLZ12] observe that when a user adopts an
idea, he needs to wait for a meeting event to happen in order to influence his neighbor, thus
introducing some delay in the propagation process. They proposed a MIA-M algorithm based
on the notion of maximum influence arborescence (MIA). Each MIA keeps track of the path
with the highest influence probability between each pair of nodes. Cohen et al. [CDPW14]
propose timed influence maximization by assuming that traversing an edge takes a certain
amount of time. The authors in [LCXZ12] assign to each edge a distribution of meeting
probability, indicating how likely the pair of nodes will meet with each other over a certain
time frame. They propose an Influence Spreading Path (ISP) algorithm for computing the
influence spread of each node. Chen et al. further extend the Independent Cascade model
to incorporate log-in events to form the IC-L model [CLZ12]. They demonstrate that esti-
mating the additional influence spread of a node under IC-L model is complicated since they
need to consider the order of different nodes’ log-in time. They employ a dynamic program-
ming approach to compute the incremental influence on a node by explicitly enumerating
possible log-in ordering of its in-neighbors.

Li et al. [LZT15] and Chen et al. [CFL+15] consider the diffusion of information is related
to users’ interests: it is more important to diffuse an advertisement to the users who are
interested in the product. They model each user’s interest with a weighted term vector that
captures the preference in different topics. The relavance between an advertisement and a
user can be obtained by applying the tf-idf model on the topic space. They extend the RIS
algorithm by sampling high relavance nodes with higher probability. Li et al. [LZT15] further
adopts offline sampling to achieve real-time response to influence maximization queries.

Chapter 2. Related Work 19

2.3 Preventing Misinformation Propagation

Apart from identifying influential spreaders, it is also important to prevent the propagation
of misinformation or rumors. Existing efforts on limiting the spread of misinformation can
be categorized into three approaches: pre-emptive, immunization and truth-campaign. In
this section, we introduce the state-of-the-art methods for limiting information spread from
these three approaches.

2.3.1 Pre-emptive Approach

Pre-emptive approach focuses on reducing the network’s ability to diffuse any information.
This approach does not require the knowledge of rumor starters and selects nodes to im-
munize before the start of an epidemic [BLP03, CDK10, CHbA03, MKC+04]. Abbassi and
Heidari [AH11] consider nodes with high degrees and betweenness values tend to be good
candidates for immunization. Tong et al. [TPER+12, TPT+10] finds the set of users whose
removal would slow down the propagation of information in a network. They assume that
information propagation follows some epidemic model in the form of a matrix whose first
eigenvalue corresponds to the speed of propagation. Based on this, they iteratively remove
a node at a time to minimize the first eigenvalue. Their method only applies to the specific
diffusion model and does not show how these users are placed in the network. Similarly,
Wang et al. [CWW+08, WCWF03] analyze the topology of an arbitrary graph and found
the larger the first eigenvalue of the graph is, the easier for the virus to propogate. Hence,
they identify the nodes and edges whose removal would minimize the largest eigenvalue of
the graph. They show that their methods is more effective than centrality-based methods.

Cohen et al. [CHbA03] propose a heuristic acquaintance immunization strategy, which is
further studied in [BLP03]. They select the random acquaintances of random nodes, in
which case high degree nodes will be selected with a higher chance. Experiments show that
their strategy can greatly reduce the immunization threshold from 80% to 40%. Kimura et
al. [KSM08] consider finding a set of k links to block such as to minimize the expected con-
tamination area of the undesirable misinformation and propose an algorithm for efficiently
finding an approximate solution on the basis of a naturally greedy strategy. Many works also
compare the performance of a limited number of pre-determined sequences of interventions
(like school closure, antiviral for treatment) within simulation models [DPV+07, FCF+06].
All these works propose pre-emptive strategies for immunization without the awareness of
infected nodes.

Chapter 2. Related Work 20

2.3.2 Immunization Approach

The work in [ZP14a] points out that taking into account the infected nodes to make decision
about whom to immunize is more practical and meaningful. They formalize the problem
of Data-Aware Vaccination problem given the initial set of infected nodes and propose a
polynomial-time heuristic algorithm called Dava. Dava constructs a dominator tree by
aggregating the infected nodes into one node as the root and examine the paths from the
root to all other nodes in the network. In the dominator tree, a node u is a child of node v if
every path from the root must traverse v to reach u. Thus, with the dominator tree, we can
say that any descendant of node u in the tree will be healthy if u is immunized. Given this
observation, they iteratively select the node that maximizes the expected number of saved
descendant nodes under the Susceptible-Infected-Recovered model [Het00]. Once selected,
this node and its descendants are removed and a new dominator tree is constructed and
the process is repeated to select the next node for immunization. The algorithm greedily
chooses one node at a time until k nodes are selected. Zhang et al. further extend their work
in [ZP14b] by considering there is a probability that infected nodes are not detected. They
apply the Sample Average Approximation framework [KSHdM02] to reduce the stochastic
optimization problem to a deterministic version by sampling the uncertainty distribution to
generate a finite number of deterministic cases. Based on those sampled cases, they apply
the Dava algorithm to to generate the solution. However, the Dava algorithm does not
consider the joint immunization effect of two nodes together. In the case that immunizing
node u and v together can save the most nodes but immunizing u or v alone cannot save
any node, the optimal solution {u, v} will never be returned by Dava since u or v will never
be selected for immunization at any iteration.

2.3.3 Truth-Campaign Approach

Instead of immunizing some nodes or edges, the works in [HSCJ11, TNT12, TBM10, BAEA11,
CCRea11] focus on starting truth campaigns to propagate the truth in order to combat the
effect of rumors actively. Budak et al.[BAEA11] formally define the problem of eventual
influence limitation or influence blocking maximization under the IC model in order to iden-
tify the set of nodes to broadcast the truth information and minimize the spread of rumor.
They design a Multi-campaign Independent Cascade model, in which both rumor and truth
campaigns are actively propagating in the network. They propose heuristic methods based
on centrality measures for finding the truth starters. The first heuristic is degree central-
ity which identifies the nodes with the highest degrees. The second method is called early
infectees which selects the nodes that are expected to be infected at an early stage of the
rumor propagation. Lastly, the most effective method in [BAEA11] is to select largest in-
fectees. This method runs a sufficient number of simulations to choose the nodes that are
expected to infect the highest number of nodes if they were to be infected themselves.

Chapter 2. Related Work 21

The works in [HSCJ11, BFO10] study the problem of limiting information spread under
the LT model. They propose a competitive LT model that allows multiple campaigns to
compete. They show that the problem of influence blocking under competitive LT model
is submodular and develop a greedy approximation algorithm by estimating the influence
of each node with its local structure. Tsai et al. [TNT12] further extend the problem
by considering both competing campaigns actively adjust its own strategy regarding its
opponent’s strategy. They propose a Local Shortest-paths for Multiple Influencers (LSMI)
algorithm to measure the incremental gain of choosing one node given a set of selected nodes
and the competitive campaign based on the local shortest paths. Their method follows the
assumption in [KS06] that each node is most likely activated through the shortest paths
from other nodes. Such assumption saves much computation time but, on the other hand,
makes its estimation of influence inaccurate.

Chapter 3
Targeted Influence Maximization

Influence maximization problem has attracted much attention since it was introduced by
Domingos et al. [DR01] for viral marketing. The essential idea is that by targeting a small set
of users, it is possible to trigger a large range of diffusion through the word-of-mouth effect
in social networks. In the chapter, we address the first challenge in influence maximization
tasks, i.e.incorporating user locations as well as deadline for the marketing task at the same
time. We formally define the targeted influence maximization problem and propose our
sampling based approach that provides an approximation guarantee.

3.1 Problem Definition

We adopt the Independent Cascade model with Login events (IC-L) [CLZ12] as our diffusion
model. Given a network G = (V,E) where V is a set of nodes and E is a set of edges, we
have an initial seed set of nodes S at time step 0. Each node v ∈ G has a probability
login(v) to be online and active at each time step. When a node v ∈ G logs in at time point
t > 0, its neighboring node u will have a probability p(u, v) of influencing v if there is an
edge from u to v, u is influenced at t′ < t, and t is the first time v logs in after t′.

In the real world, users tend to go to an event if it is near to them rather than a remote
event in a different city or country. For each user v ∈ G, v is associated with a location lv.
Given an event’s location γ, we have a function f(γ, lv) ∈ [0, 1] to measure the likelihood of
v participating in the event. Note that f(γ, lv)→ 1 when lv is close to γ.

We aim to select k users such that they can influence the largest number of registered
participants before the deadline.

Definition 2 (Targeted Influence Maximization). Let G = (V,E) be a network where V
is the set of nodes and E is the set of edges. Each node v ∈ V is associated with a location
lv and a login probability login(v) to be online, while each edge ⟨u, v⟩ has an influence
probability p(u, v). Given a deadline α and an event location γ, we aim to find a set of k

22

Chapter 3. Targeted Influence Maximization 23

users S that maximizes the expected number of registered users:

Φ(S) =
∑

v∈I(S,α)

f(γ, lv)

where I(S, α) is the set of influenced users within α time points under the IC-L model.

Note that the location-based influence maximization problem in [LCF+14] and the time-
critical influence maximization problem in [CLZ12] are special cases of the targeted influence
maximization problem. For the former, we set α =∞, and for the latter, we have f(γ, lv) = 1

for all v ∈ V .

3.2 Proposed Approach

In this section, we present a sampling-based method called Target-IM to solve the targeted
influence maximization problem.

The work in [BBCL14] introduces a Reverse Influence Sampling (RIS) algorithm for tra-
ditional influence maximization. RIS generates a set of Reverse Reachable (RR) sets by
randomly sampling nodes in the graph. It then applies a greedy selection process based on
maximum coverage [Vaz01] to find k nodes that cover the largest number of RR sets. Once
a node v is selected, all RR sets that contain v are considered covered and can be removed.

In order to take deadline constraint into consideration, instead of RR sets, we define a
Weighted Reverse Reachable tree to model the propagation delay incurred by login events.

Definition 3 (Weighted Reverse Reachable Tree). Given a graph G, let g be a graph instance
of G obtained by removing each edge ⟨u, v⟩ in G with probability 1 − p(u, v). Let α be the
deadline. A WRR tree for a node r, denoted as Tr, is a (α+1)-level tree such that each path
p ∈ Tr from r to a child node v corresponds to a path from v to r in the graph instance g.
Each node v ∈ Tr is associated with the probability of v influencing r within α steps, given
by reach(v α−→ r).

Note that if there are q paths between v and r in g, we will create q copies of v, denoted
as vi, 1 ≤ i ≤ q, in the WRR tree and there will be q branches in Tr from r to each of the
copies of v.

Target-IM (see Algorithm 3.1) works in two phases. In the first phase (lines 1-3), we sample
θ number of weighted reverse reachable trees. In the second phase (line 4), we greedily select
k nodes that cover the most number of WRR trees generated in the first phase. However
in our case, the selected node from a WRR tree Tr may only have partial influence on the
root r, that is to say, other nodes in Tr may continue to exert some degree of influence on
r because selecting these nodes can increase the probability of r being influenced. Hence,

Chapter 3. Targeted Influence Maximization 24

even if we have selected a node from Tr, we cannot remove Tr from subsequent consideration
to find the next node. Finally, the algorithm returns the k nodes (line 5).

Algorithm 3.1: Target-IM

input : 1. Social network G
2. Deadline α
3. Location γ

output : Seed set S
1 Initiate T = ∅.
2 while |T | < θ do
3 T = T ∪ WRRGenerate(G, α)
4 end
5 Seed set S = GreedySelect(T)
6 Return S

In the following subsections, we elaborate on how to generate a single weighted reverse
reachable tree, and describe the greedy selection process. We also give a theoretical analysis
of the performance bounds of Target-IM.

3.2.1 Generation of WRR Trees

Given the graph G, we create a graph instance g of G by flipping a coin for each edge
< u, v > such that there is a probability p(u, v) that the edge will be retained in g. With
this graph instance, we can generate a WRR tree rooted at r as follows. We perform a
breath-first traversal starting from r following the in-links. Each time we reach a node v,
we create a corresponding node and add the node and its associated edge to the WRR tree.
Note that if v has been visited before, a new copy of v is created.

Figure 3.1a shows an example social network where the influence probability is shown on
each edge, and the login probability of each user is underlined in the node. Consider the
node v1. The probabilities of including the edges ⟨v2, v1⟩, ⟨v3, v1⟩ and ⟨v4, v1⟩ are 0.2, 0.6,
and 0.2 respectively. Figure 3.1b shows a possible graph instance g obtained. Then we
perform a breadth-first traversal starting from v1. Since v3 will be visited twice, we have
two copies of v3, namely v13 and v23, in the generated WRR tree rooted at v1 (see Figure
3.1c).

Next, we describe how to compute the value associated with each node in the WRR tree,
that is, reach(v α−→ r). Recall that reach(v α−→ r) denotes the probability of v influencing
r within the deadline α. We use a (α + 1)-vector mv to aid in this computation where the
jth entry of mv, denoted as mv[j], keeps track of the probability of v reaching the root in
exactly j steps.

Chapter 3. Targeted Influence Maximization 25

v1

v2

v4

v5

v3

0.2

0.8

0.6

0.2
0.9

0.3 v1

v2

v4

v5

v3

v1

v2

v4

v5

v3

0.2

0.8

0.6

0.2
0.9

0.30.5

0.9 0.6

0.6

0.4

(a) Example Network

v1

v2

v4

v5

v3

0.5

0.9 0.6

0.6

0.4

(b) Graph Instance g

V1

V3
2

V3
1 V4

V5

mV3
1 = [0, 0.5, 0.25, 0.125]

reach (V3
1 V1) = 0.8753

mV5
 = [0, 0, 0.3, 0.27]

reach (V5
 V1) = 0.57

mV1= [1, 0, 0, 0]

reach (V1
 V1) = 13

mV4
 = [0, 0.5, 0.25, 0.125]

reach (V4
 V1) = 0.875

mV3
2 = [0, 0, 0, 0.12]

reach (V3
2 V1) = 0.12

3

3

3

(c) Generated WRR Tree

Figure 3.1: Illustration of Generating WRR Tree.

Suppose v is at the dth level in the WRR tree. It will take at least d steps for v to reach r
as there are at least d nodes along the path from v to r. When j < d, the probability that
v can reach r in exactly j steps is 0.

However, when j ≥ d, let node w be the immediate parent of v along the path from v to r,
then the probability that v reaches r in exactly j steps is the probability that the parent w
logs in on the (i+1)th step multiplied by the probability that w takes exactly j− i−1 steps
to reach r. The probability w logs in on the (i+ 1)th step is the probability w does not log
in in the first i steps and logs in on the (i+1)th step, that is (1− login(w))i · login(w). The
probability w takes j − i− 1 steps to reach r is given in mw[j − i− 1], hence we have

mv[j] =

j−1∑
i=0

((1− login(w))i · login(w) ·mw[j − i− 1]) (3.1)

where login(w) is the login probability of w.

With this, we have:

reach(v
α−→ r) =

α∑
i=0

mv[i] (3.2)

Chapter 3. Targeted Influence Maximization 26

Back to our example in Figure 3.1. Suppose α = 3, we have mv1 [0] = 1 since v1 can reach
itself in 0 step with a probability 1. Consider node v13 is now influenced, the probability of
v1 logging in at the next step is 0.5. Then the probability of v13 influencing v1 in 1 step is
0.5. Hence, we have

mv13
[0] = 0

mv13
[1] = (1− 0.5)0 × 0.5×mv1 [0] = 0.5

Similarly, the probability that node v1 logs in at step 2 is (1− 0.5)1 × 0.5. Then we have
mv13

[2] = (1− 0.5)1 × 0.5×mv1 [0] = 0.25

The final WRR tree is shown in Figure 3.1c.

Algorithm WRRGenerate (see Algorithm 3.2) gives the details. Given a network G and
deadline α, we first randomly sample a node from G and create the corresponding root node
r for the WRR tree (Lines 1-2). Line 3 initializes mr and reach(r α−→ r). For each incoming
edge ⟨v, w⟩ of w, we decide with a probability p(v, w) whether it should be added to the
WRR tree (Line 5). If the decision is to add the edge, all of the in-link neighbours of v are
placed in a queue for subsequent processing. For the nodes that are added to the tree, we
compute their reach(v α−→ r) in Lines 7-9. The algorithm terminates when all (α+ 1)-level
nodes have been processed.

Algorithm 3.2: WRRGenerate(G, α)

1 Randomly choose a node r uniformly and start BFS.
2 Create tree root r.
3 Initialize mr = [1, 0, · · · , 0] and reach(r α−→ r) = 1 .
4 while breath-first traversal is within α levels of r do
5 Flip a coin with probability p(v, w) for each in-link ⟨v, w⟩.
6 if decision is YES then
7 Create node v or a copy of v if v has been visited before
8 Compute mv[j] for each j ∈ [0, 1, · · · , α] using Equation 3.1.
9 Compute reach(v α−→ r) using Equation 3.2.

10 Place v’s in-link neighbours in the processing queue.

11 end
12 else
13 Continue.
14 end

15 end
16 Return the WRR tree.

Chapter 3. Targeted Influence Maximization 27

Note that each node in G is equally likely to be sampled by WRRGenerate. However, given
a targeted location γ, a node v whose location is far away from γ should be given less
consideration. As such, we should sample nodes that are close to γ as the target nodes.
Further, we realize that if the expected contribution of a node in influencing the root of a
WRR tree is smaller than some threshold η, then we will abandon this node and terminate
the tree construction.

We design a more efficient algorithm WRRGenerate+ by focusing on nodes that are closer
to the target location. We first sample a node r with probability f(γ,lr)∑

v∈V f(γ,lv)
where nodes

with higher f(γ, lr) value possesses a higher chance of being selected. Then we initialize mr

and start the BFS from the sampled node. For any visited node v, we create a copy of this
node, compute mv and reach(v α−→ r) as done in WRRGenerate algorithm.

Note that in Algorithm WRRGenerate, no matter how unlikely for the nodes to register the
root, we will always perform a breadth-first traversal until α levels. However, in Algorithm
WRRGenerate+, we stop the traversal as soon as we realize the probability of some nodes
registering the target node is smaller than a pre-defined threshold η. We realize that for
two nodes v and w where v is an ancestor of w in Tr, it is impossible for w to have a higher
probability of registering r than v. Hence, Algorithm WRRGenerate+ will check whether
f(γ, lr) · reach(vx

α−→ r) < η. If so, that means all v’s descendant nodes’ probabilities of
registering r cannot be larger than η. As such, we terminate the traversal and continue with
the other nodes in the processing queue.

3.2.2 Greedy Selection

After generating a pool of WRR trees T , the next phase is to find k nodes that cover the
largest number of WRR trees. Let Tr ∈ T be a WRR tree with root node r, and ψ(S, Tr)

be the probability of a seed set S influencing r. For each node v in a WRR tree Tr, we
maintain a value weight(v, S, Tr) to indicate the contribution by v in influencing the root r
where

weight(v, S, Tr) =

reach(v
α−→ r) S = ∅

ψ((S ∪ {v}), Tr)− ψ(S, Tr) otherwise
(3.3)

Recall that f(γ, lr) gives the probability that the root node of Tr will register for an event
at location γ. At each iteration, we select the node with the highest

∑
Tr∈T

weight(v, S, Tr) · f(γ, lr)

to put into S. We repeat the process k times to get our seed set S.

Chapter 3. Targeted Influence Maximization 28

This approach is simple but inefficient, as we need to compute the probabilities of S ∪ {v}
influencing r, and S influencing r whenever we update the weight of a node v in Tr.

Careful analysis reveals that there are two cases to consider when we update the weight of
a node v that does not correspond to any node in S. Let FS ⊂ S be the set of nodes that
have no ancestors corresponding to nodes in S.

• Case 1. v is a descendant of u ∈ FS .
The probability of r getting influenced when both u and v are selected is the same as
the probability of r getting influenced when u is selected only. This is because any
influence that v can exert on r must go through u. Once u is selected, the additional
contribution of v on r is 0. In other words, weight(v, S, Tr) = 0.

• Case 2. v is not a descendant of any node in FS .
Probability of r getting influenced given S
= 1− the probability that none of the nodes in S influence r
= 1−

∏
w∈FS

(1− reach(w α−→ r))

Probability of r getting influenced given S ∪ {v}
= 1−

∏
w∈F ′

S
(1− reach(w α−→ r)))

where

F ′
S =

FS ∪ {v} − {u} v is an ancestor of u ∈ FS

FS ∪ {v} Otherwise

Then we have

weight(v, S, Tr) =
∏

w∈F ′
S

(1− reach(w α−→ r)))−
∏

w∈FS

(1− reach(w α−→ r)) (3.4)

Consider the example WRR tree in Figure 3.2. Suppose S = {v5}. Since v23 is a descendant
of v5 (see Figure 3.2a), we set
weight(v23, {v5}, Tv1) = 0.

The nodes v1 and v4 are ancestors of v5 (see Figure 3.2b), their weights are updated as
follows:
weight(v1, {v5}, Tv1) = (1− 0.57)− (1− 1)

= 0.43

weight(v4, {v5}, Tv1) = (1− 0.57)− (1− 0.875)

= 0.305

Finally, v13 is on a different path (see Figure 3.2c) and its weight is updated as follows:
weight(v13, {v5}, Tv1) = (1−0.57)− (1−0.57) · (1−0.875)

= 0.376.

Chapter 3. Targeted Influence Maximization 29

V1

V3
2

V3
1 V4

V5
weight(V3

1, {V5} , TV1)= 0.875
0.376

f (r, lV1)

reach (V3
1

 V1) = 0.8753

weight(V1 , {V5} , TV1)= 1
0.43

reach (V1 V1) = 13

weight(V4 , {V5} , TV1)= 0.875
0.305

reach (V4 V1) = 0.8753

weight(V5 , {V5} , TV1)= 0.57
0

reach (V5 V1) = 0.573

weight(V3
2, {V5} , TV1)= 0.12

0

reach (V3
2

 V1) = 0.123

V1

V3
2

V3
1 V4

V5

f (r, lV1)

weight(V5 , {V5} , TV1)= 0.57
0

reach (V5 V1) = 0.573

weight(V3
2, {V5} , TV1)= 0.12

0

reach (V3
2

 V1) = 0.123

V1

V3
2

V3
1 V4

V5

f (r, lV1) weight(V1 , {V5} , TV1)= 1
0.43

reach (V1 V1) = 13

weight(V4 , {V5} , TV1)= 0.875
0.305

reach (V4 V1) = 0.8753

reach (V5 V1) = 0.573

V1

V3
2

V3
1 V4

V5
weight(V3

1, {V5} , TV1)= 0.875
0.376

f (r, lV1)

reach (V3
1

 V1) = 0.8753
reach (V5 V1) = 0.573

(a) Updating DescendantsV1

V3
2

V3
1 V4

V5
weight(V3

1, {V5} , TV1)= 0.875
0.376

f (r, lV1)

reach (V3
1

 V1) = 0.8753

weight(V1 , {V5} , TV1)= 1
0.43

reach (V1 V1) = 13

weight(V4 , {V5} , TV1)= 0.875
0.305

reach (V4 V1) = 0.8753

weight(V5 , {V5} , TV1)= 0.57
0

reach (V5 V1) = 0.573

weight(V3
2, {V5} , TV1)= 0.12

0

reach (V3
2

 V1) = 0.123

V1

V3
2

V3
1 V4

V5

f (r, lV1)

weight(V5 , {V5} , TV1)= 0.57
0

reach (V5 V1) = 0.573

weight(V3
2, {V5} , TV1)= 0.12

0

reach (V3
2

 V1) = 0.123

V1

V3
2

V3
1 V4

V5

f (r, lV1) weight(V1 , {V5} , TV1)= 1
0.43

reach (V1 V1) = 13

weight(V4 , {V5} , TV1)= 0.875
0.305

reach (V4 V1) = 0.8753

reach (V5 V1) = 0.573

(b) Updating Ancestors

V1

V3
2

V3
1 V4

V5
weight(V3

1, {V5} , TV1)= 0.875
0.376

f (r, lV1)

reach (V3
1

 V1) = 0.8753

weight(V1 , {V5} , TV1)= 1
0.43

reach (V1 V1) = 13

weight(V4 , {V5} , TV1)= 0.875
0.305

reach (V4 V1) = 0.8753

weight(V5 , {V5} , TV1)= 0.57
0

reach (V5 V1) = 0.573

weight(V3
2, {V5} , TV1)= 0.12

0

reach (V3
2

 V1) = 0.123

V1

V3
2

V3
1 V4

V5

f (r, lV1)

weight(V5 , {V5} , TV1)= 0.57
0

reach (V5 V1) = 0.573

weight(V3
2, {V5} , TV1)= 0.12

0

reach (V3
2

 V1) = 0.123

V1

V3
2

V3
1 V4

V5

f (r, lV1) weight(V1 , {V5} , TV1)= 1
0.43

reach (V1 V1) = 13

weight(V4 , {V5} , TV1)= 0.875
0.305

reach (V4 V1) = 0.8753

reach (V5 V1) = 0.573

V1

V3
2

V3
1 V4

V5
weight(V3

1, {V5} , TV1)= 0.875
0.376

f (r, lV1)

reach (V3
1

 V1) = 0.8753
reach (V5 V1) = 0.573

(c) Updating Other Paths

Figure 3.2: Illustration of Updating Weights in a WRR Tree.

