
TOWARDS PRIVACY-PRESERVING
AND ROBUST WEB OVERLAYS

JIA YAOQI

(B.Eng., Huangzhong University of Science and Technology)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2017

Supervisor:
Associate Professor Liang Zhenkai

Examiners:
Associate Professor Chang Ee Chien

Assistant Professor Kang Minsuk
Professor Duan Haixin, Tsinghua University

ACKNOWLEDGEMENTS

This thesis would not be possible without the help of my advisors Zhenkai Liang

and Prateek Saxena. First, I would like to thank Zhenkai for his mentorship and

encouragement for exploring new directions. No road of flowers leads to glory,

which also applies to the journey pursuing my Ph.D.. Zhenkai’s earnest advice

motivates me to move forward continuously in spite of the difficulties and twists

being incurred in my journey. Besides, Prateek taught me to think big and aim

high since we first collaborated. His enthusiasm and creativity inspire me to

broaden my vision and explore distinct security research areas. In the meantime,

I have learned a lot about the technical skills of security research from both

Zhenkai and Prateek, and have benefited tremendously from the discussions

over these years.

I would also like to thank my thesis committee members, Ee-Chien Chang,

Min Suk Kang and Haixin Duan, for their valuable feedback on this thesis.

Many thanks to Haifeng Yu, Seth Gilbert, Erik-Oliver Blass, Travis Mayberry

and other professors for their insightful discussions and feedback on my work

in this thesis.

I am indebted to all my collaborators, both at NUS and outside, over these

years for all of hard work and fun time. The solid work in this thesis is insepara-

ble from their remarkable contributions. Many thanks to Hong Hu (introducing

me to the lab), Xinshu Dong, Shruti Tople, Tarik Moataz, Guangdong Bai, Xi-

aolei Li, Enrico Budianto, Zheng Leong Chua, Shuo Chen, Roland Yap, Deli

Gong, Jian Mao, Yue Chen, Behnaz Hassanshahi, and Ziqi Yang.

I would like to thank all my colleagues in the NUS security group: Chun-

wang Zhang, Ting Dai, Shweta Shinde, Loi Luu, Hung Dang, Inian Paramesh-

waran, Shiqi Shen and many others. I have learned a lot from them and shared

numerous happy memories with them during these years. Thanks to my friends

across the world for your unforgettable support on my life and research.

i

Finally, I would like to thank my parents and grandparents for their uncon-

ditional love. I am indebted to my Mom for her unwavered love and support;

my Dad for his earnest instructions and encouragement to stimulate me to pur-

sue my dreams. I am especially grateful to my beloved, Meng Guo, for her

continuous love, encouragement and support.

ii

Contents

SUMMARY x

LIST OF TABLES xi

LIST OF FIGURES xiii

1 Introduction 1

1.1 Thesis Overview . 5

1.1.1 APAC: An Anonymous Peer-assisted CDN 5

1.1.2 OBLIVP2P: An Oblivious P2P Content Sharing System . 6

1.1.3 Robust Synchronous P2P Primitives Using SGX Enclaves 7

2 Background 11

2.1 Web Overlays . 11

2.2 Related Work . 13

2.2.1 Anonymous Communication Systems Against Partial Ad-

versaries . 13

2.2.2 Long-term Traffic Analysis of Global Adversaries 14

2.2.3 Robust P2P Primitives Against Byzantine Adversaries . 15

3 Anonymity in Peer-assisted CDNs:

Inference Attacks and Mitigation 17

3.1 Introduction . 17

3.2 Motivation & Problem Statement 22

3.2.1 Inference Attacks & Real-world Examples 22

3.2.2 Problem Statement . 24

iii

3.3 Anonymous Peer-assisted CDN 26

3.3.1 Design of APAC . 27

3.3.2 Circuit Construction 30

3.3.3 Parameters Selection 32

3.3.4