Chapter 3. Targeted Influence Maximization 30

Algorithm 3.3 gives the details. At each iteration, we select a node u with the highest∑
Tr∈T weight(u, S, Tr) · f(γ, lr) value (Line 3). Then for each WRR tree Tr that involves

the newly selected node u, we update the weights of the other nodes in Lines 4-15. For any
node v in Tr, we first check whether the node is a copy of u. Then for each of the remaining
nodes, we see whether it is a descendant of u (Lines 8-9). If not, we check whether it is
an ancestor of u and update weight(v, S, Tr) accordingly (Line 11-15). After updating the
weights, we select the next node u′ with the highest

∑
Tr∈T weight(u

′, S, Tr) ·f(γ, lr) among
all WRR trees. We repeat the process for k times and return the final set S as output.

Algorithm 3.3: GreedySelect(T , k, f())

1 Initiate S = ∅.
2 for j = 1 to k do

3 Select u with highest probability of registering the roots∑
Tr∈T weight(u, S, Tr) · f(γ, lr).

4 foreach WRR tree involving u do

5 Set weight of any node copy corresponding to u to 0.

6 Identify the users in S with no ancestors in S as FS .

7 foreach node v in the tree Tr do

8 if v is a descendant of any node in FS then

9 Set weight(v, S, Tr) = 0.

10 else

11 if v is an anscestor of node u ∈ FS then

12 F ′
S = FS ∪ {v} − {u}.

13 else

14 F ′
S = FS ∪ {v}.

15 end

16 Compute weight(v, S, Tr) with Equation 3.4.

17 end

18 end

19 end

20 Return S.

Chapter 3. Targeted Influence Maximization 31

3.2.3 Estimation of θ

In this section, we provide an estimate of θ, the number of WRR trees to be sampled, so
that the k nodes returned by Algorithm GreedySelect is guaranteed to be within (1−1/e−ε)
of the optimal solution.

Given a seed set S and a node v, Borgs et al. [BBCL14] have shown that the probability
that S overlaps with a random RR set equals to the probability of S influencing v in the
traditional IC model. Based on this result, we establish the following lemma.

Lemma 1. Let Tr be a WRR tree and S be a set of selected nodes. Suppose p is the
probability that a node in S correspond to some node in Tr, and ψ(S, Tr) is the probability
of S influencing r. The probability that S successfully influencing r to be registered in the
original graph G under IC-L model is p · ψ(S, Tr) · f(γ, lr).

Proof. Let Rr be the RR set generated for r on the same graph instance g by restricting
the depth of BFS to α levels. According to Definition 3, the set of nodes in Rr correspond
to copies of the same set of nodes in Tr. Based on the result in [BBCL14], p equals the
probability of S influencing r via some path(s) in the original graph under IC model. Since
the IC-L model reduces to the traditional IC model when all nodes have login probabilities 1,
p is equal to the probability of S influencing r via the same path(s) under IC-L model if all
nodes have login probability 1. Since Tr keeps track of these path(s) via which S influences
r, so ψ(S, Tr) is the probability that S influences r via these paths with different login
probabilities. Taking into account the location of r in registering for an event at location γ,
we have p · ψ(S, Tr) · f(γ, lr) which gives the probability of S influencing r to be registered
in the original graph under IC-L model.

Next, we define Ψ(S, T) which gives the total expected number of root nodes in T that are
registered if S is the initial set of influenced nodes as follows:

Ψ(S, T) =
∑
Tr∈T

ψ(S, Tr) · f(γ, lr)

The function Ψ(S, T) is monotone and submodular, indicating the greedy algorithm can
produce a (1− 1/e)-approximate solution [Vaz01].

Theorem 1. Ψ(S, T) is monotone and submodular.

Proof. Clearly, given S, adding in other nodes into the S can never decrease ψ(S, T). In
addition, f(γ, lr) is always greater than or equal to 0. Hence, for x /∈ S, we always have∑

Tr∈T
ψ(S ∪ {x}, Tr) · f(γ, lr) ≥

∑
Tr∈T

ψ(S, Tr) · f(γ, lr)

Chapter 3. Targeted Influence Maximization 32

By definition of Ψ, we have
Ψ(S ∪ {x}, T) ≥ Ψ(S, T)

Thus Ψ is monotone.

Next, Ψ is submodular if for any two given seed sets S1 and S2 where S1 ⊂ S2, and a
node x /∈ S2, we have ∆p1 ≥ ∆p2 where ∆p1 = Ψ(S1 ∪ {x}, T) − Ψ(S1, T) and ∆p2 =

Ψ(S2 ∪ {x}, T)−Ψ(S2, T).

From the definition of Ψ, we have

Ψ(S1 ∪ {x}, T)−Ψ(S1, T)

=
∑
Tr∈T

ψ(S1 ∪ {x}, Tr) · f(γ, lr)−
∑
Tr∈T

ψ(S1, Tr) · f(γ, lr)

=
∑
Tr∈T

(ψ(S1 ∪ {x}, Tr)− ψ(S1, Tr)) · f(γ, lr)

Similarly,

Ψ(S2 ∪ {x}, T)−Ψ(S2, T)

=
∑
Tr∈T

(ψ(S2 ∪ {x}, Tr)− ψ(S2, Tr)) · f(γ, lr)

We prove that Ψ is submodular by contradiction. Suppose ∆p1 < ∆p2. Then for a Tr ∈ T
we have

ψ(S1 ∪ {x}, Tr)− ψ(S1, Tr) < ψ(S2 ∪ {x}, Tr)− ψ(S2, Tr)

that is,
weight(x, S1, Tr) < weight(x, S2, Tr)

Let S1 = ∅ and S2 = {u}. Given a node x ̸= u,

weight(x, S1, Tr) = reach(x
α−→ r)

Further, we have
weight(x, S2, Tr)

=

0 u is an ancestor of x

reach(x
α−→ r)− reach(u α−→ r) u is a descendant of x

(1− reach(u α−→ r)) · reach(x α−→ r) otherwise

Since weight(x, S2, Tr) is always less than reach(x α−→ r), and weight(x, S1, Tr) = reach(x
α−→

r), which contradicts our assumption that ∆p1 < ∆p2. Thus Ψ is submodular.

Chapter 3. Targeted Influence Maximization 33

Recall that Φ(S) is defined as the number of users who register as a result of S’s influence
under the IC-L model. Let n be the number of nodes in the original graph G, i.e. n = |V |.
We can compute the probability of S influencing a node in G to be registered as Φ(S)

n .

Let TS ⊂ T be the subset of WRR trees that have nodes in S. Then the probability of S
influencing the root of a WRR tree Tr ∈ TS to register is given by

Ψ(S, T)
|TS |

=

∑
Tr∈TS ψ(S, Tr) · f(γ, lr)

|TS |

Since |TS |
|T | gives the probability that S has some node corresponding to a node in a WRR

tree, based on Lemma 1, we have

|TS |
|T |
· Ψ(S, T)
|TS |

=
Φ(S)

n

Hence we have
n

|T |
·Ψ(S, T) = Φ(S) (3.5)

Let M be the maximum number of registered nodes by any size-k node set in G and SM is
the set that maximizes Φ(S), i.e.Φ(SM) = M . Suppose S∗ is the set that can register the
largest number of tree roots in T , that is, S∗ = argmaxSΨ(S, T).

Based on the results established in [TSX15], we have the following lemmas:

Lemma 2. If θ > θ1 where θ1 =
2n·log(1/δ1)

M ·ε21
, then

(n/θ) ·Ψ(SM , T) ≥ (1− ε1) ·M (3.6)

holds with a probability of at least (1− δ1), δ1 ∈ (0, 1), ε1 > 0.

Lemma 3. If θ > θ2 where θ2 =
(2−2/e)·n·log((nk)/δ2)
M ·(ε−(1−1/e)·ε1)2 , then

n

θ
·Ψ(S, T)− Φ(S) < ε2 ·M (3.7)

holds with a probability of at least (1− δ2), δ2 ∈ (0, 1), ε1 < ε and ε2 = ε− (1− 1/e) · ε1.

With the above results, we derive a bound for the approximate solution obtained by Target-
IM.

Theorem 2. Given ε1 < ε and δ1, δ2 in(0, 1) with δ1 + δ2 ≤ 1
n , we set θ = max{θ1, θ2}

to ensure that Target-IM returns a (1 − 1/e − ε)-approximate solution with at least 1 − 1
n

probability, where θ1 and θ2 are determined from Lemma 2 and Lemma 3 respectively.

Proof. Let S be the set of nodes returned by Target-IM, S∗ = argmaxSΨ(S, T) and SM =

Chapter 3. Targeted Influence Maximization 34

argmaxSΦ(S).

According to Equation 3.7, we have

Φ(S) >
n

θ
·Ψ(S, T)− ε2 ·M.

Since Ψ(S, T) is a (1− 1/e)-approximate solution for Ψ(S∗, T) according to Theorem 1, we
have

Φ(S) > (1− 1/e) · n
θ
·Ψ(S∗, T)− ε2 ·M.

Since S∗ maximizes Ψ(S∗, T), we know Ψ(S∗, T) ≥ Ψ(SM , T). Then we can have

Φ(S) > (1− 1/e) · n
θ
·Ψ(SM , T)− ε2 ·M.

According to Equation 3.6, we know n
θ ·Ψ(SM , T) ≥ (1− ε1) ·M . By replacing n

θ ·Ψ(SM , T)
with (1− ε1) ·M , we have

Φ(S) > (1− 1/e) · (1− ε1) ·M − ε2 ·M.

Since ε2 = ε− (1− 1/e) · ε1 according to Lemma 3, we have

Φ(S) > (1− 1/e) · (1− ε1) ·M − (ε− (1− 1/e) · ε1) ·M

= ((1− 1/e) · (1− ε1)− ε+ (1− 1/e) · ε1) ·M

= ((1− 1/e) · (1− ε1 + ε1)− ε) ·M

= (1− 1/e− ε) ·M

Thus we establish the bound for Target-IM.

Theorem 2 allows us to control the result quality by setting an appropriate value for ε.

3.2.4 Time Complexity of Target-IM

Given an input graph G = (V,E), the time complexity for generating θ WRR trees is
O(k(|V | + |E|)log|V |/ε2) based on the results in [TSX15]. This is equivalent to the total
number of edge traversed by the breath-first search. The second phase in Target-IM is to
greedily select k nodes by calling Algorithm 3.3, GreedySelect. Since in the generation of
WRR trees, each edge traversal will result in the creation of a node in the WRR tree, we
have O(k(|V | + |E|)log|V |/ε2) number of nodes in T . In the worst case, for each iteration
of Algorithm 3.3, we have to update the weights of all nodes in T . This results in a time
complexity of O(k2(|V | + |E|)log|V |/ε2). Hence the overall time complexity of Target-IM
algorithm is O(k2(|V |+ |E|)log|V |/ε2).

Chapter 3. Targeted Influence Maximization 35

3.3 Experiments

In this section, we present the results of experiments to evaluate the performance of the
proposed methods on several real-world datasets. All the experiments are run on a linux
machine with 2 Xeon E5440 2.83 GHz CPU and 16G RAM.

Datasets. We use four location-based social network datasets: Gowalla, Twitter,
Weibo and Foursquare. We assume that the most frequent check-in location of a user
u is his location lu. Table 3.1 gives the total number of nodes and edges, as well as the
average number of neighbours per node of these datasets.

Table 3.1: Characteristics of Datasets

Dataset #Nodes #Edges Ave # neighbours per node

Gowalla 26,316 106,271 8.07

Twitter 554,372 2,402,720 8.58

Weibo 1,020,730 16,490,916 32.3

Foursquare 4,899,219 28,484,755 11.6

Methods. We compare the performance of the following methods in our experiments.

• Target-IM. This is our proposed method which computes the k nodes that maximizes
the number of registered users by taking into account both deadline and user location.

• Target-IM+. This method calls Algorithm WRRGenerate+ instead of WRRGenerate to
speed up the runtime by omitting nodes that are unlikely to participate given the
event location.

• MIA-L [CLZ12]. This method computes the incremental influence spread within dead-
line α of a given node under the IC-L model using maximum in-arborescence, and does
not take into consideration location information.

• Expansion [LCF+14]. This is the state-of-the-art location-aware influence maximiza-
tion method. Note that this method does not consider deadline.

• IMM [TSX15]. This is the state-of-the-art approach for the traditional influence max-
imization problem. IMM can be considered as a special case of Target-IM by setting
α =∞ and ∀v ∈ V , f(γ, lv) = 1.

Parameter Setting. We randomly generate the coordinates for the target location γ. The
location function f(γ, lv) is set according to [LCF+14] where f(γ, lv) = 1 if the distance
between lv and γ is within a predefined threshold, and 0 otherwise. This distance threshold
is controlled by the number of nodes within a circular region centred at γ. Similar to

Chapter 3. Targeted Influence Maximization 36

[LCF+14], we set the number of nodes for Gowalla to be 104, Twitter and Weibo to
be 105, and Foursquare to be 106.

We set the login probability of each node by randomly choosing a real number from the
interval [0, 1]. Further, the influence probability p(u, v) for each edge ⟨u, v⟩ is given by
1/inDegree(v) where inDegree(v) is the number of incoming edges to node v as in [KKT03,
TXS14]. For Target-IM+ and MIA-L, nodes influencing the target with a probability less than
η will not be considered. A larger η can result in more registered users despite longer running
time. Based on [CLZ12], we set η = 1/320.

For Target-IM and Target-IM+, the parameter ε controls the number of WRR trees generated.
A smaller ε value indicates a tighter approximation bound but longer running time. As in
[TSX15], we fix ε = 0.5 in all our experiments as it provides higher efficiency.

3.3.1 Experiments with Deadline and Location

In this set of experiments, we evaluate the performance of the various methods by running
each method five times, each time with a random target location. We record the number of
registered users as a result of the influence of the k users returned by these methods, and
report the average results of the five runs.

First, we set the deadline α = 10 and vary k from 10 to 50. Figure 3.3 shows the results.

We observe that Target-IM and Target-IM+ give the best performance as they take into
account both location and deadline (+30% in Gowalla and +80% in the other three
datasets). Further, the rate of increase is the steepest for Target-IM and Target-IM+ as k
increases.

Expansion finds the set of nodes that has the highest influence within the region without
considering deadline. This would include many nodes that are influenced after the deadline
α, which are not the registered users in our targeted influence maximization problem. MIA-
L computes the influence probability with login events and deadline. However, it does not
consider the user location and may find nodes that are unlikely to be registered.

IMM has the poorest performance since it finds nodes generally with large influence spread.
However, such nodes may not be the registered users when we restrict the effective nodes
to a specific region and limit the propagation time.

Chapter 3. Targeted Influence Maximization 37

0
100
200
300
400
500
600
700
800

 0 10 20 30 40 50

#R
eg

is
te

re
d

U
se

rs

k

Expansion
MIA-L

IMM
Target-IM

Target-IM+

(a) Gowalla

0

1 k

2 k

3 k

 0 10 20 30 40 50

#R
eg

is
te

re
d

U
se

rs

k

Expansion
MIA-L

IMM
Target-IM

Target-IM+

(b) Twitter

0

1 k

2 k

3 k

4 k

5 k

6 k

 0 10 20 30 40 50

#R
eg

is
te

re
d

U
se

rs

k

 Expansion
 MIA-L

 IMM
 Target-IM

 Target-IM+

(c) Weibo

0

5 k

10 k

15 k

20 k

25 k

30 k

 0 10 20 30 40 50

#R
eg

is
te

re
d

U
se

rs

k

Expansion
MIA-L

IMM
Target-IM

Target-IM+

(d) Foursquare

Figure 3.3: Effect of k (α = 10).

Next, we set k = 50 and vary the deadline α from 5 to 15. Figure 3.4 shows the results.
We observe that as α increases from 5 to 15, the number of registered users increases for
all of the methods. However, Target-IM and Target-IM+ consistently outperform the other
baseline algorithms. Expansion shows the highest rate of increase in terms of the number
of registered users when α increases. This is because Expansion finds the nodes that can
register a large number of users if there is no deadline for the event. As α increases, the
results given by Expansion slowly converges to the optimal result. When α is very small,
Expansion’s performance in the number of registered users is only slightly better than IMM,
which considers neither location nor deadline.

Chapter 3. Targeted Influence Maximization 38

 0

 300

 600

 900

 1200

 0 5 10 15

#R
eg

is
te

re
d

U
se

rs

α

Expansion
MIA-L

IMM
Target-IM

Target-IM+

(a) Gowalla

0

1 k

2 k

3 k

4 k

5 k

6 k

 0 5 10 15

#R
eg

is
te

re
d

U
se

rs
α

Expansion
MIA-L

IMM
Target-IM

Target-IM+

(b) Twitter

0

2 k

4 k

6 k

8 k

 0 5 10 15

#R
eg

is
te

re
d

U
se

rs

α

Expansion
MIA-L

IMM
Target-IM

Target-IM+

(c) Weibo

0

10 k

20 k

30 k

40 k

50 k

 0 5 10 15

#R
eg

is
te

re
d

U
se

rs

α

Expansion
MIA-L

IMM
Target-IM

Target-IM+

(d) Foursquare

Figure 3.4: Effect of α (k = 50).

Chapter 3. Targeted Influence Maximization 39

100

101

102

103

 10 20 30 40 50

Ru
n

Ti
m

e
(S

ec
s)

k

Expansion
Target-IM

Target-IM+

(a) Weibo

100

101

102

103

 10 20 30 40 50

Ru
n

Ti
m

e
(S

ec
s)

k

Expansion
Target-IM

Target-IM+

(b) Foursquare

Figure 3.5: Runtime when login(v) = 1 for all v and α =∞.

3.3.2 Experiments with Location only

In this set of experiments, we compare the performance of Target-IM and Target-IM+ with
Expansion. We set the login probability of all nodes to be 1 and deadline α = ∞ while
f(γ, lv) is set according to the distance between lv and γ. In other words, the targeted influ-
ence maximization problem reduces to the location-aware influence maximization problem
[LCF+14].

Figure 3.5 shows the runtime when we vary k from 10 to 50 on the two larger datasets
Weibo and Foursquare. We observe that Expansion has the fastest execution time as it
utilizes heuristics to avoid paths with low influence probability. On the other hand, Target-
IM and Target-IM+ consider all possible paths from u to v to estimate each node’s influence
more accurately, leading to a higher runtime. However, Expansion cannot guarantee any
bound for the returned solution, while Target-IM has a guaranteed bound.

Figure 3.6 shows the number of registered users on all four datasets. All three methods give
comparable results, although Target-IM and Target-IM+ win Expansion by a small margin.
Expansion considers that the best chance for v to be influenced by u through the path from
u to v with the highest influence probability and ignores all other paths from u to v. As a
result, Expansion may under-estimate the actual influence of a node.

Chapter 3. Targeted Influence Maximization 40

3.3.3 Experiments with Deadline only

Finally, we compare Target-IM and Target-IM+ with MIA-L in terms of both effectiveness
and efficiency without considering the deadline. We set f(γ, lv) = 1 for all v, in other words,
all of the users will register for an event regardless of its location as long as he is influenced.
This setting reduces the targeted influence maximization problem to the deadline-aware
influence maximization problem proposed in [CLZ12].

Figure 3.7 shows the runtime on the two larger datasets Weibo and Foursquare when
we vary α from 5 to 15 . We see Target-IM and Target-IM+ are clearly faster than MIA-L.
This is because MIA-L utilizes the maximum influence in-arborecence structure to record
the high influence paths. When there are multiple parent nodes pointing to the same child
node in a maximum influence in-arborecence, the MIA-L algorithm needs to enumerate all
possible orders of these parent nodes since different ordering of login events will result in
different influence spread for each parent node. When there are many nodes that directly
point to the same child node, MIA-L will incur a large amount of computation to estimate
each parent node’s influence on this child node.

Note that Target-IM+ runs faster than Target-IM because Target-IM+ avoids the computation
for a node once we realize its probability of registering the root is below some threshold.
When α increases, Target-IM still needs to traverse until α levels to construct each WRR
tree whereas for Target-IM+, we stop the breadth-first traversal as soon as we reach a node
with low influence probability. Hence when α increases, Target-IM’s running time increases
more significantly than Target-IM+’s as shown in Figure 3.7.

Figure 3.8 shows the number of registered users on all the four datasets. We observe that
even though MIA-L considers deadline information, its performance is not as good as our
proposed methods. This is because the path with the highest influence probability may
not be the optimal path that u influences v within deadline because the nodes on the path
may have low login probabilities. As a result, the set of nodes returned by MIA-L algorithm
may not influence the largest number of users within deadline as compared to our proposed
Target-IM and Target-IM+.

Chapter 3. Targeted Influence Maximization 41

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50

#R
eg

is
te

re
d

U
se

rs

k

Expansion
Target-IM

Target-IM+

(a) Gowalla

0

1 k

2 k

3 k

4 k

5 k

6 k

7 k

 0 10 20 30 40 50

#R
eg

is
te

re
d

U
se

rs

k

Expansion
Target-IM

Target-IM+

(b) Twitter

0

2 k

4 k

6 k

8 k

10 k

12 k

 0 10 20 30 40 50

#R
eg

is
te

re
d

U
se

rs

k

 Expansion
 Target-IM

 Target-IM+

(c) Weibo

0

20 k

40 k

60 k

80 k

100 k

120 k

140 k

 0 10 20 30 40 50

#R
eg

is
te

re
d

U
se

rs

k

Expansion
Target-IM

Target-IM+

(d) Foursquare

Figure 3.6: Performance when login(v) = 1 for all v and α =∞.

101

102

103

104

105

 5 10 15

Ru
n

Ti
m

e
(S

ec
s)

α

MIA-L
Target-IM

Target-IM+

(a) Weibo

102

103

104

105

 5 10 15

Ru
n

Ti
m

e
(S

ec
s)

α

MIA-L
Target-IM

Target-IM+

(b) Foursquare

Figure 3.7: Runtime when f(γ, lv) = 1 for all v (k = 50).

Chapter 3. Targeted Influence Maximization 42

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50

#R
eg

is
te

re
d

U
se

rs

k

 MIA-L
 Target-IM

 Target-IM+

(a) Gowalla

0

1 k

2 k

3 k

4 k

5 k

 0 10 20 30 40 50

#R
eg

is
te

re
d

U
se

rs

k

 MIA-L
 Target-IM

 Target-IM+

(b) Twitter

0

2 k

4 k

6 k

8 k

10 k

12 k

14 k

 0 10 20 30 40 50

#R
eg

is
te

re
d

U
se

rs

k

 MIA-L
 Target-IM

 Target-IM+

(c) Weibo

0

10 k

20 k

30 k

40 k

50 k

60 k

70 k

80 k

 0 10 20 30 40 50

#R
eg

is
te

re
d

U
se

rs

k

MIA-L
Target-IM

Target-IM+

(d) Foursquare

Figure 3.8: Performance when f(γ, lv) = 1 for all v (α = 10).

3.4 Summary

In this chapter, we have examined the problem of targeted influence maximization in social
networks, taking into account the temporal and geographical constraints. We introduced
the notion of WRR trees and designed an algorithm called Target-IM that generates a set
of WRR trees. We provided a way to estimate the number of WRR trees required in order
to return a solution with (1− 1/e− ε) approximation bound. With this, we greedily selects
k nodes that covers the largest number of WRR trees. We further improved the WRR
tree generation algorithm by omitting nodes that are unlikely to influence the target region.
Extensive experimental studies have been conducted on four datasets to demonstrate the
effectiveness and efficiency of Target-IM and Target-IM+.

Chapter 4
Identifying Brokers in Dynamic Social Networks

The users that are influenced in the Targeted Influence Maximization problem are within a
specific region and are often likely to be within the same community. Sometimes we wish to
propagate some information such that many communities in the network become aware of
the information rather than influencing all the users in the same community. In this chapter,
we navigate to address the second challenge in spreading information, i.e.finding the nodes
that play significant roles in diffusing information to remote users. We introduce our concept
of brokers and present our study on finding brokers in dynamic social networks [SHL15a].

4.1 Problem Definition and Analysis

We define a broker as one whose removal would result in the greatest increase in the pairwise
distance among the remaining users. The intuition behind this definition is to capture users
who are situated between otherwise disconnected or distant users. Formally, we have

Definition 4. Top-k Brokers. Let G = (V,E) be a directed graph where each node v ∈ V
denotes a user, and each edge ⟨u, v⟩ ∈ E denotes that user u follows user v. The top-k
brokers are the set of users H ⊂ V , |H| = k, such that the utility function D is maximized:

D =
∑

u,v∈V−H

1

d(u, v)
−

∑
u,v∈V−H

1

d′(u, v)
, (4.1)

where d(u, v) and d′(u, v) denote the distance between u and v in G and G\H respectively.
G\H is the resultant subgraph of G having the nodes in H and their incident edges removed.

Next, we prove that the problem of finding top-k brokers is NP-hard.

Theorem 3. Identifying the top-k brokers in a directed graph is NP-hard.

Proof. The decision version of the top-k broker problem is stated as follow: Is there a subset
of nodes H where |H| = k such that the utility function D in Equation 4.1 is greater than
a given value s? To prove that the top-k broker problem is NP-hard, we first show that

43

Chapter 4. Identifying Brokers in Dynamic Social Networks 44

the decision version of top-k broker can be reduced from its function version in polynomial
time, and then we prove the decision version of top-k broker problem is NP-hard.

Suppose we have a graph with n nodes, the maximum distance between any pair of nodes
is (n − 1) and there can be at most n2 pairs of nodes. This implies that there are at most
n2(n − 1) possible values for D. If we can solve the decision version in polynomial time,
then the solution to the top-k broker problem is the set of nodes H that gives the largest s
value which can be found in polynomial time.

Next, we prove that the top-k broker decision problem is NP-hard by showing that it can
be reduced from the known NP-hard k-densest subgraph problem, namely, determining if
there exists a k-node subgraph with at least p edges in a given graph [AHI02].

Given an instance I = {G = (V,E), k, p} of the k-densest subgraph problem, let n = |V |,
and m = |E|. We can construct a directed graph G′ = (V ′, E′) of (n +m + 1) nodes and
(n + 2m) edges as follows. We first create a terminal node t in G′. For each node u in G,
we create a corresponding node u′ in G′, and connect u′ to t. For each edge e(u, v) in G, let
u′ and v′ in G′ be the corresponding nodes of u and v respectively. We create a node e′ in
G′, and connect e′ to u′ and v′. Let Y1 = {e′1, · · · , e′m} and Y2 = {u′1, · · · , u′n}. Then V ′ =
Y1 ∪ Y2 ∪ {t}.

Figure 4.1 shows an example graph G and the corresponding constructed graph G′. It is
clear that the construction of G′ can be done in polynomial time.

u1

u2

u7

u6

u3

u5

u4

(a) Original Graph G

e3'

e4'

e5'

e6'

e7'

e8'

e9'

e2'

e1'

u1'

u2'

u3'

u4'

u5'

u6'

u7'

t

(b) Converted Graph G′

Figure 4.1: Construction of G′ from G.

Next, we prove that the k-densest subgraph instance I is satisfiable, if and only if there
exists a subset H ⊆ Y2 and |H| = k such that D ≥ p

2 in G′.

Chapter 4. Identifying Brokers in Dynamic Social Networks 45

For the only if direction, suppose the k-densest subgraph instance I is satisfiable, that is,
we have a subgraph with k nodes and at least p edges in G. Let H ⊆ Y2 be the set of nodes
in G′ that correspond to these k nodes. When we remove H from G′, there are at least
p ∈ Y1 nodes in G′ that become isolated. These isolated nodes correspond to the p edges in
the k-densest subgraph solution. Recall the utility function in Equation 4.1 which computes
the difference in the sum of the inverse pairwise distance between G′ and G′\H. From the
graph G′ in Figure 5.1(b), we note that

d(u, v) =

1 u ∈ Y1 and v ∈ Y2
1 u ∈ Y2 and v = t

2 u ∈ Y1 and v = t

.

Clearly, the p isolated nodes will cause a difference in the pairwise distances between the
remaining nodes in G′ and G′\H. This is because these p nodes are able to reach the
terminal node t in G′ in 2 hops, but they can no longer reach t in G′\H. Hence,

D =
∑

u,v∈V ′−H

1

d(u, v)
−

∑
u,v∈V ′−H

1

d′(u, v)

=
∑

u∈{isolated nodes}

1

d(u, t)

≥ p

2
.

For the if direction, suppose the top-k broker decision instance is satisfiable, that is, there
exists H ⊂ V ′ such that D ≥ p

2 . As mentioned above, the utility function is affected when
nodes that are previously reachable in G′ are no longer reachable in G′\H. This occurs
when nodes in Y2 are removed, leading to isolated nodes in Y1. In this case, the number
of nodes removed from Y2 is |H ∩ Y2| ≤ k. Since D ≥ p

2 , we have at least p isolated nodes
in Y1. These p nodes are edges in G whose end points correspond to the nodes in H ∩ Y2.
Thus, we have found a subgraph with at most k nodes and at least p edges. In other words,
the k-densest subgraph instance I is satisfiable.

Given that the problem of detecting top-k brokers is NP-hard, we propose a solution that
is based on the weak tie theory [Gra83].

4.2 Proposed Approach

Granovetter [Gra83] first introduced the concept of weak ties in social networks where the
relationship between two users is weak when their number of overlapping friends is small.
Bakshy et al. [BRMA12] showed that weak ties are important in the diffusion of novel
information between remote users in Facebook while Burt [Bur07] found that users with
many weak ties are more likely to be placed in bridging positions.

Chapter 4. Identifying Brokers in Dynamic Social Networks 46

We carry out preliminary experiments on the real world DBLP dataset to investigate the cor-
relation between weak ties and brokers. Here, the authors are the nodes while co-authorships
form the edges. The tie strength of an edge ⟨author1, author2⟩ is given by the fraction of
the number of common co-authors between author1 and author2 to the total number of
co-authors they have. An edge is a weak tie if the tie strength is below some threshold.
We consider authors who have served as PC members in only one research area as opinion
leaders, and those who have served in multiple research areas as brokers.

We compute the number of weak ties that are incident to each author and sort the authors
according to the number of weak ties. Figure 4.2 shows the percentage of opinion leaders
and brokers with respect to the different ranges of weak ties. We observe that as the number
of weak ties increases, the proportion of brokers increases significantly. This motivates us
to develop an algorithm to find brokers based on the their number of incident weak ties.

 0

 0.2

 0.4

 0.6

 0.8

 1

0-10 10-20 20-30 30-40 40-50 50-60

P
e

rc
e

n
ta

g
e

 o
f

A
u

th
o

rs

Number of Weak Ties

Opinion Leader
Broker

Figure 4.2: Percentage of opinion leaders and brokers versus weak ties in DBLP.

Although the experiment results show that a broker is correlated with the number of weak
ties, simply counting the number of weak ties is not a good indicator of a node being a broker.
Consider Figure 4.3 where a bold line denotes that two users have many overlapping friends,
i.e. they have a strong tie. u1 has a total of 4 weak ties while u2 has 5. We observe that even
though u2 has more incident weak ties than u1, u1 is connected to more separate groups and
is more likely to be a broker. A closer observation reveals that many of u2’s neighbours are,
in fact, friends of each other’s friends. Thus we need to take into account the connectedness
among friends’ friends.

We first define the tie strength in a social network as follows:

Definition 5. Tie Strength. Let G = (V,E) be a social network. For any edge ⟨u, v⟩ ∈ E,
u is a follower of v and v is a followee of u. Let Fu denote the followees of u inclusive of u,
and Fv denote the followees of v inclusive of v. Then the tie strength of the edge ⟨u, v⟩ ∈ E
is given by

Suv =
| Fu ∩ Fv |
| Fu ∪ Fv |

.

Chapter 4. Identifying Brokers in Dynamic Social Networks 47

u1 u2

Figure 4.3: Example of two users with weak ties.

This implies that if the majority of u and v’s followees are the same, Suv will be close to
1. The edge from u to v is a weak tie if Suv is below some threshold τ . Otherwise, it is a
strong tie. Note that Suv = 0 if u is not a follower of v.

A path from u to v is a sequence of directed edges that starts from u and ends at v. The
strength of a path (path strength) is defined as the minimum tie strength among all the
edges in the path. Now we define a strongly connected group as follows:

Definition 6. Strongly Connected Group. Given a social network G = (V,E) and a tie
threshold τ , a strongly connected group is a maximal subgraph of G such that for all pairs of
nodes (u, v) in the subgraph, there exists a path from u to v with path strength greater than
τ .

Note that our strongly connected groups are in fact strongly connected components with
the additional constraint on the minimum path strength. We denote the set of strongly
connected groups as C. Based on Definition 6, when two nodes u and v are in the same
strongly connected group, there exists a path from u to v with path strength greater than τ
and vice versa. This implies that all the nodes in the same strongly connected group form
a cycle. Hence, the order of processing is irrelevant as we will still find the same set of
strongly connected groups.

We define the closeness of a strongly connected group c to a node u as follows: Let N be
the number of users in c whose tie strength to u is non-zero.

closeness(c, u) =

∑
v∈c Svu −N × τ

|c|
. (4.2)

Chapter 4. Identifying Brokers in Dynamic Social Networks 48

If closeness(c, u) < 0, this implies that u does not share many common followees with the
users in c. In other words, u is more likely to be a broker connecting c to the rest of the
network.

With this, we can assess the potential of a node u being a broker as follows:

score(u) =

∑

c∈C (−closeness(c, u)) C ̸= ∅

0 otherwise
, (4.3)

where C ⊂ C denotes the set of strongly connected groups whose closeness with u is below
0. A large value of score(u) indicates that u is connected to many largely non-overlapping
groups. Hence, u is in a bridging position among these groups and plays an important role
in bringing the users of these groups close to each other.

Given a social network G = (V,E) and threshold τ , our proposed approach to find the top-k
brokers in G consists of the following main steps:

1. For each directed edge ⟨u, v⟩ ∈ E, compute tie strength Suv;

2. Find the set of strongly connected groups C in G;

3. For each node u ∈ V , compute its score(u);

4. Return the top-k nodes with the highest scores.

Step 2 utilizes the Tarjan’s method [Tar72], which is designed for detecting strongly con-
nected components, to perform a depth-first traversal of the strong ties in G to obtain the
set of strongly connected groups.

Figure 4.4 illustrates the proposed approach using a small network with 10 nodes. We first
compute the tie strengths for all the edges. For example, the tie strength for edge ⟨u1, u5⟩
is 0.5 since we have Fu1 = {u1, u4, u5} while Fu5 = {u4, u5, u8}, with u4 and u5 being the
common followees out of 4. Figure 4.4b shows the weak and strong (bold arrows) ties in the
example network when τ = 0.2.

Next, we find all the strongly connected groups by applying Tarjan’s algorithm [Tar72] to
traverse only the strong ties. Figure 4.4c shows two strongly connected groups obtained
(marked in different colors). With this, we can compute the scores of all the nodes in the
network. For example, node u1 is connected to two strongly connected groups, c1 and c2
(see Figure 4.4d). We use Equation 4.2 to compute the closeness of each group to u1 as
follows:

closeness(c1, u1) =
(Su2u1 + Su6u1 − 2× τ)

2
= −0.033,

closeness(c2, u1) =
(Su3u1 + Su4u1 − 2× τ)

2
= 1.1.

Based on the above, we conclude that c1 is not close to u1 since the closeness is less than 0,
while c2 is close to u1. Finally, we have score(u1) = 0.033.

Chapter 4. Identifying Brokers in Dynamic Social Networks 49

u2 u3

u4

u1

u5

u7

u8

u6

u10

u9

(a) Example Network

u2 u3

u4

u1

u5

u7

u8

u6

0.75

0.2

0.167

0.143 0.167

0.5

0.75

0.4

1

0.5

0.75

0.4

u10

u9

0.5

0.2

0.4

0.4

(b) Compute Tie Strengths (τ = 0.2)

u2 u3

u4

u1

u5

u7

u8

u6

u10

u9

(c) Strongly Connected Groups

C1

C2

u2 u3

u4

u1

u5

u7

u8

u6

u10

u9

(d) Closeness of Groups c1 and c2 to u1

Figure 4.4: Illustration of WeakTie algorithm (best viewed in color).

Chapter 4. Identifying Brokers in Dynamic Social Networks 50

4.2.1 Incremental Methods

Real world social networks are highly dynamic. In an evolving social network, there are many
users joining (add node) and leaving (remove node) each day. Existing users may start new
relationships (add edge) or they may break off their existing relationships (remove edge).
These changes in relationships can all potentially affect the set of top-k brokers. Figure

u2 u3

u4

u1

u5

u7

u8

u6

u10

u9

0.29

(a)

u2 u3

u4

u1

u5

u7

u8

u6

u10

u9

0.29

u2 u3

u4

u1

u5

u7

u8

u6

u10

u9

0.33

(b)

Figure 4.5: Effect of Adding Edges (best viewed in color).

4.5 shows the changes in the network after u1 and u7 start following each other. Note that
when edges ⟨u1, u7⟩ and ⟨u7, u1⟩ are added, their tie strength is 0.33 and hence they are
strongly connected to each other. Additionally, the tie strengths between their common
followers increase and the edges ⟨u7, u2⟩ and ⟨u7, u3⟩ now become strong ties (see Figure
4.5b). Therefore, the entire network forms a single strongly connected group.

Recomputing the set of new top-k brokers when each update occurs is computationally
expensive. Each update requires reapplying the Tarjan’s algorithm on the entire graph to
obtain the strongly connected groups. This has a complexity of O(|V |+ |E|) and is clearly
not a practical solution for online social networks where the volume of updates is high.
This motivates us to propose incremental algorithms to handle the dynamic nature of social
networks.

Algorithm WeakTie-Local

Updates in social networks are handled as either addition of new edges or removal of existing
edges. This is because adding a node can be modelled as the addition of a list of edges
between the new node and existing nodes; while removing an existing node is modelled as
the removal of the edges associated with the removed node. Empirical investigation reveals

Chapter 4. Identifying Brokers in Dynamic Social Networks 51

changes to the strongly connected groups are often restricted to the 2-hop neighborhood of
the affected nodes. This is because it is rarely the case that two users are connected by a
chain of close friends and they do not know each other [Kat73]. We design WeakTie-Local
algorithm that utilizes the 2-hop neighborhood of an affected node to identify brokers.

Algorithm 4.1 gives the details. Suppose an edge ⟨u, v⟩ is added, Algorithm WeakTie-Local
first creates the respective nodes if they do not exist and updates the tie strength Suv. Since
Fu has changed because of the addition/deletion of ⟨u, v⟩, for any neighbor w of u, we update
Suw or Swu according to Definition 5 (Lines 14-15).

Algorithm 4.1: WeakTie-Local

input : 1. Social network G = (V,E)

2. Set of edges to be added E+

3. Set of edges to be removed E−

4. Tie strength threshold τ
output : Top-k Brokerss

1 foreach ⟨u, v⟩ ∈ E+ ∪ E− do
2 if ⟨u, v⟩ ∈ E+ then
3 Create node u if u ̸∈ V ;
4 Create node v if v ̸∈ V ;
5 Compute Suv;

6 end
7 foreach neighbor w of u do
8 Compute Swu or Suw;
9 end

10 Extract u, v’s 2-hop neighborhood Gu, Gv;
11 score(u) = UpdateScore(u,Gu);
12 score(v) = UpdateScore(v,Gv);
13 foreach neighbor w of u do
14 if w is neighbor of v then
15 Extract w’s 2-hop neighborhood Gw;
16 score(w) = UpdateScore(w,Gw);

17 else
18 Compute closeness(c, w)for u ∈ c ∧ c ∈ Cw with Equation 4.2;
19 Compute score(w) with Equation 5.3;

20 end

21 end
22 Return top-k nodes with highest scores.

Chapter 4. Identifying Brokers in Dynamic Social Networks 52

Function Updatescore(u, G)

1 Call Tarjan’s algorithm to find the set of strongly connected groups Cu in G.
2 score(u) = 0;
3 foreach c ∈ Cu do
4 Compute closeness(c, u) with Equation 4.2;
5 if closeness(c, u) < 0 then
6 score(u) = score(u)− closeness(c, u);
7 end
8 end
9 Return score(u);

Let Gu be the 2-hop neighborhood of a node u and Cu be the set of strongly connected
groups of nodes in Gu. From henceforth, we call Cu the local groups of u. We extract the 2-
hop neighborhoods Gu and Gv. The scores of u and v are recomputed by calling the function
UpdateScore() (Lines 1-8). For u’s neighbor w, we need to recompute the closeness(c, w)
for u ∈ c ∧ c ∈ Cw and update score(w) (Lines 24-25). Further, adding the edge ⟨u, v⟩ may
affect the local groups of the common neighbors of u and v. Hence, we also update the
scores of these nodes (Lines 20-22). Similarly, when an edge is deleted, the corresponding
2-hop neighborhoods are extracted, and we recompute the scores of the affected nodes.

Figure 4.6 illustrates the WeakTie-Local algorithm. Figure 4.6a is the 2-hop neighborhood
of node u1 and the tie strengths of the edges have been computed. We find all the local
groups by applying Tarjan’s algorithm [Tar72] on the nodes in Gu1 considering the ties
among them. Figure 4.6b shows the 3 local groups for u1 and we compute the score of u1.
When the edge ⟨u2, u7⟩ is added (Figure 4.6c), u2 has gained a new followee. This changes
the tie strengths Su7u2 , Su2u1 , Su2u6 and Su2u9 and edge ⟨u7, u2⟩ now becomes a strong tie
(Figure 4.6d). We then apply the Tarjan’s algorithm to obtain the new set of local groups
of u1 and compute the updated score of u1.

Chapter 4. Identifying Brokers in Dynamic Social Networks 53

u2 u3

u4

u1

u5

u7

u8

u6

u9

(a) 2-hop Neighborhood of u1

u2 u3

u4

u1

u5

u7

u8

u6

u9

(b) Local Groups of u1

0.33

u2 u3

u4

u1

u5

u7

u8

u6

u9

(c) Add Edge ⟨u2, u7⟩

u2 u3

u4

u1

u5

u7

u8

u6

u9
0.143

0.6

0.4

(d) New Local Groups of u1

Figure 4.6: Illustration of WeakTie-Local algorithm (best viewed in color).

Algorithm WeakTie-Bi

For bidirectional social networks, we do not need to perform Tarjan’s algorithm to find the
new set of strongly connected groups whenever updates come. In most cases, as we will show
soon, updating the score of an affected node takes linear time to the number of neighbors.
The only case when we need to traverse the neighborhood is when the deleted edge causes a
group to split into smaller groups. We present WeakTie-Bi algorithm to carefully exam the
different cases in order to further accelerate broker detection in bidirectional networks.

Algorithm 4.2 gives the details. Lines 2-8 process the insertion of new edges. Given an edge
⟨p, q⟩, if either p or q does not exist, we create a new node (Line 3). Lines 4-7 update the
friend lists of p and q as well as their tie strengths. Line 8 calls Algorithm 4.3 to handle
the various cases for the addition of edges. Lines 10-13 process the deletion of edges. The
updating of friend lists is done in Line 10 and the tie strengths are recomputed in lines 11
and 12. Line 13 calls Algorithm 4.4 to handle cases for the deletion of edges. The scores of

Chapter 4. Identifying Brokers in Dynamic Social Networks 54

the affected nodes are updated in lines 14-18. Finally, we return the top k nodes with the
highest scores.

Algorithm 4.2: WeakTie-Bi

input : 1. Social network G = (V,E)

2. Set of edges to be added E+

3. Set of edges to be removed E−

4. Tie strength threshold τ
output : Top-k Brokers

1 foreach ⟨p, q⟩ ∈ E+ ∪ E− do
2 if ⟨p, q⟩ ∈ E+ then
3 Create nodes p and q if p, q ̸∈ V ;
4 Fp = {q} ∪ Fp; Fq = {p} ∪ Fq;
5 Compute Spq;
6 foreach w ∈ Fp ∪ Fq do
7 Compute Spw and Sqw;
8 end
9 Call Algorithm AddCases (p, q);

10 end
11 else
12 Fp = Fp − {q}; Fq = Fq − {p};
13 foreach w ∈ Fp ∪ Fq do
14 Compute Spw and Sqw;
15 end
16 Call Algorithm RemoveCases(p, q);

17 end
18 Update closeness between p and q and their local groups;
19 Compute score(p) and score(q);
20 foreach w ∈ Fp ∪ Fq do
21 Update closeness between w and its local groups;
22 Compute score(w);

23 end

24 end
25 Return top-k nodes with highest scores.

Chapter 4. Identifying Brokers in Dynamic Social Networks 55

u2 u3

u4
u1

u5

u7

u8

u6

(a) Original Network

u2 u3

u4
u1

u5

u7

u8

u6

(b) Add ⟨u1, u6⟩

u2 u3

u4
u1

u5

u7

u8

u6

(c) Add ⟨u1, u8⟩

u2 u3

u4
u1

u5

u7

u8

u6

(d) Add ⟨u1, u7⟩

u2 u3

u4
u1

u5

u7

u8

u6

(e) Add ⟨u2, u3⟩

Figure 4.7: Illustration of cases A1, A2 and A3 (best viewed in color). The new yellow
group is formed in (b). The blue group is strengthened in (c). Blue group merge with green group
in (d) and (e).

We enumerate the cases that may arise due to the insertion of an edge. The cases are
illustrated using the network in Figure 4.7a.

A1. New group formed.

This corresponds to the case when the edge ⟨u1, u6⟩ is added. Although u6 was already
a friend of u2 prior to becoming friend of u1, the tie between u6 and u2 is weak. Hence,
a new group (colored in yellow) is formed (see Figure 4.7b). Lines 11-13 in Algorithm
4.3 deal with this case.

A2. Strengthen group.

Here, ⟨u1, u8⟩ has been added and u8 is strongly connected with multiple friends of u1
where all these friends are in the same group in blue (see Figure 4.7c). In this case, we

Chapter 4. Identifying Brokers in Dynamic Social Networks 56

simply include u8 into the blue group and update the corresponding closeness. Lines
14 and 15 in Algorithm 4.3 handle this case.

A3. Merge groups.

This case corresponds to the addition of edge ⟨u1, u7⟩ or ⟨u2, u3⟩ (see Figure 4.7d and
4.7e). After adding the edge, u1’s local green group is now merged with the blue
group to form the resultant group cnew. We compute closeness(cnew, u1). This case
is handled in lines 6-10 and 16-19 of Algorithm 4.3.

Algorithm 4.3: AddCases (e)

input : Edge e = (m,n)
output : Updated local groups

1 Let C ′ = ∅;
2 foreach w ∈ Fm ∩ Fn do
3 Let cw denote the local group that contains w;
4 if Snw > τ then
5 C ′ = C ′ ∪ {cw}
6 end
7 if Smn > τ then
8 Let c1, c2 ∈ Cw be the local groups of m and n respectively;
9 if c1 ̸= c2 then

10 cnew = c1 ∪ c2;
11 Cw = (Cw − {c1, c2}) ∪ {cnew};
12 end

13 end

14 end
15 if |C ′| = 0 then
16 Create new group cnew = {n};
17 Cm = Cm ∪ {cnew};
18 end
19 if |C ′| = 1 and C = {c} then
20 c = {n} ∪ c;
21 end
22 if |C ′| > 1 then
23 Merge all the groups in C ′ to form cnew;
24 cnew = cnew ∪ {n};
25 Cm = (Cm − C ′) ∪ {cnew}.
26 end

Chapter 4. Identifying Brokers in Dynamic Social Networks 57

u2 u3

u4
u1

u5

u7

u8

u6

(a) Original Network

u2 u3

u4
u1

u5

u7

u8

u6

(b) Remove ⟨u1, u2⟩

u2 u3

u4
u1

u5

u7

u8

u6

(c) Remove ⟨u1, u3⟩

u2 u3

u4
u1

u5

u7

u8

u6

(d) Remove ⟨u1, u4⟩

u2 u3

u4
u1

u5

u7

u8

u6

(e) Remove ⟨u3, u4⟩

Figure 4.8: Illustration of cases D1, D2 and D3 (best viewed in color). The green group is
removed in (b). The blue group is weakened in (c). The blue group split into blue and yellow groups
in (d) and (e).

Similarly, we enumerate the cases when an edge is removed.

D1. Remove group.

In this case, the edge removed is ⟨u1, u2⟩. u2 has no other overlapping friends with u1
and hence the strongly connected group in green consisting of only u2 is dropped (see
Figure 4.8b). Lines 10 and 11 in Algorithm 4.4 handle this case.

D2. Weaken group.

This case corresponds to the removal of edge ⟨u1, u3⟩. Here, u3 has only one common
neighbor with u1. After the edge has been removed, the remaining users in the blue
group are still strongly connected to each other (see Figure 4.8c). Lines 12-14 in
Algorithm 4.4 deal with this case.

Chapter 4. Identifying Brokers in Dynamic Social Networks 58

D3. Split group.

This case corresponds to the removal of ⟨u1, u4⟩ or ⟨u3, u4⟩. If ⟨u1, u4⟩ is removed, u3
and u5 are no longer strongly connected, or if ⟨u3, u4⟩ is removed, u3 needs to form an
individual group (see Figure 4.8d and 4.8e). As a result, two groups are formed and
we compute the closeness of the two new groups. Lines 5-9 and 15-19 in Algorithm
4.4 handle this case.

Algorithm 4.4: RemoveCases(e)

input : Edge e = (m,n)
output : Updated local groups

1 Let N ′ = ∅;
2 foreach w ∈ Fm ∩ Fn do
3 if Snw > τ then
4 N ′ = N ′ ∪ {w}
5 end
6 if Smn > τ then
7 Let c1, c2 ∈ Cw be the local groups of m and n respectively;
8 if c1 = c2 then
9 Regroup nodes in c to form new groups Cnew;

10 Cw = (Cw − {c}) ∪ Cnew;

11 end

12 end

13 end
14 if |N ′| = 0 then
15 Cm = Cm − {n};
16 end
17 if |N ′| = 1 then
18 Get n’s local group c ∈ Cm;
19 c = c− {n};
20 end
21 if |N ′| > 1 then
22 Get n’s local group c;
23 c = c− {n};
24 Regroup nodes in c to form new groups Cnew;
25 Cm = (Cm − {c}) ∪ Cnew.

26 end

Chapter 4. Identifying Brokers in Dynamic Social Networks 59

We now analyze the efficiency of WeakTie-Local and WeakTie-Bi algorithms. Let d denote
the degree of a node, where 0 ≤ d ≤ |V |. Given that real world social networks are
sparse, we have d ≪ |V | for most of the nodes. In WeakTie-Local, when an edge ⟨u, v⟩ is
added or deleted, it takes O(d2) to find the local groups again. Hence, the time needed to
recompute the scores for u and v is O(d2). For a neighbor w of u only, it needs to recompute
the closeness between each group and update the score, and this takes O(|Cw|). For the
common neighbors of u and v, WeakTie-Local needs to run the strongly connected group
detection procedure in the neighborhood whose time complexity is O(d2) for each node.
We have at most d such nodes, hence the time complexity for WeakTie-Local is O(d3). In
WeakTie-Bi, when (u, v) is added, updating the scores for u and v takes O(|Cu|) and O(|Cv|)
respectively since we need to recompute the closeness with each local group. Similarly for
the a friend w of u or v, each friend takes O(|Cw|) time to update its score. This requires a
time complexity of O(d|Cw|) as we have d friends. When (u, v) is deleted, both cases D1 and
D2 require O(d|C|) complexity. For case D3, the complexity is O(d3) as we have d nodes to
apply depth-first search to find local groups again in their neighborhood.

4.3 Experiments

In this section we evaluate the effectiveness and efficiency of the weak tie based algorithms
in identifying brokers. We also study how brokers can help information diffusion tasks. All
experiments are run on a linux machine with 2 Xeon E5440 2.83 GHz CPU and 16G RAM.

Datasets. We use the four social network datasets described in Section 3.3 and the details
of these datasets are given in Table 3.1. Brokers can also be the researchers that enable
the fusion of ideas from different research areas. In this section, we also have a DBLP1

dataset to illustrate the effectiveness of identified brokers. The DBLP dataset has 815,946
authors which form the nodes in the network. We extract a subset of authors from 4 research
areas in computer science, namely Databases (DB), Information Retrieval (IR), Artificial
Intelligence (AI) and Networks and Communication (NC). The resulting dataset has 219,815
authors and 1,089,793 co-authorships. The longest distance between any two authors is 20
and the average distance is 7.06.

4.3.1 Effectiveness Experiments

In this set of experiments, we evaluate the quality of the solutions given by the following
methods:

• WeakTie: This method uses the entire graph to find the strongly connected groups.

1http://aminer.org/billboard/structural-hole.html

Chapter 4. Identifying Brokers in Dynamic Social Networks 60

• WeakTie-Local: Based on Algorithm WeakTie, this method utilizes the 2-hop neigh-
borhood of a node to find local groups.

• WeakTie-Bi: This method is based on Algorithm WeakTie-Local and is optimized for
undirected graphs.

• PageRank♯: In this method, each node’s follower’ PageRank scores [PBMW98] are
summed up, and the k nodes with the highest scores are returned.

• Betweenness [HC13]: This returns the top k nodes that has the largest number of
shortest paths passing through them.

We run WeakTie, PageRank♯ and Betweenness on both DBLP dataset and social network
datasets. Since DBLP and Gowalla are bidirectional networks while Twitter, Weibo

and Foursquare are unidirectional networks, we apply WeakTie-Bi on DBLP and Gowalla

and WeakTie-Local on Twitter, Weibo and Foursquare. We vary k from 100 to 700
and compute the utility function D values obtained (see Equation 4.1).

Figure 4.9 shows that WeakTie is able to obtain the highest D values for all k. WeakTie-Bi
and WeakTie-Local suffer a slight decrease in quality as they only consider the local views of
the affected nodes, and may not obtain the true picture of the connectedness among their
friends. We observe that the Betweenness method performs well when k is small. This is
because when we remove the nodes that have many shortest paths passing through them,
the average distance between nodes will increase. However, as k increases, many of the nodes
have alternate paths and the performance of the Betweennesss method decreases. Note that
PageRank♯ performs worse in unidirectional networks Twitter, Weibo and Foursquare

than in bi-directional networks Gowalla and DBLP. This is because, in unidirectional
networks, a user with many followers tends to have high PageRank♯ score. However, this
user may not have any followee. As such, he/she ends up at the end of a path, and will not
contribute much to the reduction of the average distance among other users.

4.3.2 Sensitivity Experiments

Next, we examine the effect of τ on the performance of the proposed methods. We set k =
500. Figure 4.10 shows the results of varying τ on DBLP and Twitter. The results on
Gowalla, Weibo and Foursquare are omitted because the observation for τ is similar to
that in Twitter. We see that the performance of the proposed algorithms is dependent on
τ . For the Twitter dataset, both methods perform best when τ = 0.125. For the DBLP
dataset, the best performance is achieved when τ is around 0.5. Clearly, τ is dependent on
the overall connectedness of the users in the social network.

For Twitter-like networks, users tend to follow a large set of users and the proportion of
overlapping friends tends to be small. As a result, a small value of τ for the social network

Chapter 4. Identifying Brokers in Dynamic Social Networks 61

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700

D

Top-k

Betweenness
PageRank#

WeakTie
WeakTie-Bi

(a) Gowalla

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700

D

Top-k

Betweenness
PageRank#

WeakTie
WeakTie-Local

(b) Twitter

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700

D

Top-k

Betweenness
PageRank#

WeakTie
WeakTie-Local

(c) Weibo

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600 700

D

Top-k

Betweenness
PageRank#

WeakTie
WeakTie-Local

(d) Foursquare

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500 600 700

D

Top-k

Betweenness
PageRank#

WeakTie
WeakTie-Bi

(e) DBLP

Figure 4.9: Quality of returned solutions.

Chapter 4. Identifying Brokers in Dynamic Social Networks 62

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D

Threshold τ

WeakTie
WeakTie-Bi

(a) DBLP

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0.05 0.1 0.15 0.2 0.25

D

Threshold τ

WeakTie
WeakTie-Local

(b) Twitter

Figure 4.10: Effect of τ .

dataset is preferred. On the other hand, in the DBLP dataset, each paper has only a small
number of co-authors resulting in relatively larger tie strengths, and hence a larger value of τ
is appropriate. If τ is too large/small, almost all edges will be characterized as weak/strong
ties, our proposed algorithms will not work well as they would not be able to distinguish
between weak and strong ties. In all our experiments, we set τ as the average tie strength
in the entire social network, which is 0.206 for Gowalla, 0.172 for Twitter, 0.161 for
Weibo, 0.104 for Foursquare and 0.486 for DBLP.

4.3.3 Scalability

We also compare the scalability of WeakTie, and incremental algorithms WeakTie-Local and
WeakTie-Bi. We use the largest Foursquare dataset for this experiment. Since WeakTie-Bi
requires undirected graph, we convert each directed edge (u, v) in the Foursquare dataset
to an undirected edge by adding the edge (v, u) if it does not exist. We start with an initial
size of 500k nodes and increase the dataset size by 500k nodes as well as their associated
edges at each time step.

Figure 4.11 shows that WeakTie is the slowest since WeakTie has to re-run the algorithm on
the entire graph when updates arrive. On the other hand, both WeakTie-Local and WeakTie-
Bi only look at the local view of the affected nodes to handle the new updates, hence they run
much faster than WeakTie as the dataset size increases. Furthermore, WeakTie-Bi eliminates
the need to call Tarjan’s algorithm in most cases and achieves the best runtime performance.

Chapter 4. Identifying Brokers in Dynamic Social Networks 63

 0

 100

 200

 300

 400

 500

 0 0.5 1 1.5 2 2.5 3

R
u

n
n

in
g

 T
im

e
 (

m
in

u
te

s)

Number of Nodes (million)

WeakTie-Bi
WeakTie

WeakTie-Local

Figure 4.11: Scalability.

4.3.4 Applications of Brokers

Structural Hole Spanner Detection

In this set of experiments, we demonstrate the usefulness of brokers in diffusing information
across communities. Lou and Tang [LT13] define structural hole spanners as users who
have connections with different communities, and propose two models, MaxD and HIS to
find the structural hole spanners. Given a set of communities C, MaxD iteratively finds a
node such that removing this node leads to the largest reduction in the minimum cut of the
communities in C. The first k nodes that are removed are the top-k spanners. In the HIS
model, each user is assumed to have an importance score in each community. The structural
hole score is the minimum value of a node’s importance score in the different communities.
The k nodes with highest structural hole scores are the spanners.

We adapt our WeakTie methods to detect the top-k spanners by finding the nodes that
have connections to different communities with the highest WeakTie scores. Note that the
spanners are a subset of the brokers we identify.

In the DBLP dataset, authors who have served as program committee members in confer-
ences of different areas are considered as spanners [LT13]. Figure 4.12 shows the precision of
the different approaches on this dataset. We observe that WeakTie significantly outperforms
MaxD (+35%). Betweenness performs poorly, indicating spanners do not necessarily carry
large numbers of shortest paths. HIS and PageRank♯ perform similarly as they both look for
nodes that are incident with authority nodes but spanner authors do not merely establish
cooperation with opinion leaders in different areas. WeakTie-Local performs slightly worse
than WeakTie since it utilizes only the strongly connected groups in the local view.

For the social network datasets, since we do not have the ground truth, we examine
the information diffusion paths instead. We demonstrate the results using Twitter and
Foursquare datasets here. We divide Twitter dataset into 4 communities and Foursquare

Chapter 4. Identifying Brokers in Dynamic Social Networks 64

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

P
re

ci
si

o
n

Top-k

HIS
MaxD

Betweenness
PageRank#
WeakTie-Bi

WeakTie

Figure 4.12: Precision of detected spanners in DBLP.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600 700

C
o

v
e

ra
g

e

Top-k

HIS
MaxD

Betweenness
PageRank#

WeakTie-Local
WeakTie

(a) Twitter

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700

C
o

v
e

ra
g

e

Top-k

HIS
MaxD

Betweenness
PageRank#

WeakTie-Local
WeakTie

(b) Foursquare

Figure 4.13: Coverage of detected spanners in Twitter and Foursquare.

dataset into 8 communities using Girvan-Newman’s community detection method [New04].
Let P be the set of paths that involve at least two users in different communities. Suppose
S is the set of spanners found by a method. Let PS ⊆ P be the set of paths involving users
in S. We define the coverage of a method as:

coverage = |PS |/|P |.

A high coverage indicates that more information is being diffused across communities by the
detected spanners. Figure 4.13 shows the coverage of the various methods in the Twitter

dataset. We observe that WeakTie has the best performance, with WeakTie-Local being a
close runner-up. On average, WeakTie outperforms the state-of-the-art method MaxD by
more than 20% in both datasets.

Chapter 4. Identifying Brokers in Dynamic Social Networks 65

Mention Recommendation

Next, we discuss how top-k brokers can be used in mention recommendation to expand the
spread of tweets. By adding “@username” in a tweet, the system will push the post to the
mentioned user whose retweets could enable this post to reach more users. Note that for
this mention recommendation task, since we need the retweet cascades as ground truth, we
keep only tweets that have been retweeted more than 5 times. This prunes the Twitter

dataset to 27,754 users, 1,285,097 edges and 35,480 paths.

The state-of-the-art mention recommendation method is WTM [WWB+13]. Given a tweet
posted by a user u, WTM will rank the other users based on how well their interests match
u’s post, their interaction with u and how influential they are. In order to demonstrate how
brokers are also useful in mention recommendation, we incorporate the WeakTie score into
WTM’s model of ranking the users. We call this model WTM-WeakTie.

We evaluate the effectiveness of WTM and WTM-WeakTie by the number of users reached
using the top-k ranked users. The evaluation measure in [WWB+13] sums up the number
of followers of the users in a cascade initiated by a recommended user regardless of whether
these followers are duplicates. Based on this measure, we found that each tweet reaches
589 users on average for our Twitter dataset. However, if we consider only the distinct
followers, each tweet actually reaches only 364 users on average. In order to present a more
accurate picture of the actual number of people reached, we define the following measure
numReached which counts only the distinct followers.

Let L be the set of users who actually retweet, Ru denote the set of users involved in the
retweet cascades initiated by a user u, and Follower(w) denote the set of w’s followers. We
have:

numReached = | ∪u∈L ∪w∈RuFollower(w)|. (4.4)

Figure 4.14 shows the results of WTM and WTM-WeakTie. We observe that after incorpo-
rating the WeakTie score, we have increased the number of users reached by 23% because
brokers can help diffuse the tweet to users located far away from the author and initiate a
cascade with more distinct users.

We further analyze the recommended users’ ability to reach different parts of the network.
We divide the dataset into 100 communities. Here we divide the dataset into smaller com-
munities to avoid many retweets’ cascades traveling within one big community. We consider
that a user is able to reach a certain community if he/she has a follower from this community.
In this set of experiments, we also wish to compare the performance of the identified brokers
to the nodes selected by Target-IM algorithm. Target-IM algorithm identifies the nodes that
can influence the largest number of targeted nodes regardless of the distance between these
nodes. To adopt Target-IM in our mention recommendation task, we set the deadline to inf

and consider all users as target users. We compute the score for each node using Target-IM.

Chapter 4. Identifying Brokers in Dynamic Social Networks 66

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5

A
v

e
ra

g
e

 n
u

m
R

e
a

ch
e

d

k

WTM
WTM-WeakTie

Figure 4.14: Number of users reached in Twitter.

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5

N
u

m
b

e
r

o
f

C
o

m
m

u
n

it
ie

s

k

WTM
WTM-WeakTie

WTM-Target

Figure 4.15: Number of communities reached in Twitter.

The score for each node is normalized to fall in the range [−1, 1] and is incorporated into
WTM as an additional feature. We call this algorithm WTM-Target. Figure 4.15 shows
the average number of communities the users in the recommendation list can reach. We
observe that when k > 1, WTM-WeakTie can reach many more communities than WTM and
WTM-Target, indicating brokers are capable of broadcasting information to a wider range.
On the other hand, the performance of WTM-Target is close to WTM because they both fail
to identify the nodes that can reduce the pair-wise distance between nodes. In other words,
many of the influenced nodes recommended by WTM and WTM-Target are placed within
the same community and have many overlapping friends.

Chapter 4. Identifying Brokers in Dynamic Social Networks 67

4.4 Summary

In this chapter, we have defined the problem of detecting brokers in social networks, and
proved that the problem is NP-hard. We have also designed two incremental algorithms
WeakTie-Local and WeakTie-Bi to deal with evolving social networks. Experiments on two
real world datasets demonstrate the effectiveness and efficiency of the algorithms. We have
also shown that utilizing brokers can improve the precision of spanner detection by 35% and
help the mention recommendation task to reach 23% more distinct users.

Chapter 5
Node Immunization over Infectious Period

When there are rumors propagating in the social network, instead of boosting their influence,
we wish to minimize their effect and prevent them from infecting more users. In this
section, we address the first challenge in preventing misinformation spread. When there is
an infectious period over which we are allowed to distribute immunization resources, what is
the best solution for preventing the spread of rumor. We introduce our Node Immunization
over Infectious Period problem and present our proposed algorithms.

5.1 Problem Definition

We consider a directed, weighted graph G = (V,E) as the input graph. For each edge
(u, v) ∈ E, there is a probability puv representing the probability that u passes infection to
v. Apart from getting infected via network connections, healthy nodes have a probability
of getting infected from external sources during the infectious period, and newly infected
nodes can, in turn, infect their neighbors and propagate the contagion. To model this, we
introduce two parameters α and τ , where α denotes the probability that a healthy node
gets infected by some external sources, and τ denote the number of time points where a
healthy node can be infected by some external sources and 1 ≤ t ≤ τ . Our goal is to find a
set of nodes to immunize such that the expected number of healthy nodes at the end of the
propagation is maximized.

Definition 7. NIIP problem. Let G = (V,E) be an input network where V is the set of
nodes and E is the set of edges. Each edge (u, v) ∈ E has an infection probability puv. Let
It ⊂ V be a set of infected nodes at time point t where 1 ≤ t ≤ τ , and α be the probability
that a healthy node is infected by an external source. We define Φ(A1, A2, · · · , Aτ) to be the
number of nodes that remain healthy if the nodes in At are immunized at time point t. Our
goal is to find τ sets of nodes, A1, A2, · · · , Aτ , such that

∑
i |Ai| = k and Φ(A1, A2, · · · , Aτ)

is maximized.

Note that the Data-Aware Vaccination (DAV) problem defined in [ZP14a] is a special case
of NIIP with τ = 1 and α = 0. Table 5.1 summarizes the notations used in this section.

68

Chapter 5. Node Immunization over Infectious Period 69

Table 5.1: Summary of Notations

Symbol Description

G = (V,E) directed graph G with set of nodes V and set of edges E

puv the infection probability from u to v

k number of nodes that can be immunized

τ number of time points where external infection can occur

It the set of infected node at time point t

α probability of nodes getting infected by external sources

At the set of nodes to be immunized at time point t

Φ() the expected number of healthy nodes at the end of propagation

parent(u) the set of nodes that point to node u

child(u) the set of nodes that node u points to

5.1.1 Problem Analysis

Next, we show that the NIIP problem is NP-hard, and even when we restrict the problem
to directed acylic graphs (DAG), the problem remains NP-hard.

Theorem 4. The NIIP problem in Definition 7 is NP-hard.

Proof. (Sketch.) Zhang et al. [ZP14a] has shown that the Data-Aware Vaccination (DAV)
problem is NP-hard. Since the DAV problem is a special case of NIIP problem with τ = 1,
we see that if there is a polynomial time solution to NIIP problem, we can set τ = 1 and solve
the DAV problem in polynomial time. In other words, the NIIP problem is NP-hard.

Theorem 5. The NIIP problem restricted to a directed acyclic graph is NP-hard.

Proof. We show that the base case of NIIP problem on a directed acyclic graph with puv = 1

for any (u, v) ∈ E, τ = 1 and α = 0 is NP-hard. If the base case is NP-hard, then the
general NIIP problem on directed acyclic graph must be NP-hard. To prove that the base
case NIIP problem is NP-hard, we first show that the decision version of the problem can
be reduced from its function version in polynomial time, and then we prove the decision
version of the problem is NP-hard.

The decision version is stated as follows: Is there a subset of nodes A in a DAG where |A| = k

such that Φ(A) in Definition 7 is greater than a given value? Clearly, given a directed acyclic
graph with n nodes and the infected nodes are I1, there are at most |V |−|I1| possible values
for Φ(A). If we can solve the decision version in polynomial time, then the solution to our
problem is the set of nodes that gives the largest Φ(A) value.

Chapter 5. Node Immunization over Infectious Period 70

Next, we show that the decision problem on a DAG is NP-hard by reducing it from the
k-densest subgraph problem, namely, determining a k-node subgraph with at least p edges
in a given graph [AHI02]. Given an instance G = (V,E), k, p of the k-densest subgraph
problem, let n = |V | and m = |E|. We can construct a directed acyclic graph G′ = (V ′, E′)

of (1+n+m) nodes and 2m edges as follows. We first create a source node s in G′. For each
node u in G, we create a corresponding node u′ in G′ and connect s to u′. For each edge
e(u, v) in G, let u′ and v′ be the corresponding nodes of u and v respectively. We create
a node e′ in G′ and connect u′ and v′ to e′. Let Y1 = {u′1, · · · , u′n} and Y2 = {e′1, · · · , e′m}.
Then V ′ = Y ′

1 ∪ Y ′
2 ∪ {s}.

Figure 5.1 shows an example of the construction from graph G to G′. It is clear that the
construction can be done in polynomial time.

u1

u4

u2

u3

u5

u6

e4

(a) G

s

u1’

u2’

u3’

u4’

u5’

u6’

e1’

e2’

e3’

e4’

e5’

e6’

e7’

e8’

(b) G′

Figure 5.1: Construction of G′ from G.

Next, we prove that the k-densest subgraph instance is satisfiable if and only if there exists
a subset A ⊂ Y1 where |A| = k such that Φ(A) ≥ (k + p).

For the only if direction, suppose the k-densest subgraph instance is satisfiable, that is we
have a subgraph with k nodes and at least p edges among them in G. Let A ⊂ Y1 be the set
of nodes in G′ that corresponds to these k nodes. When we remove the nodes in A from G′,
there are at least p nodes in Y2 in G′ that become isolated from s. These p isolated nodes
correspond to the p edges in the k-densest subgraph solution. Thus, by immunizing the k
nodes in A, we have made p nodes healthy. Hence Φ(A) = (k + p).

For the if direction, suppose the NIIP problem is satisfiable, i.e., ∃A ⊂ V ′ such that
Φ(A) ≥ (k + p). Assume |A ∩ Y1| = l and |A ∩ Y2| = (k − l). Nodes in Y1 can possibly
immunize nodes in Y2 while immunizing nodes in Y2 can only immunize themselves. This
means the nodes in A ∩ Y1 immunize (k + p) − (k − l) = (p + l) nodes in Y2 in order for

Chapter 5. Node Immunization over Infectious Period 71

A to immunize (k + p) nodes in total. These p + l nodes in Y2 correspond to the edges in
G whose both end points are in A ∩ Y1. Thus we have found a subgraph in G with l ≤ k

nodes and at least p edges among them. In other words, the k-densest subgraph instance I
is satisfiable.

Extract a DAG in G

Estimation of k’s Distribution

Iterative selectionGraph

G=(V,E)

Parameters

I1, k, α, τ

Sample 1

[2, … , 3]

Sample 1000

[1, … , 2]

Distribution

 [k1, k2, k3, …, kτ]

. . .

New Infected

nodes ΔIt

Time point t:

Select kt nodes with

highest scores

Update ri

Time point t = t+1

t=1 select u1

t=2 select u2, u3

t=3 select u5

…

NIIP algorithm

Figure 5.2: Overview of proposed approach.

5.2 Algorithms

Given that the NIIP problem is NP-hard, we use a combination of simulation-based and
greedy approach to solve the problem. Figure 5.2 shows an overview of the main steps in
our proposed approach. Given a network graph, we first extract a maximum DAG from the
graph. We then perform a Monte Carlo simulation to estimate the distribution of k over
each time point t in τ given the probability α of a healthy node being infected. Next, for each
time point t in τ , we compute a score for each node that reflects the node’s immunization
ability. Suppose the estimated distribution of k at time point t is kt, this implies that at
time point t, we need to select kt nodes to be immunized. Hence, the top kt nodes with the
highest scores are selected and the scores of the affected nodes are updated. We repeat this
process for each t in τ .

The details of each step are given in the following subsections. We first discuss how to select
the best kt nodes at a given time point t. Then we describe how to perform simulation to
estimate the distribution of k over the τ time points. Based on this estimated distribution
of k, we design a scalable NIIP algorithm to select τ sets of nodes to immunize at each time
point t.

Chapter 5. Node Immunization over Infectious Period 72

5.2.1 Single time point NIIP

Different nodes have different immunization abilities depending on the network structure
and the infected nodes. The Dava algorithm models this with a dominator tree. Figure 5.3
shows a dominator tree constructed for Figure 5.3a given u1 is infected. Based on this tree,
if we can only immunize 2 nodes, the Dava algorithm will choose u3 and u4 instead of the
preferred choice u2 and u3. This is because the dominator tree does not capture the joint
effect when two or more nodes are immunized. If only u2 is immunized, none of the nodes
can be saved. However, immunizing both u2 and u3 will result in the saving of 5 nodes. To
model this joint effect, we introduce the concept of immunization ability of a node.

u1

u3

u4

u5

u6

u7 u8

u2

u10

u9

(a) Example network

u1

u2 u4 u5

u6 u9

u3

u10

(b) Dominator tree

Figure 5.3: Dava algorithm for the example network.

Consider the example in Figure 5.4a, where each edge (u, v) is labeled with the probability of
node u infecting v, denoted as puv. We see that u9 has two parents u6 and u7. If we immunize
u6 only, u9 can still be infected by u7 or via some external source. To measure the protection
gain to u9 by immunizing u6, we first compute the probability that u9 does not get its
infection from either u6 or u7. This is given by

∏
v∈{u6,u7}(1−pvu9) = (1−0.5)(1−0.6) = 0.2.

The probability that u9 is not infected by u7 is 1−0.6 = 0.4. Hence, the gain by immunizing
u6 is 0.4− 0.2 = 0.2. We term this the immunization ability of u6 over u9.

Denote parent(u) as the parents of a node u and child(u) denote the children of u. We
model the immunization ability of u over the rest of the nodes as a vector ru. The vth entry
in ru, denoted as muv, represents the immunization ability of u over v. muv is given as:

muv =

∏
w∈parent(u)

w ̸=u

(1− pwv)−
∏

w∈parent(u)

(1− pwv), u ∈ parent(v)

∑
w∈child(u)

(muw ×mwv), u /∈ parent(v)

(5.1)

Chapter 5. Node Immunization over Infectious Period 73

u1 u2

u3 u4 u5

u6 u7

u8 u9

0.5 0.4

0.6

0.80.5

0.5

0.4

0.6

0.3

0.6

I1 = {u1, u2} S = {u3, u4, u5, u6, u7, u8, u9}

0.8

(a) Example network.

u1 u2

u3 u4 u5

u6 u7

u8 u9

0.5 0.4

0.6

0.80.5

0.5

0.4

0.6

0.3

0.6

0.8

ru9 = [0, 0, 0, 0, 0, 0, 0, 0, 1]ru8 = [0, 0, 0, 0, 0, 0, 0, 1, 0]

ru7 = [0, 0, 0, 0, 0, 0, 1, 0, 0.3]ru6 = [0, 0, 0, 0, 0, 1, 0, 0.6, 0.2]

ru3 = [0, 0, 1, 0, 0, 0.28, 0, 0.17, 0.06]

ru4 = [0, 0, 0, 1, 0, 0.18, 0.12, 0.11, 0.08]

score(u3) = 1.51

score(u4) = 1.49
Score(u6) = 1.8 score(u8) = 1

score(u9) = 1

score(u7) = 1.3

ru5 = [0, 0, 0, 0, 1, 0, 0.32, 0, 0.1]

score(u5) = 1.33

I1 = {u1, u2}

S = {u3, u4, u5, u6, u7, u8, u9}

(b) Computation of ru for each node.

Figure 5.4: Illustration of computing ru.

Intuitively, this makes sense because when node v has many parents, even though u is
immunized, all the other parents of v could still pass the infection to v. Hence, in this case,
the muv value should be small. On the other hand, if node v has only two parents, when
u is immunized, the probability of v getting infected is much lower. In other words, muv

value should be large. Note that when v has only one parent u, muv = 1− (1− puv) = puv.
Also, for any node u, muu = 1. This is because when a node is immunized, the probability
of it getting infection is 0.

For each node u, we compute the immunization ability of node u over the rest of the nodes
in a vector, i.e. ru, as follows:

ru =
∑

v∈child(u)

muv · rv + eu (5.2)

where eu is a unit vector with its component corresponding to u being one and elsewhere
being zeros.

Figure 5.4b illustrates the computation of ru vector for each node. Assume u1 and u2 are
the infected nodes. The susecptible nodes are [u3, · · · , u8, u9]. Traversing this in the reverse
order, we start with u9. Since u9 has no children, ru9 has a “1” on the 9th column and
zeros elsewhere. Similarly for ru8 with a “1” on the 8th column. Next, we come to u7.
The immunization ability of u7 over u9 is mu7u9 = (1 − 0.5) − (1 − 0.5) × (1 − 0.6) = 0.3,
thus we have ru7 = 0.3 × ru9 + eu7 , as shown in Figure 5.4b. Similarly, we compute
mu6u9 = (1 − 0.6) − (1 − 0.5) × (1 − 0.6) = 0.2. Note that mu7u9 > mu6u9 makes sense
since pu7u9 > pu6u9 . This implies that the gain obtained by immunizing u7 is greater than
immunizing u6.

Chapter 5. Node Immunization over Infectious Period 74

With this, we can now compute the score for each node u:

score(u) =
∑

j=1,··· ,|V |

ru[j] (5.3)

Given a graph G and the set of infected nodes It, our goal is to select the top kt nodes with
the greatest scores. We first obtain the set of susceptible nodes S by performing depth first
search starting with each node in It. Then we apply the Acyclic algorithm [EIL+12] to find
the maximum DAG in S. With the DAG, we fix a topological order σ where the nodes are
ordered such that each edge in the graph originates from an earlier node to a latter node in
this ordering. We traverse the nodes and compute its score in the reverse order of σ. This
guarantees that we will compute the score of a child node before computing the score of its
parent. The node with the highest score is marked as immunized. The scores of its parent
nodes need to be updated as they have one less child whom they can potentially infect, and
hence, their immunizing ability is reduced. In addition, the descendants of u will be affected.
For a node v ∈ child(u), if u is v’s only parent, we mark v as immunized since the only
infection path to v is from u which has been immunized. For those nodes w ∈ child(u) with
more than one parents, their parents’ scores need to be updated too.

The details of S-NIIP algorithm is given in Algorithm 5.1. Given the set of infected nodes It,
we first obtain the set of susceptible nodes S and find the maximum DAG (Lines 2-4). Next,
we compute the vectors as well as the scores of the nodes in S in a reverse topological order
(Lines 5-11). We select the node with the highest score and call the function Immunize(u)
to mark u as “immunized" and place the the parents of u into the UpdateList. For each
node in the UpdateList, we call ProcessUpdate to recompute the score for the node and
propagate the effect to the parent nodes if they are susceptible. The process is repeated till
kt nodes have been immunized (Lines 12-16).

Consider the example in Figure 5.4a. The infected nodes are u1 and u2, i.e. I1 = {u1, u2}.
The set of susceptible nodes is S = {u3, u4, u5, u6, u7, u8, u9}. We compute the vectors as
well as the scores for the nodes in S and select the node with the highest score, i.e. u6

for immunization (See Figure 5.4b). After immunization, u6’s parents u3 and u4 lose one
child, and we put u3 and u4 into UpdateList. Its child u8 is “immunized” as well since u8
has only one parent u6. Its child u9 has not been “immunized" because it still has u7 as a
parent. Since u7 becomes the only parent of u9, it is also placed in UpdateList for updates.
Now UpdateList = {u3, u4, u7}. We first update ru7 , and we notice u7’s parent u5 ∈ S is
not in UpdateList, hence we insert u5 into UpdateList. We then update ru4 and remove
u4 from UpdateList. Since u4’s parents u1 and u2 are not in S, we do not put u1 or u2 in
UpdateList. Similarly for u3, we update ru3 and remove u3 from UpdateList. This process
causes ru3 , ru4 , ru5 and ru7 to be updated as marked in red in Figure 5.5.

Chapter 5. Node Immunization over Infectious Period 75

Algorithm 5.1: S-NIIP algorithm

input : 1. Graph G = (V,E)

2. Number of nodes to immunize kt
3. Infected node set It

output : Top-k nodes for immunization

1 Initialize UpdateList = ∅, S = ∅;
2 foreach u ∈ I do

3 Peform DFS from u and insert visited nodes into S;

4 end

5 Apply Acyclic on S to generate a DAG;

6 Find a topological sorting σ in the DAG;

7 foreach node v in the reverse order of σ do

8 foreach (u, v) ∈ E do

9 parent(v) = parent(v) ∪ {u};
10 child(u) = child(u) ∪ {v};
11 end

12 Compute rv with Equation 5.2;

13 Compute score(v) with Equation 5.3;

14 end

15 repeat

16 Return node u with highest score(u);

17 Call Immunize(u);

18 Call ProcessUpdate(UpdateList);

19 until k nodes are selected

20 Return top-kt nodes for immunization.

Function ProcessUpdate(UpdateList)

1 foreach u ∈ UpdateList do
2 Compute ru with Equation 5.2 and score(u) with Equation 5.3;
3 UpdateList = UpdateList ∪ (parent(u) ∩ S);
4 UpdateList = UpdateList− {u};
5 end

Chapter 5. Node Immunization over Infectious Period 76

Function Immunize(u)

1 score(u) = 0, S = S − {u};
2 foreach v ∈ child(u) do
3 if parent(v) = {u} then
4 Call Immunize(v);
5 else
6 parent(v) = parent(v)− {u};
7 UpdateList = UpdateList ∪ (parent(v) ∩ S);
8 end

u1 u2

u3 u4 u5

u6 u7

u8 u9

0.5 0.4

0.6

0.80.5

0.5

0.4

0.6

0.3

0.6

0.8

ru8 = [0, 0, 0, 0, 0, 0, 0, 0, 0]

ru6 = [0, 0, 0, 0, 0, 0, 0, 0, 0]

score(u3) = 1.51
score(u4) = 1.49Score(u6) = 1.8 score(u8) = 1

score(u9) = 1

score(u7) = 1.3

score(u5) = 1.33

I1 = {u1, u2}

S = {u3, u4, u5, u6, u7, u8, u9}

ru9 = [0, 0, 0, 0, 0, 0, 0, 0, 1]

ru7 = [0, 0, 0, 0, 0, 0, 1, 0, 0.6]

ru3 = [0, 0, 1, 0, 0, 0, 0, 0, 0] ru4 = [0, 0, 0, 1, 0, 0, 0.12, 0, 0.07]
score(u3) = 1 score(u4) = 1.19

score(u9) = 1

score(u7) = 1.6

ru5 = [0, 0, 0, 0, 1, 0, 0.32, 0, 0.19]
score(u5) = 1.59

score(u8) = 0

score(u6) = 0

Figure 5.5: Updated ru and scores after u6 is immunized.

Chapter 5. Node Immunization over Infectious Period 77

5.2.2 Estimation of k’s distribution over τ

When an infection happens over a time period, putting all the available resources at the
start of the infection is not a good strategy as shown in Section 1. We note that the number
of nodes we should choose to immunize at each time point is influenced by the initial set
of infected nodes I1 and the rate of infection from external sources α. Given a large I1 set,
we would want to select more nodes to be immunized earlier on so as to prevent the spread
of infection from I1. On the other hand, when we have a large α value, we would want to
reserve more quota to later time points.

We perform a Monte Carlo simulation to decide how to distribute the limited resources k
over the time point t in τ . We generate τ lists {I1, I2, · · · , Iτ} of randomly infected nodes
where It+1 =It ∪ {new infected nodes by It−1 and by external sources with probability α}.
Then we apply the S-NIIP algorithm to get the top k nodes for each list of infected nodes.
We process these lists in increasing time order, i.e. from I1 to Iτ . When all the lists have
been processed, we examine each node in the top k results corresponding to time point τ .
If the node has appeared in the top k results of an earlier time point, we tag the node with
the earlier time point label. The number of the nodes that are tagged with time points
T1, T2, · · · , Tτ forms an instance of the distribution of k over τ . We repeat the process 1000
times and take the average to obtain an estimated distribution of k over τ .

Figure 5.6 shows the estimation process with k = 4 and τ = 3. When t = 1, we retrieve the
top 4 nodes based on the infected node list I1 and tag them with T1. At the next time point,
we produce a new top-4 list regarding to I2. Here node u2 is selected for immunization,
and we mark u2 with T2. Note that if the same node appears in multiple time points, we
mark it with the earliest time point. Similarly in time point t = 3, we mark u4 with T3.
Afterwards, we select the last set of top-k nodes and count the number of markings for each
time point. In this example, 2 nodes are selected in time point 1 while one node is selected
in time point 2 and 3 respetively. This creates a sample of [2, 1, 1]. We repeat the process
1000 times and choose the average number of nodes appearing in each time point as an
estimated distribution of k over τ .

5.2.3 NIIP over infectious period

With the estimated distribution of k over τ , we extend the S-NIIP algorithm to allow for
the selection of k nodes to immunize over a time period. A naive extension is to call the
S-NIIP algorithm repeatedly for each time point in τ with a different kt corresponding to
the estimated k at time point t. However, this is not scalable as the number of nodes whose
scores need to be updated increases significantly when the number of infected nodes grows.

A careful study reveals that the immunization ability is greatest when it is from a parent
to its immediate child. To reduce the number of updates needed, we model only the direct

Chapter 5. Node Immunization over Infectious Period 78

nodes marked T1: u1, u3

nodes marked T2: u2

nodes marked T3: u4

Sample [2, 1, 1]

I1 is given. I3 = I2 ∪ {new infected nodes based on ɑ }.I2 = I1 ∪ {new infected nodes based on ɑ }.

Nodes Marking

u3 T1

u5 T1

u1 T1

u6 T1

u2 -

u4 -

Nodes Marking

u3 T1

u2 T2

u6 T1

u1 T1

u4 -

u5 T1

Nodes Marking

u4 T3

u3 T1

u1 T1

u2 T2

u6 T1

u5 T1

(a) t = 1

nodes marked T1: u1, u3

nodes marked T2: u2

nodes marked T3: u4

Sample [2, 1, 1]

I1 is given. I3 = I2 ∪ { new infected nodes }.I2 = I1 ∪ { new infected nodes }.

Nodes Marking

u3 T1

u5 T1

u1 T1

u6 T1

u2 -

u4 -

Nodes Marking

u3 T1

u2 T2

u6 T1

u1 T1

u4 -

u5 T1

Nodes Marking

u4 T3

u3 T1

u1 T1

u2 T2

u6 T1

u5 T1

(b) t = 2

nodes marked T1: u1, u3

nodes marked T2: u2

nodes marked T3: u4

Sample [2, 1, 1]

I1 is given. I3 = I2 ∪ { new infected nodes }.I2 = I1 ∪ { new infected nodes }.

Nodes Marking

u3 T1

u5 T1

u1 T1

u6 T1

u2 -

u4 -

Nodes Marking

u3 T1

u2 T2

u6 T1

u1 T1

u4 -

u5 T1

Nodes Marking

u4 T3

u3 T1

u1 T1

u2 T2

u6 T1

u5 T1

(c) t = 3

Figure 5.6: Estimating Distribution of k. k = 4, τ = 3.

immunization ability between a parent node and its children nodes. We divide the children
of node u, child(u), into two sets, C1 and C2 such that the nodes in C1 have only u as their
sole parent, while the nodes in C2 have multiple parents besides u. The direct immunization
ability of node u, denoted as r′u, is computed as follows:

r′u =
∑
v∈C1

puv · r′v +
∑
v∈C2

muv · ev + eu (5.4)

where eu is a unit vector with its component corresponding to u being one and elsewhere
being zeros.

Let us illustrate the computation of r′u with the same example network in Figure 5.4a.
Vectors for u6, u7, u8 and u9 are the same because they have no grandchildren in the network.
When we compute r′u3

, since u3 is one of the parents of u6, u6 contribute mu3u6 · eu6 to ru4 .
However, u3 no longer has immunization ability over u8 or u9 as they are not the direct
children of u3 and their direct parent u6 has multiple parents besides u3. Hence we compute
ru3 = mu3u6 · ru6 + eu3 . The final direct immunization vectors are shown in Figure 5.7a.

Algorithm 5.2 details how we incorporate the direct immunization vector computation to
select the top k nodes over τ time points. We first estimate the distribution of k in Line 1.
We then apply Acyclic algorithm to extract a maximum DAG in G and find a topological
sorting σ in Lines 2 and 3. We find the susceptible nodes in Lines 5 and 6 with depth-first
search algorithms and compute their direct immunization vectors in the reverse order of σ
(Lines 7 and 8). The ComputeV ector() function update the parent set as well as the parents’
children set when we reach each node. We then compute the vector following Equation 5.4
and the score following Equation 5.3. At each time point, Lines 10-17 take in the newly
infected nodes and set their scores to zero. Line 14 puts their parents in UpdateList as they
loses a direct child as well as their corresponding immunization ability. Line 16 computes
the score for nodes that newly become susceptible.

Chapter 5. Node Immunization over Infectious Period 79

Algorithm 5.2: NIIP algorithm

input : 1. Graph G = (V,E)

2. Number of nodes to immunize k
3. Time period τ
4. Infected node set I1
5. Infection rate α

output : Top-k nodes for immunization

1 Call EstimateDistribution(G, I1, α, k);
2 Apply Acyclic on G to generate a DAG;
3 Find a topological sorting σ in the DAG;
4 Initialize UpdateList = ∅, t = 0, S = ∅;
5 foreach u ∈ I1 do
6 Peform DFS from u and insert visited nodes into S;
7 end
8 foreach node v ∈ S in the reverse order of σ do
9 Call ComputeV ector(v);

10 end
11 repeat
12 Let ∆It be the new infected nodes by It−1 or by external sources with probability α;
13 It = It−1 ∪∆It;
14 foreach u ∈ ∆It do
15 score(u) = 0;
16 UpdateList = UpdateList ∪ (parent(u) ∩ S);
17 Perform DFS from u, insert visited node v in S;
18 Call ComputeV ector(v);

19 end
20 Call ProcessUpdate′(UpdateList);
21 repeat
22 Return node u with the highest score(u);
23 Call Immunize(u) in Algorithm 5.1;
24 Call ProcessUpdate′(UpdateList);

25 until kt nodes are selected
26 t = t+ 1;

27 until t = τ

Chapter 5. Node Immunization over Infectious Period 80

Function ComputeVector(v)

1 foreach (w, v) ∈ E do
2 parent(v) = parent(v) ∪ {w};
3 end
4 if |parent(v)| = 1 then
5 foreach w ∈ parent(v) do
6 C1 = C1 ∪ {v}
7 end
8 else
9 foreach w ∈ parent(v) do

10 C2 = C2 ∪ {v}
11 end
12 Compute r′v with Equation 5.4;
13 Compute score(v) with Equation 5.3;

Function ProcessUpdate’(UpdateList)

1 foreach u ∈ UpdateList do
2 Compute r′u with Equation 5.4 and score(u) with Equation 5.3;
3 if parent(u) = {w} and w ∈ S then
4 UpdateList = UpdateList ∪ {w};
5 end
6 UpdateList = UpdateList− {u};
7 end

Chapter 5. Node Immunization over Infectious Period 81

Function ProcessUpdate′() processes the nodes whose vectors need updates. Since we
merely consider direct immunization, we propagate the change only when a node has a
single parent as indicated in Line 39. This enables the ProcessUpdate′() function to end
much faster compared to ProcessUpdate() in S-NIIP algorithm. Lines 18-22 select kt nodes
at time point t, and we repeat the process for τ times.

Consider the example in Figure 5.7a. Initially u1 and u2 are infected i.e. I1 = {u1, u2}.
The set of susceptible nodes are S = {u3, u4, u5, u6, u7, u8, u9}. We compute the scores for
the nodes in S and select the node with the highest score, i.e. u6 for immunization. Its
parents u3 and u4 lose one child, and we put u3 and u4 into UpdateList. Since u7 gains
more immunization ability from u9 because of the immunization of u6, we insert u7 into
UpdateList for updates. Now UpdateList = {u3, u4, u7}. Note that all nodes in UpdateList
do not need to propagate their updates to their parents because they have multiple parents.
Hence only three vectors are changed as marked in red in Figure 5.7b. Note that ru5 is
not updated in this case while it is updated in Figure 5.5. This is because u7 is not the
only child of u5 and does not propagate the update. The updated vectors for the nodes are
illustrated in Figure 5.7b.

Assume in the next time point, we realize u7 is also infected as illustrated in Figure 5.7c.
We update S as the set of nodes that are susceptible as S = {u3, u4, u5, u9}. For nodes in
parent(u7)∩S, i.e. u4 and u5, they lose the immunization ability over u7 and hence we put
u4 and u5 into UpdateList to re-compute their vectors using Equation 5.4. The updated
scores are illustrated in red in Figure 5.7c.

Complexity analysis. In S-NIIP, we first perform a DFS traversal of the nodes in O(|V |+
|E|) time and find a DAG with the largest number of edges maintained in O(|E| · log(|V |)).
When a node is immunized, we trace back to all the ancesters of the affected nodes and
update their corresponding vectors. In the worst case, we update each vector of every node
and hence its time complexity is O(kt·(|V |+|E|)) if we select kt nodes. In NIIP algorithm, the
initialization takes the same time complexity as S-NIIP, i.e. O(|V |+ |E|) for DFS traversal
and O(|E| · log(|V |)) for DAG extraction. When a node is immunized, we update the vector
of its parents and propagate the change if the parents only have one parent. This process
costs O(|V |) in the worst case. Similarly when new nodes get infected, the propagation of
updates is dealt with in O(|V |). In practice, a node with only one parent is likely to be a leaf
node and will not be chosen for immunization as it only immunizes itself. Hence on average,
the propagation of updates in NIIP can finish rather quickly as shown in the experiments in
Section 5.3.

Chapter 5. Node Immunization over Infectious Period 82

u1 u2

u3 u4 u5

u6 u7

u8 u9

0.5 0.4

0.6

0.80.5

0.5

0.4

0.6

0.3

0.6

0.8

r'u9 = [0, 0, 0, 0, 0, 0, 0, 0, 1]
r'u8 = [0, 0, 0, 0, 0, 0, 0, 1, 0]

r'u7 = [0, 0, 0, 0, 0, 0, 1, 0, 0.3]r'u6 = [0, 0, 0, 0, 0, 1, 0, 0.6, 0.2]

r'u5 = [0, 0, 0, 0, 1, 0, 0.32, 0, 0]r'u3 = [0, 0, 1, 0, 0, 0.28, 0, 0, 0]

r'u4 = [0, 0, 0, 1, 0, 0.18, 0.12, 0, 0]

(a) Initial network with r′

u1 u2

u3 u4 u5

u7

u9

0.5 0.4

0.6

0.80.5

0.6

0.8

r'u9 = [0, 0, 0, 0, 0, 0, 0, 0, 1]

r'u7 = [0, 0, 0, 0, 0, 0, 1, 0, 0.6]

score(u9) = 1

score(u7) = 1.6

S = { u3, u4, u5, u7, u9}

r'u3 = [0, 0, 1, 0, 0, 0, 0, 0, 0] r'u4 = [0, 0, 0, 1, 0, 0.12, 0, 0]
score(u3) = 1 score(u4) = 1.4

r'u5 = [0, 0, 0, 0, 1, 0, 0.32, 0, 0]
score(u5) = 1.32

I1 = {u1, u2}

u6

u8

0.4

0.6

0.3

r'u8 = [0, 0, 0, 0, 0, 0, 0, 0, 0]

r'u6 = [0, 0, 0, 0, 0, 0, 0, 0, 0]

0.5

score(u6) = 0

score(u8) = 0

(b) u6 being immunized

u1 u2

u3 u4 u5

u7

u9

0.5 0.4

0.6

0.80.5

0.6

0.8

r'u9 = [0, 0, 0, 0, 0, 0, 0, 0, 1]
score(u9) = 1

r'u3 = [0, 0, 1, 0, 0, 0, 0, 0, 0] r'u4 = [0, 0, 0, 1, 0, 0, 0, 0]
score(u3) = 1 score(u4) = 1

r'u5 = [0, 0, 0, 0, 1, 0, 0, 0, 0]
score(u5) = 1

I2 = {u1, u2, u7} S = {u3, u4, u5, u9}

u6

u8

0.4

0.6

0.3

r'u8 = [0, 0, 0, 0, 0, 0, 0, 0, 0]

r'u6 = [0, 0, 0, 0, 0, 0, 0, 0, 0]

0.5

score(u6) = 0

score(u8) = 0

(c) u7 gets infected

Figure 5.7: Illustration of NIIP algorithm.

Chapter 5. Node Immunization over Infectious Period 83

5.3 Experiments

In this section, we perform comparative experimental evaluation of the various methods for
node immunization problem using real world datasets covering both computer networks and
information networks. All the experiments are run on a linux machine with 2 Xeon E5440
2.83 GHz CPU and 16G RAM.

5.3.1 Experimental Setting

Datasets. We conduct experiments on the four real-world datasets described in Section 3.3,
i.e.Gowalla, Twitter, Weibo and Foursquare. Additionally, since the node immu-
nization problem is also important for prevention of virus spreading in computer networks
and malicious news in website networks, we also use a computer network dataset Oregon

and a website network dataset MemeTracker in this chapter. Further, to illustrate the
effectiveness of preventing rumor spread in the MH370 incident, we have also crawled the
propagated tweets talking about the MH370 airline. We describe the new datasets as follows
and summarize them in Table 5.2.

Table 5.2: Dataset Summary

Dataset Nodes Edges #Nodes #Edges

Pig web sites hyperlink 8,727 30,309

Economy web sites hyperlink 39,639 156,781

Oregon routers peering 6,461 21,530

MH370 users retweet 1.4 million 4.9 million

• MemeTracker[LBK09]1 This dataset contains the hyperlinks between 96 million
news sites, ranging from news distributors to personal blogs. Contagion could be
false informtaion published on some news sites. Since the original dataset is very
large, we select 2 phrases that has been popularly diffused by various news sites,
namely "lipstick on a pig" (Pig) and "american economy is in danger"(Economy).
Each phrase initiates a cascade of sites reporting this news and hence captures the
propogation in real world web sites.

• Oregon2 This dataset is the Oregon AS router graph collected from the Oregon
router views. The contagion could possibly be malware and viruses.

1http://snap.stanford.edu/data/memetracker9.html
2http://topology.eecs.umich.edu/data.html

Chapter 5. Node Immunization over Infectious Period 84

• MH3703 This dataset contains the users’ tweets that contains the hashtag #MH370
after the Malaysian Airlines MH370 flight went missing on March 8th. Retweet rela-
tionships form the edges in the graph. Contagion could be rumors about the MH370
flight.

Parameters. τ is the number of steps that we are allowed to assign our immunization
nodes. α is a small probability that decides the fraction of healthy nodes getting infected
by independent sources. We set τ = 10 and α = 0.05 in all our experiments. In our experi-
ment, we set a uniform propagation probability 0.6 [ZP14b]. On each dataset, we conduct
our experiment 1000 times and take the average.

Evaluation Metric. We measure the effectiveness of the various methods by defining a
metric called Save Ratio (SR) which gives the ratio between the reduction in infected nodes
when k nodes are immunized over the number of infected nodes with no immunized nodes.
We denote the set of infected nodes when nodes in A are immunized as Immunized(A).

SR(A) =
|Immunized(∅)| − |Immunized(A)|

|Immunized(∅)|
(5.5)

Note that the value of SR directly correspond to our objective function Φ(A), i.e. higher
SR(A) represents a higher Φ(A) value. However, the value of SR will fall in [0, 1] where 1

indicates a full immunization of all healthy nodes while Φ(A) value is not bounded.

Comparison Methods. We compare the performance of the following methods:

• S-NIIP: our proposed approach to select k nodes in one single time point;

• NIIP: our proposed approach to handle node immunization over τ time points

• Betweenness[HC13]: this algorithm returns the top k nodes that carry the largest
number of shortest paths;

• PageRank[PBMW98]: this algorithm returns the top k nodes with the highest PageR-
ank scores;

• NetShield [TPT+10]: this method pre-emptively immunize the network to minimize
the epidemic threshold of the graph;

• Dava[ZP14a]: this algorithm aims to identify the top k nodes in presence of already
infected nodes;

3http://www.comp.nus.edu.sg/ a0095629/

Chapter 5. Node Immunization over Infectious Period 85

5.3.2 Effectiveness Experiments

In this section, we show the effectiveness of the proposed methods on node immunization
tasks.

Results when τ = 1 and α = 0. In this set of experiments, we set the time period to one
(τ = 1) and assume there is no external source of infection (α = 0). This setting reduces
our problem to the DAV problem proposed in [ZP14a]. Figure 5.8 shows the performances
of the various algorithms. In all datasets, S-NIIP gives the best performance while NIIP
is a close runner-up. The narrow gap between these two algorithms demonstrates that
it is sufficient to model the immunization ability based only on the direct parent-child
relationships. We also observe that both NIIP and S-NIIP outperform DAVA. This shows
clearly that it is advantageous to take into account the joint immunization effect of multiple
nodes. In general, algorithms which take into account the infected nodes (namely, S-NIIP,
NIIP, DAVA) perform better than those which pre-emptively choose nodes for immunization
confirming that it is good to perform immunization while an attack is underway.

In the Pig and the Oregon graphs, S-NIIP and NIIP outperform the state-of-the-art meth-
ods by more than 20% when k is large. We note that for these two datasets, they have
a small number of nodes with high out-degrees. These nodes are good candidates for im-
munization. As a result, when k is small, all the algorithms pick this small set of nodes
to immunize and their performances are similar. However, as k increases, S-NIIP and NIIP
rapidly outperform the other methods.

In all the other larger datasets, S-NIIP and NIIP manage to outperform all the other algo-
rithms even when k is small. We observe that in these datasets, the networks are composed
of multiple clusters and the positions of the infected nodes are critical to the selection of
immunization nodes. Pre-emptive methods like NetShield, Betweenness and PageRank could
not effectively utilize such information and hence perform poorly. As for the Dava algorithm,
it constructs a dominator tree from the infected nodes. If a node has multiple parents, the
Dava algorithm will link this node directly to the ancestors of its parents and therefore
ignore the immunization ability of its parents. As a result, the performance of Dava suffers.
We observe that S-NIIP consistently outperforms Dava by 45% in Twitter and 30% in
Weibo and MH370 datasets.

Results when τ = 10, α = 0.05. In this set of experiments, we perform node immunization
over 10 time points. For pre-emptive methods PageRank, Betweenness and NetShield, we
simply run them with the given network structure as they do not consider the set of infected
nodes as input. For the Dava algorithm, we give the final set of infected nodes Iτ as input.
This allows the Dava algorithm to have the complete picture of infection nodes before making
its selection of k nodes. Figure 5.9 gives the results. We see that the overall SR value is
less compared to the graph in Figure 5.8. This is because introducing an infectious period

Chapter 5. Node Immunization over Infectious Period 86

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

SR

Top k

Betweenness
PageRank
NetShield

DAVA
S-NIIP

NIIP

(a) Gowalla

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200 250

SR

Top k

Betweenness
PageRank
NetShield

DAVA
S-NIIP

NIIP

(b) Twitter

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500

SR

Top k

Betweenness
PageRank
NetShield

DAVA
S-NIIP

NIIP

(c) Weibo

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500

SR

Top k

Betweenness
PageRank
NetShield

DAVA
S-NIIP

NIIP

(d) Foursquare

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50

SR

Top k

Betweenness
PageRank
NetShield

DAVA
S-NIIP

NIIP

(e) Pig

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100

SR

Top k

Betweenness
PageRank
NetShield

DAVA
S-NIIP

NIIP

(f) Economy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

Top k

Betweenness
PageRank
NetShield

DAVA
S-NIIP

NIIP

(g) Oregon

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250

SR

Top k

Betweenness
PageRank
NetShield

DAVA
S-NIIP

NIIP

(h) MH370

Figure 5.8: Performance of different algorithms. τ = 1 and α = 0.

Chapter 5. Node Immunization over Infectious Period 87

implies we have a much larger set of infected nodes. Hence even if we increase the number
of nodes for immunization, the overall performance decreases. As expected, pre-emptive
methods give the worst performance; while the NIIP algorithm is the clear winner and
outperforms all the other methods significantly (+30%) in all datasets. This shows that the
immunization strategy adopted by NIIP is the most effective in immunizing the nodes that
lead to the largest number of healthy nodes in the network.

Effect of distributions of k. In this set of experiments, we examine how the distributions
of k affect our results. We compare three strategies for assigning k:

• NIIP-Estimated: we follow the learned distribution of k to select kt nodes at each time
point;

• NIIP-Uniform: we uniformly select k
τ nodes for immunization at each time point;

• NIIP-After: we wait until time point τ to select the k nodes all at once.

Results are shown in two datasets, Twitter and Foursquare. Figure 5.10 demonstrates
that while the estimated distribution of k has the best performance, uniform decision also
achieves good results in both datasets. However, choosing the k nodes after τ time points
hugely impact the performance, indicating it is an effective method to prevent propagation
of infection by immunizing nodes as soon as we observe infections in the network.

5.3.3 Efficiency

In this section, we report the runtime of the algorithms on the two largest datasets Weibo

and Foursquare. Table 5.3 shows the running time for S-NIIP, NIIP, Dava and NetShield
in the case of τ = 1, α = 0. We see that NIIP can produce outputs within the shortest
time. When the input graph is large, Dava runs the slowest. This is because Dava needs to
re-generate the dominator tree when each node is selected which requires a near-linear time
algorithm. For S-NIIP, it requires near-linear pre-processing time while the worst case for
updating the scores is in linear time.

Table 5.3: Execution time (minutes) k = 100, τ = 1 and α = 0.

S-NIIP NIIP Dava NetShield

Weibo 352.5 102.3 1023.6 248.1

Foursquare 671.0 155.6 1620.9 383.8

Chapter 5. Node Immunization over Infectious Period 88

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100

SR

Top k

Betweenness
PageRank
NetShield

DAVA
NIIP

(a) Gowalla

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200 250 300

SR

Top k

Betweenness
PageRank
NetShield

DAVA
NIIP

(b) Twitter

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500

SR

Top k

Betweenness
PageRank
NetShield

DAVA
NIIP

(c) Weibo

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500

SR

Top k

Betweenness
PageRank
NetShield

DAVA
NIIP

(d) Foursquare

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100

SR

Top k

Betweenness
PageRank
NetShield

DAVA
NIIP

(e) Pig

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120 140

SR

Top k

Betweenness
PageRank
NetShield

DAVA
NIIP

(f) Economy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100

SR

Top k

Betweenness
PageRank
NetShield

DAVA
NIIP

(g) Oregon

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300

SR

Top k

Betweenness
PageRank
NetShield

DAVA
NIIP

(h) MH370

Figure 5.9: Performance of different algorithms. τ = 10 and α = 0.05.

Chapter 5. Node Immunization over Infectious Period 89

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200 250 300

SR

Top k

NIIP-After
NIIP-Uniform

NIIP-Estimated

(a) Twitter

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100 200 300 400 500

SR

Top k

NIIP-After
NIIP-Uniform

NIIP-Estimated

(b) Foursquare

Figure 5.10: Performance of NIIP given different distribution of k. τ = 10 and α = 0.05.

5.4 Summary

In this section, we have modeled a realistic situation in real world contagions where healthy
nodes have a certain chance of getting infected from sources outside the network and pro-
posed the problem of node immunization over infectious period. We have shown that this
problem is NP-hard in both arbitrary graphs and directed acyclic graphs. The S-NIIP
algorithm has been developed to take into consideration the joint immunization effect of
multiple nodes. We have also presented the NIIP algorithm that strategically immunized k
nodes over a time period. Extensive experiments have been conducted and demonstrated
conclusively that our algorithms outperform state-of-the-art algorithms significantly.

Chapter 6
Temporal Influence Blocking

We now navigate to address the second challenge in preventing misinformation propagation
by considering time delays and deadline in information diffusion. In this chapter, we select k
users as truth starters to actively propagate the truth information to combat the influence of
a misinformation campaign. We formalize the temporal influence blocking problem [SHL17]
and present our approach TIB-Solver to tackle this problem.

6.1 Problem Definition and Solution Overview

In this section, we formally define the TIB problem. Given a social network G = (V,E)

where V is a set of nodes denoting the users and E is a set of edges denoting the friend
relationships. Each node v ∈ V has a probability login(v) to be online at each time point.

When a node v ∈ V logs in at time point t > 0, its neighboring node u will have a probability
p(u, v) to influence v with rumor/truth if there is an edge from u to v, u is influenced by
rumor/truth at time t′ < t and t is the first time v logs in after t′. If both rumor and truth
get to influence a node v at the same time, then v will choose to believe the truth. Further,
once a user has been influenced, s/he will not change her mind.

We say a node is saved by a truth campaign if in the absence of the truth campaign, this
node will be influenced by the rumor. Under this setting, we define the problem of Temporal
Influence Blocking (TIB) as follows:

Definition 8 (TIB problem). Let R be the set of rumor starters and Z be the set of nodes
that start a truth campaign, |Z| = k. Let ϕ(R,Z, α) denote the set of nodes influenced by R
in the presence of the truth campaign started by Z before the deadline α. The TIB problem
aims to find a set of k nodes, Z∗, that maximizes the expected number of saved nodes, that
is,

Z∗ = argmaxZ (|ϕ(R, ∅, α)| − |ϕ(R,Z, α)|)

Note that ϕ(R, ∅, α) corresponds to the set of nodes influenced by R only, that is, there is
no truth campaign when Z = ∅.

90

Chapter 6. Temporal Influence Blocking 91

Identify nodes reachable

from rumor starters as S

Computing the Threat

Levels of Nodes in S

Graph G=(V,E), R, k, α

Randomly select a node r∈ S

Algorithm Framework

For node u, compute

threat level threat(u,t) for

t=0,1, …, α.

Repeat:

Generate r’s WRR tree Tr

For node v in Tr, compute the

probability of v reaching r in t

steps mv[t] for t=0,1,…,α.

Generating a Set of WRR Trees

Compute the score of each node

in the WRR tree Tr

Node Selection

Greedily select k nodes

with highest scores as Z

Phase I Phase II

Is Z good

enough?

No

Yes

Return Z

Figure 6.1: Framework of Proposed Approach

In order to determine Z∗, we need to answer the following questions:

• Among the nodes that could possibly be infected by a rumor if there is no truth
campaign, which ones are likely to infect more other nodes?

• For the nodes that have been identified to be more likely to infect other nodes, can
we find a set of nodes to reach these nodes earlier than R?

We design a solution that seamlessly incorporates login and influence probabilities to de-
termine the top-k nodes to start the truth campaign. Figure 6.1 gives an overview of the
proposed solution. There are two main phases:

• Phase I. This phase takes as input the social network and identifies all the nodes that
could possibly be reached by rumor before the deadline. For each node, we compute
its threat level, i.e., the potential number of nodes that this node could influence if
itself is influenced.

• Phase II. In this phase, we adopt a sampling approach and generate Weighted Reverse
Reachable (WRR) trees [SHL16] to estimate the time taken for a node to be reached
by nodes in R. We greedily select k nodes that best save other nodes from rumor
before the deadline.

The details of these two phases are described in the following sections.

Chapter 6. Temporal Influence Blocking 92

6.2 Estimating Nodes’ Threat Levels

We define the leverage of a node u over its child node v, denoted as quv, as the probability
that v is influenced by u only and is not influenced by the other parents of v. In other words,
if Q is the set of parent nodes of v, then the leverage of u over v is given by:

quv = p(u, v) ·
∏

w∈Q\{u}

(1− p(w, v)) (6.1)

The threat level of a node u is dependent on the leverage of u over its child nodes as well as
the time available for u to propagate its influence to its child nodes. Specifically, the threat
of u increases when there is more time for u to propagate its influence. This is because if u
is influenced way before the deadline α, then the child nodes that u have leverage over will
have more time to influence other nodes.

In order to compute the threat levels of the nodes in a social network G given a set of rumor
starters R and deadline α, we first perform a depth-first search from R until α steps and
put visited nodes in a set S. We apply the Acyclic algorithm [EIL+12] on S to find the
maximum directed acyclic graph (DAG) starting from R, as well as the topological ordering
of the nodes in S such that the parents of a node precede it in the ordering.

An example network G with R = {u1, u2} is shown in Figure 6.2a. The numbers on the
edges indicate the influence probabilities while the numbers in the node indicate the login
probabilities. Figure 6.2b shows the DAG obtained and a possible topological ordering of
the nodes in S is ⟨u3, u4, u5, u7, u6, u8, u9⟩.

0.6

0.9

U1
0.6

U2

0.5

U3

0.6

U5

0.5

U6

0.6

U7

0.4

U8

0.8

U9

0.4

U4

0.4

0.6

0.2

0.6

0.6

0.3

0.9

0.2

0.5 0.6 0.4
0.8

(a) Network G with login and influ-
ence probabilities.

0.9

U1
0.6

U2

0.5

U3

0.6

U5

0.5

U6

0.6

U7

0.4

U8

0.8

U9

0.4

U4

0.4

0.6

0.2
0.6

0.3

0.9

0.2

0.5 0.6 0.4
0.8

(b) DAG obtained from G

0.6

U5

0.5

U6

0.6

U7

0.4

U8

0.8

U9

0.5 0.6 0.4
0.8

threat(u8,0)=1 threat(u9,0)=1

threat(u6, 0)=1

threat(u6, 1)=0.184

threat(u6, 2)=0.085

qu6u8=0.3 qu6u9=0.08

(c) Threat levels for u6

Figure 6.2: Example network and its DAG

We denote the threat level of a node u at time point t as threat(u, t). Initially at time point
0, u only influences itself, hence the potential number of nodes influenced by u is 1. We
write threat(u, 0) = 1. At time point t, the threat level of u is determined by the nodes

Chapter 6. Temporal Influence Blocking 93

that u influences directly in the first s time points as well as the nodes that are indirectly
influenced through its child nodes from the time s to t. We have

threat(u, t) =
∑
v∈C

(
quv ·

t∑
s=1

(
online(v, s) · threat(v, t− s)

))
(6.2)

where C is the set of child nodes of u, and online(v, s) is the probability that v will login
at time point s, which is given by

online(v, s) = (1− login(v))s−1 × login(v)

Example 1. Let us consider the node u6 in Figure 6.2b which has two child nodes u8 and
u9. The leverage of u6 over u8 and u9 are:

qu6u8 = p(u6, u8)× (1− p(u5, u8))
= 0.6× (1− 0.5)

= 0.3

qu6u9 = p(u6, u9)× (1− p(u7, u9))
= 0.4× (1− 0.8)

= 0.08

The probabilities that u8 and u9 log in at time point 1 are given by:
online(u8, 1) = (1− login(u8))0 × login(u8)

= 1× 0.4 = 0.4

online(u9, 1) = (1− login(u9))0 × login(u9)
= 1× 0.8 = 0.8

Then we can determine the threat level of u6 at t = 1 as:
threat(u6, 1) = qu6u8 · online(u8, 1) · threat(u8, 0)

+ qu6u9 · online(u9, 1) · threat(u9, 0)
= 0.184

Note that threat(u8, 0) = 1 and threat(u9, 0) = 1.

Figure 6.2c illustrates the threat levels computed for u6.

Chapter 6. Temporal Influence Blocking 94

Algorithm 6.1: Compute Threat Levels

input : 1. Graph G = (V,E)

2. Deadline α
3. Rumor starter R

output : Threat levels of nodes reachable by R

1 Initialize S = ∅;
2 foreach u ∈ R do
3 Peform DFS from u and insert visited nodes within α hops into S;
4 end
5 Apply Acyclic on S to generate a DAG and a topological ordering;
6 foreach node u in the reverse of topological ordering do
7 foreach child v of u do
8 Compute quv with Equation 6.1;
9 end

10 threat(u, 0) = 1;
11 for t = 1, · · · , α do
12 Compute threat(u, t) with Equation 6.2;
13 end

14 end
15 Return S and threat(u, t) for each u ∈ S where t = 0, 1, · · · , α.

Algorithm 6.1 gives the details of computing the threat levels of nodes that are reachable
from rumor starters. The input is a social network G(V,E) and a set of rumor starter
nodes R. For each node in R, we perform a depth-first search to find the set of nodes S
that are reachable within α hops, where α is the input deadline (Lines 1-3). We apply the
Acyclic algorithm to obtain the DAG of S and the topological ordering (Lines 4). Then
we traverse each node u ∈ S in the topological ordering reversely. For each node u, we
compute its leverage over its child v using Equation 6.1 (Lines 6 and 7). After that, we
set threat(u, 0) = 0 (Line 8) and compute threat(u, t) for t = 1, · · · , α using Equation 6.2
(Lines 9 and 10). We return the threat levels for all nodes in S in Line 11.

6.3 Selecting Truth Seed Set

In this section, we first introduce a weighted reverse reachable tree structure to estimate
which nodes can reach a particular node v ∈ S faster than the rumor starters. Based on the
threat level of v, we compute a score for each node that could possibly save v from being
influenced by rumor. With a pool of random WRR trees, we greedily select k nodes with
the highest scores among all trees.

Chapter 6. Temporal Influence Blocking 95

6.3.1 WRR Tree Generation

The work in [BBCL14] introduces a Reverse Influence Sampling(RIS) algorithm to estimate
the expected number of nodes that each node can influence in a network. RIS generates
a set of Reverse Reachable (RR) sets by randomly sampling nodes in the graph. For each
sampled node, it obtains an instance of the graph starting from this sampled node by
following the in-edges of any visited node. An edge is kept with a probability that is equal
to the influence probability on this edge. Each graph instance forms an RR set. RIS
generates a sufficient number of RR sets and consider the nodes that appear in many RR
sets with large influence [TSX15].

Song et al. [SHL16] extends the RR set to a WRR tree structure to estimate the probability
of each node u in the tree reaching the root r at a particular time. We present the definition
of WRR tree here.

Definition 9 (WRR Tree). Given a graph G, let g be a graph instance of G obtained by
removing each edge ⟨u, v⟩ with probability 1 − p(u, v). Let α be the deadline. A WRR tree
for a node r denoted as Tr, is an (α + 1)-level tree such that each path p ∈ Tr from r to a
descendant v corresponds to a path from v to r in the graph instance g. Each node v ∈ Tr
is associated with a (α + 1)-vector mv where the jth entry of mv, denoted as mv[j], keeps
track of the probability of v reaching the root in exactly j steps.

The vector for the root node r is given by mr = [1, 0, · · · , 0] as it takes exactly 0 steps for
the root node to reach itself. Suppose v is at the dth level in the WRR tree, it will take
at least d hops for v to reach r as there are at least d nodes along the path from v to r.
When i < d, the probability that v can reach r in exactly i steps is 0. When i ≥ d, let
node w be the immediate parent of v along the path from v to r, then the probability that
v reaches r in exactly i steps is the probability that w logs in on the jth step multiplied by
the probability that w takes exactly i− j steps to reach r, that is

mv[i] =

0 i < d∑i
j=1(online(w, j) ·mv[i− j]) otherwise

(6.3)

Given the graph G and set of rumor starters R, we create a graph instance g of G by
flipping a coin for each edge ⟨u, v⟩ such that there is a probability p(u, v) that the edge will
be retained in g. With this graph instance, we can generate a WRR tree rooted at node r
by performing a breadth-first traversal starting from r following the in-links. Each time we
reach a node v, we create a corresponding node and add the node and its associated edge
to the WRR tree. Note that if v has been visited before, a new copy of v is created. Since
we are only interested in the instances where the root nodes can be infected by the rumor,
we discard WRR trees that do not contain any node in R.

Chapter 6. Temporal Influence Blocking 96

0.9

U1
0.6

U2

0.5

U3

0.6

U5

0.5

U6

0.6

U7

0.4

U8

0.8

U9

0.4

U4

(a) Sampled graph instance g

U6

U2
1

U7

U4

U2
2

mu6 = [1, 0, 0, 0]

mu2
1 = [0, 0.5, 0.25, 0.125]

mu2
2 = [0, 0, 0, 0.12]

mu7 = [0, 0.5, 0.25, 0.125]

mu4 = [0, 0, 0.3, 0.27]

threat(u6, 0)=1
threat(u6, 1)=0.184
threat(u6, 2)=0.085

score(u7 ,Tu6 ,3)=0.83

score(u4 ,Tu6 ,3)=0.279

β (u7,Tu6,1)=0.5

β (u7,Tu6,2)=0.125
β (u7,Tu6,3)=0.047

β (u4,Tu6,1)=0
β (u4,Tu6,2)=0.15
β (u4,Tu6,3)=0.101

(b) WRR Tree Tu6

Figure 6.3: Generation of a WRR tree

Example 2. Figure 6.3a shows a sampled instance g from the example network in Figure
6.2a. We can obtain a WRR tree as shown in Figure 6.3b. There are two paths from the
rumor node u2 to u6, thus we create two copies of u2 in the WRR tree, namely u12 and u22.
We have

online(u6, 1) = 0.5

online(u6, 2) = (1− login(u6))× login(u6)
= (1− 0.5) · 0.5 = 0.25

Then the vector entries for u12 are computed as follows:
mu1

2
[1] = online(u6, 1)×mu6 [0] = 0.5

mu1
2
[2] = online(u6, 2)×mu6 [0] + online(u6, 1)×mu6 [1] = 0.25

Note that mu6 [0] = 1 and mu6 [1] = 0.

Next, we want to determine the probability of a node u reaching the root node r of a WRR
tree at time point t before any rumor starter. Let β(u, Tr, t) denote this probability, and
R′ ⊂ R be the set of rumor starters in Tr. We have the following cases:

1. u is a descendant of some rumor starter w ∈ R′. In this case, β(u, Tr, t) = 0 since w
will always reach r before u.

2. All the nodes in R′ are descendants of u. Since u will always reach r before any
rumor node, β(u, Tr, t) equals the probability of u reaching the root at time step t,
i.e.β(u, Tr, t) = mu[t].

Chapter 6. Temporal Influence Blocking 97

3. ∃ Ru ⊆ R′ s.t. the nodes in Ru are not ancestors or descendants of u, Ru ̸= ∅. Then
we need to compute β(u, Tr, t) as follows:

Probability that r is not reached by some w ∈ R′ from time 0 to t−1 is
∏t−1

s=0(1−mw[s]).

Probability that r is not reached by any w ∈ Ru from time 0 to t−1 is
∏

w∈Ru

∏t−1
s=0(1−

mw[s]).

Thus we have

β(u, Tr, t) = mu[t]×
∏

w∈Ru

(
t−1∏
j=0

(1−mw[j])) (6.4)

If u reaches the root r of a WRR tree at time point t before any rumor starter in R′, then
all the nodes in G that could potentially be influenced by r will be saved. Recall threat(r, t)
gives the expected number of nodes that r could influence at time point t. Then the total
number of nodes that r could influence from time t to α is given by

∑α−t
s=0 threat(r, s). With

this, we can compute a score for each node u indicating the expected number of nodes that
could be saved by u before a deadline α as follows:

score(u, Tr, α) =

α∑
t=1

(
β(u, Tr, t) ·

α−t∑
j=0

threat(u, j)
)

(6.5)

Example 3. Consider again the WRR tree in Figure 6.3b. Suppose α = 3, and we want
to compute the score of u7. Since u22 is a descendant of u7, we only need to consider u12 in
the computation of β(u7, Tu6 , 1).
When t = 1:
β(u7, Tu6 , 1) = mu7 [1]·(1−mu1

2
[0]) = 0.5

score(u7, Tu6 , 1) =
2∑

s=0
threat(u, s)·β(u7, Tu6 , 1) = 0.635

When i = 2:

β(u7, Tu6 , 2) = mu7 [2] ·
1∏

k=0

(1−mu1
2
[k]) = 0.125

score(u7, Tu6 , 2) = score(u7, Tu6 , 1) +
1∑

s=0
threat(u, s) · β(u7, Tu6 , 2) = 0.783

When i = 3:

β(u7, Tu6 , 3) = mu7 [3] ·
2∏

k=0

(1−mu1
2
[k]) = 0.047

score(u7, Tu6 , 3) = score(u7, Tu6 , 2) +
0∑

s=0
threat(u, s) · β(u7, Tu6 , 3) = 0.83

Hence the score of u7 in the WRR tree is 0.83. Similarly, we can compute the score for u4
as shown in Figure 6.3b.

Chapter 6. Temporal Influence Blocking 98

Algorithm 6.2 gives the details for generating a single WRR tree and computing the scores
for the corresponding nodes. We first randomly sample a node from the node set S as the
tree root. We start a breadth-first search from r and flip a coin for each in-link to decide
whether to include this link in the tree. If a node is added in the tree, we compute its
influencing time vector in Line 6 and check whether it is a rumor starter in R. If the node is
not a rumor starter, we continue to add its adjacent in-neighbors to the tree if the breadth-
first traversal is within α levels from r (Lines 8-14). However, if it is a rumor starter, then
we terminate this branch of traversal and for any of its ancestor node v, we update the
set Rv by excluding u (Lines 16-17). After constructing the WRR tree Tr, we check if any
rumor node is contained in the tree (Line 18). If yes, we compute the score for each node
in Tr. For a node u whose Ru = ∅, it means u is an ancestor of all rumor nodes, thus we
set β(u, Tr, t) = mu[t] (Lines 21 - 22). Otherwise, we compute β(u, Tr, t) with Equation 6.4
(Lines 24 and 25). Finally we compute the score of u in Line 23 and return the WRR tree.

6.3.2 Node Selection

We adopt the D-SSA algorithm [NTD] to generate a sufficient pool of random WRR trees.
The score(u, Tr, α) estimates the potential number of nodes u can save given a WRR tree
rooted at r. We repeatedly select the node u with the highest score in the pool of randomly
sampled WRR trees. If u has been selected as a truth starter, the threat level of u’s parent
nodes would decrease since they cannot influence u any more. If u’s parent nodes happen to
be the root of some WRR tree, Tr, then the threat level of the root r is updated as follows:

threat(r, t) = threat(r, t)− qru · (
t∑

s=1

online(u, s) · threat(u, t− s)) (6.6)

With the new threat level of root r, we update the scores of nodes in Tr with Equation 6.5.

Example 4. Figure 6.4a illustrates the change in the threat level of u6 when u9 is selected
as truth starter (labeled in green box). Once u9 has been selected as truth starter at time
point 0, u6 can no longer influence u9. Hence, the threat level of u6 at time point 1 and 2

are reduced accordingly. We have:

threat(u6, 1) = threat(u6, 1)− qu6u9 · online(u9, 1) · threat(u9, 0)
= 0.12

threat(u6, 2) = threat(u6, 2)− qu6u9 · online(u9, 2) · threat(u9, 0)
= 0.072

With the new threat level of u6, we update the scores of the nodes in all WRR trees whose
root is u6.

Chapter 6. Temporal Influence Blocking 99

Algorithm 6.2: Generate a WRR tree

input : 1. Graph G = (V,E)

2. Deadline α
3. Rumor starters R
4. Nodes reachable from rumor starters S
5. Threat level threat(u, t) for each u ∈ S

output : A WRR tree

1 Initialize processing queue A = ∅;
2 Randomly choose a node r ∈ S;
3 A.enqueue(r);
4 while A ̸= ∅ do
5 u = A.dequeue();
6 Compute mu with Equation 6.3;
7 if u /∈ R then
8 if breadth-first search is within α levels of r then
9 foreach in-link ⟨v, u⟩ do

10 Flip a coin with probability p(v, u);
11 if decision is YES then
12 Create a copy of v;
13 A.enqueue(v);
14 Initialize Rv = R;

15 end

16 end

17 else
18 foreach node v on the path from r to u do
19 Rv = Rv \ {u};
20 end

21 end
22 if Tr contains any node in R then
23 foreach node u in the tree do
24 if Ru = ∅ then
25 for i = 0, 1, · · · , α do
26 β(u, Tr, t) = mu[t];
27 end

28 else
29 for i = 0, 1, · · · , α do
30 Compute β(u, Tr, t) with Equation 6.4;
31 end

32 Compute score(u, Tr, α) with Equation 6.5;

33 end
34 Return the generated WRR tree.

35 else
36 Return void;

Chapter 6. Temporal Influence Blocking 100

0.6

U5

0.5

U6

0.6

U7

0.4

U8

0.8

U9

0.5 0.6 0.4
0.8

threat(u8,0)= 1
threat(u9,0)= 1

 0

threat(u6, 0)= 1

threat(u6, 1)= 0.184

threat(u6, 2)= 0.085

qu6u8=0.3 qu6u9=0.08

0.12

0.072

(a) Updated DAG

U6

U2
1

U7

U4

U2
2

mu6 = [1, 0, 0, 0]

mu2
1 = [0, 0.5, 0.25, 0.125]

mu2
2 = [0, 0, 0, 0.12]

threat(u6, 0)=1
threat(u6, 1)=0.184
threat(u6, 2)=0.085

score(u7, Tu6, 3)=0.824

0.425

mu7 = [0, 0.5, 0.25, 0.125]

mu4 = [0, 0, 0.3, 0.27]

Δβ (u7,Tu6,1) = 0.5
Δβ (u7,Tu6,2) = -0.025
Δβ (u7,Tu6,3) = -0.054

(b) Updated WRR Tree

Figure 6.4: Updating node scores

The second scenario is where the selected truth starter node u is a node in some WRR trees.
In this case, the scores of the nodes in these WRR trees may change. This is because if u
is selected as a truth starter, the node v in the WRR trees not only needs to reach the root
nodes before any rumor starters, but it must also do so before u. Otherwise, r would have
already been saved by u, rendering the selection of v as an additional truth starter pointless.
We model this as:

∆β(v, Tr, t) = β(Z ∪ {v}, Tr, t)− β(Z, Tr, t) (6.7)

For each WRR tree, Tr where u is a node in Tr, we update the scores of the nodes in Tr by
replacing β(u, Tr, t) with ∆β(u, Tr, t) in Equation 6.5.

Example 5. Figure 6.4b illustrates how the score of u7 is updated after u4 has been selected
as a truth starter. We first compute ∆β(u7, Tu6 , t) for t = 1, 2 and 3.
When t = 1:
β({u4, u7}, Tu6 , 1) = 0.5

β(u4, Tu6 , 1) = 0

∆β(u7, Tu6 , 1) = beta({u4, u7}, Tu6 , 1)− β(u4, Tu6 , 1) = 0.5.
When t = 2:
β({u4, u7}, Tu6 , 2) = 0.125

β(u4, Tu6 , 2) = 0.15

∆β(u7, Tu6 , 2) = β({u4, u7}, Tu6 , 2)− β(u4, Tu6 , 2) = −0.025.
Note that if we select u7 as a truth starter, it is likely to reach the root u6 at time point 1.
Hence the probability of saving u6 at time point 2 is reduced, resulting in a negative value
of ∆β(u7, Tu6 , 2).

Chapter 6. Temporal Influence Blocking 101

When t = 3:
β({u4, u7}, Tu6 , 3) = 0.047

β(u4, Tu6 , 3) = 0.101

∆β(u7, Tu6 , 2) = β({u4, u7}, Tu6 , 3)− β(u4, Tu6 , 3)

= −0.054.

Finally, we compute a new score for u7 by replacing β(u7, Tu6 , t) with ∆β(u7, Tu6 , t) in
Equation 6.5 as
score(u7, Tu6 , 3) = 0.5× 1 + (−0.025)× 0.184 + (−0.054)× 0.085

= 0.425

Algorithm 6.3 gives the details for selecting k nodes among a set of sampled WRR trees.
Firstly, we generate a sufficent set of random WRR trees by calling the D-SSA algorithm [NTD]
(Line 1). We then select a node u with the highest score among all WRR trees in Lines
4-5. Since the selection of u decreases the threat levels of its parent nodes, we update the
threat levels of these parent nodes and recompute the score for all the nodes in the WRR
tree rooted at any of u’s parents (Lines 7-11). Lines 12-17 update the scores of nodes in the
WRR trees where u is present. After the scores have been updated, we proceed to select
the next node with the highest score until k nodes have been selected.

6.4 Experiments

In this section, we evaluate the performance of our TIB-Solver algorithm on four real-world
datasets. All the experiments are carried out on a Linux machine with 2 Xeon E5440 2.83
GHz CPU and 16G Ram. We use the four real-world social network datasets described in
Section 3.3, i.e.Gowalla, Twitter, Weibo and Foursquare.

Evaluation Metric. We measure the effectiveness of different methods using a metric
called Save Ratio (SR) [SHL15b] which gives the percentage of reduction in the number of
nodes infected by R after we start a truth campaign from Z in α time points:

SR(Z) =
|ϕ(R, ∅, α)| − |ϕ(R,Z, α)|

|ϕ(R, ∅, α)|

where ϕ(R,Z, α) is the set of influenced users by the R before deadline α when truth
campaign starts from Z under our diffusion model with login events.

Chapter 6. Temporal Influence Blocking 102

Algorithm 6.3: TIB-Solver

input : 1. Number of nodes to select k

2. Deadline α

3. Nodes reachable from rumor starters S

4. Threat level threat(u, t) for u ∈ S
output : Set of truth starters Z

1 Call D-SSA to generate a pool of WRR trees T ;

2 Initialize Z = ∅
3 repeat

4 Let u be the node with the highest score(u, Tr, α)

5 Z = Z ∪ {u};
6 foreach parent v of u do

7 for t = 0, · · · , α do

8 Compute threat(v, t) with Equation 6.6;

9 end

10 foreach WRR tree Tv do

11 foreach w in Tv do

12 Compute score(w, Tv, α) with Equation 6.5;

13 end

14 end

15 end

16 foreach Tr ∈ T involving u do

17 Set score(u, Tr, α) = 0

18 foreach node w in Tr do

19 for t = 1 · · · , α do

20 Compute ∆β(w, Tr, t) with Equation 6.7;

21 end

22 Compute score(w, Tr, α) with Equation 6.5;

23 end

24 end

25 until |Z| = k

26 Return Z

Chapter 6. Temporal Influence Blocking 103

Settings. We set the login probability of each node by randomly choosing a real number
from the interval [0, 1]. Similar to [SHL16, NTD], we set the influence probability p(u, v)

for each edge ⟨u, v⟩ as 1/inDegree(v) where inDegree(v) is the number of incoming edges
to node v. We randomly choose 30 rumor seed nodes and repeat each set of experiments
5 times on each dataset. We measure the reduction in the number of infected nodes after
20,000 Monte-Carlo simulations.

6.4.1 Comparative Experiments

In this set of experiments, we compare the performance TIB-Solver with the following meth-
ods:

• PageRank [PBMW98]. This approach selects nodes with the highest PageRank scores
regardless of the temporal information.

• LSMI [TNT12]. This algorithm estimates the influence of each node based on local
shortest paths and selects the nodes with high local influence given rumor starters.
We extend this approach by computing an edge length from the login probabilities
and call it LSMI-Delay.

• LargeInf [BAEA11]. This method adopts a simulation approach to estimate the influ-
ence of nodes reachable by the rumor starters and selects the nodes with the highest
influence. We extend this method by running simulations in our multi-campaign inde-
pendent cascade model with login events and deadline. We call the extended method
LargeInf-L.

Results with login(u) = 1 and α = ∞. In this set of experiments, we set the login
probability of each node to be 1 and assume there is no deadline. This setting reduces our
problem to the EIL problem proposed in [BAEA11]. Figure 6.5 shows the performances of
the various algorithms. In all datasets, TIB-Solver gives the best performance.

LSMI is a close runner up in this setting by using the shortest paths to estimate the selected
nodes’ influence among the nodes that are reachable from the given rumor nodes. Since
the login probability is 1, the length of a path between two nodes equals the number of
time points it takes for these nodes to reach each other via this path. Although LSMI is
efficient as it only considers shortest paths, it may overlook longer paths with high influence
probabilities. In contrast, the TIB-Solver is able to take into consideration paths with
high influence probabilities as such paths are more likely to be sampled in the WRR tree
generation process.

Chapter 6. Temporal Influence Blocking 104

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
LargeInf

LSMI
PageRank

(a) Gowalla

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
LargeInf

LSMI
PageRank

(b) Twitter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
LargeInf

LSMI
PageRank

(c) Weibo

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
LargeInf

LSMI
PageRank

(d) Foursquare

Figure 6.5: Save Ratio as k varies (login=1, α =∞).

LargeInf performs slightly poorer than LSMI and TIB-Solver because it considers only nodes
that can be reached by the rumor starters. This strategy may miss nodes that are not
reachable by rumor starters, and yet can save the most number of nodes. PageRank gives
the poorest performance in all four datasets since it does not consider which nodes are the
rumor starters.

Results with random login(u) and α = ∞. In this set of experiments, we randomly
choose a real value in the interval [0, 1] to be the login probability of each node but assume
there is no deadline.

Figure 6.6 shows the results. We observe that TIB-Solver gives the best performance. In
particular, when k = 10, TIB-Solver outperforms the closest runner-up LSMI-Delay by more
than 20% in all datasets. In order to incorporate time delays into computation, LSMI-Delay
calculates the length of each edge ⟨u, v⟩ as

∑∞
i=1(i·(1−login(v))i−1·login(v)) which converges

to 1
login(v) . However, this expected delay does not capture the influence propagation at each

time point, leading to a solution that is not as good as TIB-Solver.

Chapter 6. Temporal Influence Blocking 105

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(a) Gowalla

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(b) Twitter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(c) Weibo

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(d) Foursquare

Figure 6.6: Save Ratio as k varies (random login, α =∞).

Since LargeInf-L only considers the nodes reachable from the rumor starters to start a truth
campaign, it does not perform as well as TIB-Solver which considers all the nodes. PageRank
has the poorest performance as it simply selects high connectivity nodes with no considera-
tion of the rumor starters or login probabilities.

Chapter 6. Temporal Influence Blocking 106

Results with random login(u) and α = 10. In this set of experiments, we set the login
probability of each node randomly and assign a deadline of 10. In other words, we determine
the number of saved nodes within 10 time points from the start of rumor propagation.
Figure 6.7 shows the results. Once again, TIB-Solver gives the best performance with a
given deadline. This is particularly evident in datasets with high density of edges. In
Weibo dataset where the average degree of nodes is the highest, TIB-Solver outperforms
the runner up method over 55% when k = 10 and 22% when k = 50. This is because TIB-
Solver aims to find nodes that are connected to high threat nodes. In high density networks,
such high threats nodes are more likely to be reached within the deadline, leading to more
nodes being saved before the deadline.

LSMI-Delay performs poorly because when we set a deadline α, any path with expected delay
longer than α value will not be considered by LSMI-Delay. Hence, its performance drops
significantly when there is a deadline. Also note that, PageRank performs much poorer than
the other methods even in Gowalla because, with a restricted time for propagation, the
nodes selected by PageRank may not be able save any nodes before the deadline.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(a) Gowalla

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(b) Twitter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(c) Weibo

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(d) Foursquare

Figure 6.7: Save Ratio as k varies (random login, α = 10).

Chapter 6. Temporal Influence Blocking 107

We further fix k = 30 and vary the deadline α from 10 to 30 on the two larger datasets
Weibo and Foursquare. Figure 6.8 shows the results. We see that the performance of all
methods tend to improve slightly with the increase of α and TIB-Solver consistently gives
the best results for all α values.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30

SR

α

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(a) Weibo

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30

SR

α

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(b) Foursquare

Figure 6.8: Save Ratio as α varies (random login, k = 30).

6.4.2 Sensitivity Experiments

Recall that TIB-Solver computes the threat levels of each node in Phase I and the mu vectors
in Phase II to estimate the influencing time. In this set of experiments, we examine the
effect of threat level and the mu vectors on the save ratio SR respectively. We compare the
performance of TIB-Solver with the following variants:

• TIB-Threat. We compute the threat levels threat(u, t) and set mu[j] = 1 where j is
the path length from u to root r and mu[i] = 0 where i = 0, · · · , α and i ̸= j.

• TIB-WRR. We set threat(u, t) = 1 for all u ∈ S before generating the WRR trees to
compute mu.

Figure 6.9 shows the results when we have random login probabilities and α = 10. We
see that TIB-Threat performs worse that TIB-WRR, indicating that the estimation of the
influencing time is more important than determining the threat level of nodes. This is
because without knowing the influencing time, the selected truth seed set may reach nodes
after the rumor starters have reached them.

6.4.3 Efficiency

Finally, we report the runtime of the different approaches on the two larger datasets, Weibo

and Foursquare. Figure 6.10 shows the results when we fix α = 10 and vary k from 10 to

Chapter 6. Temporal Influence Blocking 108

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
TIB-WRR

TIB-Threat

(a) Gowalla

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR
k

TIB-Solver
TIB-WRR

TIB-Threat

(b) Twitter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
TIB-WRR

TIB-Threat

(c) Weibo

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

SR

k

TIB-Solver
TIB-WRR

TIB-Threat

(d) Foursquare

Figure 6.9: Save Ratio of TIB-Solver and its variants (random login, α = 10).

100

101

102

103

104

 10 20 30 40 50

Ru
n

Ti
m

e
(S

ec
s)

k

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(a) Weibo

100

101

102

103

104

 10 20 30 40 50

Ru
n

Ti
m

e
(S

ec
s)

k

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(b) Foursquare

Figure 6.10: Runtime as k varies (random login, α = 10).

Chapter 6. Temporal Influence Blocking 109

50. We observe that LargeInf-L has the longest computation time among all methods. This
is because in order to select one node, LargeInf-L needs to run a large number of simulations
to see how many nodes the selected node can influence others when it has been infected by
rumor. Further, the selection of one node greatly affects the propagation of rumor: after
selecting each node, it has to re-run the simulations to select the second node. Hence as k
increases, we can see a clear increase in the runtime for LargeInf-L.

LSMI-Delay is slightly faster than TIB-Solver since it considers the local structure of each
node and only focuses on the shortest paths. PageRank gives the lowest computation time
as it simply utilizes the topology and ignores the login probabilities and rumor starters.

Figure 6.11 shows the runtime results when we fix k = 30 and vary α from 10 to 30. When
α increases, the computation time for each method only increases slightly. Again, we find
LargeInf-L has the highest runtime while TIB-Solver and LSMI-Delay has similar performance
(within 100 seconds).

100

101

102

103

 10 20 30

Ru
n

Ti
m

e
(S

ec
s)

α

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(a) Weibo

100

101

102

103

104

 10 20 30

Ru
n

Ti
m

e
(S

ec
s)

α

TIB-Solver
LargeInf-L

LSMI-Delay
PageRank

(b) Foursquare

Figure 6.11: Runtime as α varies (random login, k = 30).

6.5 Summary

In this chapter, we have incorporated the login events in the multi-campaign Independent
Cascade model to simulate real-world information propagations with time delays. We have
formally defined the Temporal Influence Blocking problem which aims to find the set of
users to start a truth campaign so as to minimize the number of users affected by rumors.
We have proposed a 2-phase approach called TIB-Solver that measures the threat levels of
each node and estimate the potential number of nodes that could be saved by a node if this
node is selected as truth starter. Extensive experimental studies have been conducted to
show the effectiveness and efficiency of our approach.

Chapter 7
Conclusion and Future work

7.1 Conclusion

Social networks nowadays have become the major platform for users to read news and ex-
change information. Studies have shown that the diffusion of information on social platforms
is faster and wider than traditional information platforms like newspaper and television. The
research on information diffusion in online social networks is valuable in both theoretical
and practical perspectives. On one hand, researchers design diffusion models to simulate
the diffusion of information in social platforms. On the other hand, with the diffusion mod-
els, researchers can identify critical users that can aid in real-world applications like viral
marketing and rumor prevention. In this thesis, we seek to address the research challenges
in managing information diffusion given different incentives, i.e.boosting good information
propagation and limiting misinformation spreading.

We started with the exploration to expand information diffusion in social networks when we
consider the user locations and deadline for propagation. We have extended the Independent
Cascade model by introducing a login event to incorporate diffusion delays and form the
problem of targeted influence maximization. We have designed a weighted reverse reachable
tree structure and developed a sampling based algorithm that considers the event location
and deadline.

We have further considered, instead of influencing users in a targeted region, propagating
information to nodes that are far away from the initial seeds, which users can help us spread
this information? This question brought us to the problem of identifying social network
brokers that enable the dissemination of information between otherwise disconnected or
remote users. We have designed a heuristic solution to find top-k brokers based on the
weak tie theory and refined the algorithms to handle dynamic updates in social networks.
Utilizing the detected brokers in mention recommendation task significantly increases the
number of distinct users reached.

Next, we explored the approaches to control the diffusion of misinformation in social net-
works. In node immunization problem, existing works mostly focused on immunizing nodes
before rumor starts spreading or consider all the infectious nodes are known. We realized

110

Chapter 7. Conclusion and Future work 111

in real-world contagions, there is a time period where multiple independent sources may
actively infect different nodes. We have formalized the problem of node immunization over
infectious period and designed a scoring function to model a node’s immunization ability in
the network. We have also proposed a simulation-based strategy to estimate the distribution
of immunization resources over the infectious period.

In the influence blocking problem where we can select a set of users to broadcast the truth
information to combat the spreading of misinformation, we have recognized the temporal
effect is of crucial importance since truth must reach a node earlier than the rumor in order
to save it from infection. We incorporated time delays in the diffusion model and form the
temporal influence blocking problem. We presentd a sampling and greedy-based solution
that utilizes the technique we developed for estimating a node’s immunization ability and the
weighted reverse reachable tree for measuring the influencing time. Extensive experiments
show that our proposed solution is able to significantly increase the percentage of saved
nodes in a rumor attack.

7.2 Future Work

There are several directions that could be further investigated for managing information
diffusion in social platforms more effectively. We list three directions for future work.

Incorporating User Generated Content. The rich content data generated by users’
social behaviors, such as messages, replies or posts describe the users’ hobbies, topics of
interest, liked products or trusted news websites both explicitly and implicitly. The tech-
niques for understanding the contents could be incorporated in our proposed algorithms
when we identify influential spreaders or prevent misinformation diffusion since different
users possess different probability of liking or sharing the same information because of their
various interests.

Parallel Processing. With the increasing volume of users on social platforms, scalability
becomes a huge challenge for network algorithms. One possible solution is to design effective
algorithms to divide the input graph into multiple small networks while maintaining the
necessary information and utilize parallelized framework such as MapReduce to allocate the
computation tasks and combine them to form a unified solution.

Handling Uncertainty. We have assumed that we are fully aware of the network (users,
edges and influence probabilities) and the initial seed users for misinformation prevention
tasks. However in the real-world, it is unlikely that we can obtain the entire network
structure or identify all the initial spreaders. This requires us to predict the existence of
a user/edge or if a node is infected or not while we identify the critical nodes for boost-
ing/limiting influence.

References

[AH11] Zeinab Abbassi and Hoda Heidari. Toward optimal vaccination strategies for
probabilistic models. In WWW, pages 1–2, 2011.

[AHI02] Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. Complexity of finding dense
subgraphs. Discrete Applied Mathematics, 121(1):15–26, 2002.

[BAEA11] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. Limiting the spread
of misinformation in social networks. In WWW, pages 665–674, 2011.

[BAH12] Roja Bandari, Sitaram Asur, and Bernardo A. Huberman. The pulse of news
in social media: Forecasting popularity. CoRR, abs/1202.0332, 2012.

[BBCL14] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier.
Maximizing social influence in nearly optimal time. In SIAM SODA, pages
946–957, 2014.

[BFO10] Allan Borodin, Yuval Filmus, and Joel Oren. Threshold models for competitive
influence in social networks. In WINE, pages 539–550, 2010.

[BKS07] Shishir Bharathi, David Kempe, and Mahyar Salek. Competitive influence
maximization in social networks. In Springer WINE, pages 306–311, 2007.

[BLP03] Linda Briesemeister, Patrick Lincoln, and Phillip Porras. Epidemic profiles
and defense of scale-free networks. In WORM, pages 67–75, 2003.

[BRMA12] Eytan Bakshy, Itamar Rosenn, Cameron Marlow, and Lada Adamic. The role
of social networks in information diffusion. In WWW, pages 519–528, 2012.

[Bur07] Ronald S. Burt. Secondhand brokerage: Evidence on the importance of lo-
cal structure for managers, bankers, and analysts. Academy of Management
Journal, 50:119–148, 2007.

[CCRea11] Wei Chen, Alex Collins, and Cummings Rachel et al. Influence maximization
in social networks when negative opinions may emerge and propagate. In
SIAM SDM, pages 379–390, 2011.

[CDCS10] Mario Cataldi, Luigi Di Caro, and Claudio Schifanella. Emerging topic de-
tection on twitter based on temporal and social terms evaluation. In ACM
MDMKDD, page 4, 2010.

112

References 113

[CDK10] Po-An Chen, Mary David, and David Kempe. Better vaccination strategies
for better people. In ACM EC, pages 179–188, 2010.

[CDPW14] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck. Timed
influence: Computation and maximization. CoRR, abs/1410.6976, 2014.

[CFL+15] Shuo Chen, Ju Fan, Guoliang Li, Jianhua Feng, Kian-lee Tan, and Jinhui Tang.
Online topic-aware influence maximization. PVLDB, 8(6):666–677, 2015.

[CGD12] B. Chandramouli, J. Goldstein, and S. Duan. Temporal analytics on big data
for web advertising. In IEEE ICDE, pages 90–101, 2012.

[CHbA03] Reuven Cohen, Shlomo Havlin, and Daniel ben Avraham. Efficient immuniza-
tion strategies for computer networks and populations. Physics Revivew Letter,
91:247901, 2003.

[Che03] Jing-Chao Chen. Dijkstra’s shortest path algorithm. Journal of Formalized
Mathematics, 15:144–157, 2003.

[CLZ12] Wei Chen, Wei Lu, and Ning Zhang. Time-critical influence maximization
in social networks with time-delayed diffusion process. CoRR, abs/1204.3074,
2012.

[CSH+14] Suqi Cheng, Huawei Shen, Junming Huang, Wei Chen, and Xueqi Cheng.
Imrank: Influence maximization via finding self-consistent ranking. In ACM
SIGIR, pages 475–484, 2014.

[CWL+11] Peng Cui, Fei Wang, Shaowei Liu, Mingdong Ou, Shiqiang Yang, and Lifeng
Sun. Who should share what?: Item-level social influence prediction for users
and posts ranking. In ACM SIGIR, pages 185–194, 2011.

[CWW+08] Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jurij Leskovec, and Chris-
tos Faloutsos. Epidemic thresholds in real networks. Transactions on Infor-
mation and System Security, 10:1:1–1:26, 2008.

[CWW10] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for
prevalent viral marketing in large-scale social networks. In ACM KDD, pages
1029–1038, 2010.

[CWY09] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in
social networks. In ACM KDD, pages 199–208, 2009.

[CYZ10] Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social
networks under the linear threshold model. In IEEE ICDM, pages 88–97, 2010.

[Dan06] Chavdar Dangalchev. Residual closeness in networks. Physica A: Statistical
Mechanics and its Applications, 365(2):556–564, 2006.

References 114

[DCLS+10] Munmun De Choudhury, Yu-Ru Lin, Hari Sundaram, K Selcuk Candan, Lex-
ing Xie, and Aisling Kelliher. How does the data sampling strategy impact the
discovery of information diffusion in social media? In AAAI ICWSM, pages
34–41, 2010.

[DNT12] Thang N Dinh, Dung T Nguyen, and My T Thai. Cheap, easy, and massively
effective viral marketing in social networks: truth or fiction? In ACM HT,
pages 165–174, 2012.

[DPV+07] Jonathan Dushoff, Joshua B Plotkin, Cecile Viboud, Lone Simonsen, Mark
Miller, Mark Loeb, and David JD Earn. Vaccinating to protect a vulnerable
subpopulation. PLoS Med, 4(5):e174, 2007.

[DR01] Pedro Domingos and Matt Richardson. Mining the network value of customers.
In ACM SIGKDD, pages 57–66, 2001.

[DSGZ13] Nan Du, Le Song, Manuel Gomez-Rodriguez, and Hongyuan Zha. Scal-
able influence estimation in continuous-time diffusion networks. CoRR,
abs/1311.3669, 2013.

[DYM+14] Rong Du, Zhiwen Yu, Tao Mei, Zhitao Wang, Zhu Wang, and Bin Guo. Pre-
dicting activity attendance in event-based social networks: Content, context
and social influence. In ACM UbiComp, pages 425–434, 2014.

[EIL+12] Dóra Erdös, Vatche Ishakian, Andrei Lapets, Evimaria Terzi, and Azer
Bestavros. The filter-placement problem and its application to minimizing
information multiplicity. Proc. VLDB Endow., 5:418–429, 2012.

[FCBM14] Kaiyu Feng, Gao Cong, Sourav S. Bhowmick, and Shuai Ma. In search of
influential event organizers in online social networks. In ACM SIGMOD, pages
63–74, 2014.

[FCF+06] Neil M Ferguson, Derek AT Cummings, Christophe Fraser, James C Cajka,
Philip C Cooley, and Donald S Burke. Strategies for mitigating an influenza
pandemic. Nature, 442(7101):448–452, 2006.

[Fen11] Philip E Brown Junlan Feng. Measuring user influence on twitter using modi-
fied k-shell decomposition. In AAAI ICWSM, 2011.

[Fre77] Linton C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40(1):35–41, 1977.

[GAC+10] Wojciech Galuba, Karl Aberer, Dipanjan Chakraborty, Zoran Despotovic, and
Wolfgang Kellerer. Outtweeting the twitterers-predicting information cascades
in microblogs. In USENIX WOSN, 2010.

References 115

[GH12] Adrien Guille and Hakim Hacid. A predictive model for the temporal dynamics
of information diffusion in online social networks. In WWW, pages 1145–1152,
2012.

[GLL11] Amit Goyal, Wei Lu, and Laks V.S. Lakshmanan. Celf++: Optimizing the
greedy algorithm for influence maximization in social networks. In WWW,
pages 47–48, 2011.

[GLM01] Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the network: A
complex systems look at the underlying process of word-of-mouth. Marketing
letters, 12(3):211–223, 2001.

[Gra78] Mark Granovetter. Threshold models of collective behavior. American journal
of sociology, pages 1420–1443, 1978.

[Gra83] Mark Granovetter. The strength of weak ties: A network theory revisited.
Sociological theory, 1(1):201–233, 1983.

[GRBS11] M. Gomez Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the temporal
dynamics of diffusion networks. In ICML, pages 561–568, 2011.

[GRLK10] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. Inferring net-
works of diffusion and influence. In ACM SIGKDD, pages 1019–1028, 2010.

[GRLS13] Manuel Gomez Rodriguez, Jure Leskovec, and Bernhard Schölkopf. Structure
and dynamics of information pathways in online media. In ACM WSDM, pages
23–32, 2013.

[HC13] Mostafa Haghir Chehreghani. An efficient algorithm for approximate between-
ness centrality computation. In ACM CIKM, pages 1489–1492, 2013.

[Het00] Herbert W. Hethcote. The mathematics of infectious diseases. SIAM Review,
42:599–653, 2000.

[HSCJ11] Xinran He, Guojie Song, Wei Chen, and Qingye Jiang. Influence blocking
maximization in social networks under the competitive linear threshold model:
Technical report. CoRR, abs/1110.4723, 2011.

[Kat73] Elihu Katz. The two-step flow of communication: An up-to-date report on an
hypothesis. Enis and Cox(eds.), pages 175–193, 1973.

[KGH+10] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Much-
nik, H Eugene Stanley, and Hernán A Makse. Identification of influential
spreaders in complex networks. Nature Physics, 6(11):888–893, 2010.

[KKT03] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of
influence through a social network. In ACM KDD, pages 137–146, 2003.

References 116

[KS06] Masahiro Kimura and Kazumi Saito. Approximate solutions for the influence
maximization problem in a social network. In Springer KES, pages 937–944,
2006.

[KSHdM02] Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The sample
average approximation method for stochastic discrete optimization. SIAM J.
on Optimization, 12(2):479–502, 2002.

[KSM08] Masahiro Kimura, Kazumi Saito, and Hiroshi Motoda. Minimizing the spread
of contamination by blocking links in a network. In AAAI, pages 1175–1180,
2008.

[KSM09] Masahiro Kimura, Kazumi Saito, and Hiroshi Motoda. Blocking links to mini-
mize contamination spread in a social network. ACM TKDE, 3:9:1–9:23, 2009.

[LBK09] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking and the
dynamics of the news cycle. In ACM KDD, pages 497–506, 2009.

[LCF+14] Guoliang Li, Shuo Chen, Jianhua Feng, Kian-lee Tan, and Wen-syan Li. Effi-
cient location-aware influence maximization. In ACM SIGMOD, pages 87–98,
2014.

[LCXZ12] B. Liu, G. Cong, D. Xu, and Y. Zeng. Time constrained influence maximization
in social networks. In IEEE ICDM, pages 439–448, 2012.

[LKG+07] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne
VanBriesen, and Natalie Glance. Cost-effective outbreak detection in networks.
In ACM KDD, pages 420–429, 2007.

[LLS11] Cheng-Te Li, Shou-De Lin, and Man-Kwan Shan. Finding influential mediators
in social networks. In WWW, pages 75–76, 2011.

[LMF+07] Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie S Glance, and
Matthew Hurst. Patterns of cascading behavior in large blog graphs. In SIAM
SDM, pages 551–556, 2007.

[LOTW13] Zhunchen Luo, Miles Osborne, Jintao Tang, and Ting Wang. Who will retweet
me?: Finding retweeters in twitter. In ACM SIGIR, pages 869–872, 2013.

[LT13] Tiancheng Lou and Jie Tang. Mining structural hole spanners through infor-
mation diffusion in social networks. In WWW, pages 825–836, 2013.

[LXC+14] Qi Liu, Biao Xiang, Enhong Chen, Hui Xiong, Fangshuang Tang, and Jef-
frey Xu Yu. Influence maximization over large-scale social networks: A
bounded linear approach. In ACM CIKM, 2014.

[LZT15] Yuchen Li, Dongxiang Zhang, and Kian-Lee Tan. Real-time targeted influence
maximization for online advertisements. PVLDB, 8(10):1070–1081, 2015.

References 117

[MKC+04] Nilly Madar, Tomer Kalisky, Reuven Cohen, Daniel ben Avraham, and Shlomo
Havlin. Immunization and epidemic dynamics in complex networks. European
Physical Journal B, 38(2):269–276, 2004.

[MSM15] Azadeh Mohammadi, Mohamad Saraee, and Abdolreza Mirzaei. Time-
sensitive influence maximization in social networks. Journal of Information
Science, 41:765–778, 2015.

[MZL12] Seth A. Myers, Chenguang Zhu, and Jure Leskovec. Information diffusion and
external influence in networks. In ACM KDD, pages 33–41, 2012.

[New03] Mark EJ Newman. The structure and function of complex networks. SIAM
review, 45(2):167–256, 2003.

[New04] Mark EJ Newman. Fast algorithm for detecting community structure in net-
works. Physical review E, 69:066133, 2004.

[NPW01] Enrico Nardelli, Guido Proietti, and Peter Widmayer. Finding the most vital
node of a shortest path. In Springer COCOON, pages 278–287, 2001.

[NTD] Hung T. Nguyen, My T. Thai, and Thang N. Dinh. Stop-and-stare: Optimal
sampling algorithms for viral marketing in billion-scale networks. In ACM
SIGMOD, pages 695–710.

[OAS10] Tore Opsahl, Filip Agneessens, and John Skvoretz. Node centrality in weighted
networks: Generalizing degree and shortest paths. Social Networks, 32(3):245–
251, 2010.

[PBMW98] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. In WWW, pages 161–172, 1998.

[Pre02] Luca Pretto. A theoretical analysis of google’s pagerank. In Springer SPIRE,
pages 131–144, 2002.

[Rog04] Everett M Rogers. A prospective and retrospective look at the diffusion model.
Journal of Health Communication, 9(S1):13–19, 2004.

[Sei83] Stephen B Seidman. Network structure and minimum degree. Social networks,
5(3):269–287, 1983.

[SGaMZ13] Arlei Silva, Sara Guimarães, Wagner Meira, Jr., and Mohammed Zaki. Pro-
filerank: Finding relevant content and influential users based on information
diffusion. In ACM SNAKDD, pages 2:1–2:9, 2013.

[SHL15a] Chonggang Song, Wynne Hsu, and Mong Li Lee. Mining brokers in dynamic
social networks. In ACM CIKM, pages 523–532, 2015.

References 118

[SHL15b] Chonggang Song, Wynne Hsu, and Mong Li Lee. Node immunization over
infectious period. In ACM CIKM, pages 831–840, 2015.

[SHL16] Chonggang Song, Wynne Hsu, and Mong Li Lee. Targeted influence maximiza-
tion in social networks. In ACM CIKM, pages 1683–1692, 2016.

[SHL17] Chonggang Song, Wynne Hsu, and Mong Li Lee. Temporal influence blocking:
Minimizing the effect of misinformation in social networks. In IEEE ICDE,
2017.

[SKOM09] Kazumi Saito, Masahiro Kimura, Kouzou Ohara, and Hiroshi Motoda. Learn-
ing continuous-time information diffusion model for social behavioral data anal-
ysis. In Springer ACML, pages 322–337. 2009.

[SMLGM11] Eldar Sadikov, Montserrat Medina, Jure Leskovec, and Hector Garcia-Molina.
Correcting for missing data in information cascades. In ACM WSDM, pages
55–64, 2011.

[SNK08] Kazumi Saito, Ryohei Nakano, and Masahiro Kimura. Prediction of informa-
tion diffusion probabilities for independent cascade model. In Springer KES,
pages 67–75, 2008.

[SOY+11] Kazumi Saito, Kouzou Ohara, Yuki Yamagishi, Masahiro Kimura, and Hiroshi
Motoda. Learning diffusion probability based on node attributes in social
networks. In Springer ISMIS, pages 153–162. 2011.

[SS12] Katherine Stovel and Lynette Shaw. Brokerage. Annual Review of Sociology,
38(1):139–158, 2012.

[Tar72] Robert Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

[TBM10] Rudra M. Tripathy, Amitabha Bagchi, and Sameep Mehta. A study of rumor
control strategies on social networks. In ACM CIKM, pages 1817–1820, 2010.

[TNT12] Jason Tsai, Thanh H. Nguyen, and Milind Tambe. Security games for control-
ling contagion. In AAAI, pages 1464–1470, 2012.

[TPER+12] Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos, and
Christos Faloutsos. Gelling, and melting, large graphs by edge manipulation.
In ACM CIKM, pages 245–254, 2012.

[TPT+10] Hanghang Tong, B Aditya Prakash, Charalampos Tsourakakis, Tina Eliassi-
Rad, Christos Faloutsos, and Duen Horng Chau. On the vulnerability of large
graphs. In IEEE ICDM, pages 1091–1096, 2010.

References 119

[TSX15] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in near-
linear time: A martingale approach. In ACM SIGMOD, pages 1539–1554,
2015.

[TXS14] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization: Near-
optimal time complexity meets practical efficiency. In ACM SIGMOD, pages
75–86, 2014.

[Vaz01] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc.,
2001.

[WCF+16] Biao Wang, Ge Chen, Luoyi Fu, Li Song, Xinbing Wang, and Xue Liu. Drimux:
Dynamic rumor influence minimization with user experience in social networks.
In AAAI, pages 791–797, 2016.

[WCSX10] Yu Wang, Gao Cong, Guojie Song, and Kunqing Xie. Community-based greedy
algorithm for mining top-k influential nodes in mobile social networks. In ACM
KDD, pages 1039–1048, 2010.

[WCWF03] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos.
Epidemic spreading in real networks: An eigenvalue viewpoint. In IEEE SRDS,
pages 25–34, 2003.

[WLG+13] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Chaosheng Fan, and Xueqi Cheng.
Informational friend recommendation in social media. In ACM SIGIR, pages
1045–1048, 2013.

[WWB+13] Beidou Wang, Can Wang, Jiajun Bu, Chun Chen, Wei Vivian Zhang, Deng
Cai, and Xiaofei He. Whom to mention: Expand the diffusion of tweets by
@ recommendation on micro-blogging systems. In WWW, pages 1331–1340,
2013.

[WWX12] Feng Wang, Haiyan Wang, and Kuai Xu. Diffusive logistic model towards
predicting information diffusion in online social networks. In IEEE ICDCSW,
pages 133–139, 2012.

[YDG+15] Zhiwen Yu, Rong Du, Bin Guo, Huang Xu, Tao Gu, Zhu Wang, and Daqing
Zhang. Who should i invite for my party?: Combining user preference and
influence maximization for social events. In ACM UbiComp, pages 879–883,
2015.

[YMPH16] Yu Yang, Xiangbo Mao, Jian Pei, and Xiaofei He. Continuous influence max-
imization: What discounts should we offer to social network users? In ACM
SIGMOD, pages 727–741, 2016.

References 120

[ZCL+15] Tao Zhou, Jiuxin Cao, Bo Liu, Shuai Xu, Ziqing Zhu, and Junzhou Luo.
Location-based influence maximization in social networks. In ACM CIKM,
pages 1211–1220, 2015.

[ZP14a] Yao Zhang and B. Aditya Prakash. Dava: Distributing vaccines over networks
under prior information. In SIAM SDM, pages 556–564, 2014.

[ZP14b] Yao Zhang and B. Aditya Prakash. Scalable vaccine distribution in large graphs
given uncertain data. In ACM CIKM, pages 1719–1728, 2014.

[ZP15] Yao Zhang and B. Aditya Prakash. Data-aware vaccine allocation over large
networks. ACM TKDD, pages 20:1–20:32, 2015.

[ZYF+14] Shengfu Zhou, Kun Yue, Qiyu Fang, Yunlei Zhu, and Weiyi Liu. An efficient
algorithm for influence maximization under linear threshold model. In IEEE
CCDC, pages 5352–5357, 2014.

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Research Challenges
	Maximizing the Influence of Good Information
	Minimizing the Influence of Misinformation

	Thesis Contributions
	Organization of the Thesis

	Related Work
	Modeling Information Diffusion
	Explanatory Models
	Predictive Models

	Identifying Influential Spreaders
	Centrality-based Approach
	Diffusion Model-based Approach

	Preventing Misinformation Propagation
	Pre-emptive Approach
	Immunization Approach
	Truth-Campaign Approach

	Targeted Influence Maximization
	Problem Definition
	Proposed Approach
	Generation of WRR Trees
	Greedy Selection
	Estimation of
	Time Complexity of Target-IM

	Experiments
	Experiments with Deadline and Location
	Experiments with Location only
	Experiments with Deadline only

	Summary

	Identifying Brokers in Dynamic Social Networks
	Problem Definition and Analysis
	Proposed Approach
	Incremental Methods

	Experiments
	Effectiveness Experiments
	Sensitivity Experiments
	Scalability
	Applications of Brokers

	Summary

	Node Immunization over Infectious Period
	Problem Definition
	Problem Analysis

	Algorithms
	Single time point NIIP
	Estimation of k's distribution over
	NIIP over infectious period

	Experiments
	Experimental Setting
	Effectiveness Experiments
	Efficiency

	Summary

	Temporal Influence Blocking
	Problem Definition and Solution Overview
	Estimating Nodes' Threat Levels
	Selecting Truth Seed Set
	WRR Tree Generation
	Node Selection

	Experiments
	Comparative Experiments
	Sensitivity Experiments
	Efficiency

	Summary

	Conclusion and Future work
	Conclusion
	Future Work

	References

	sign:

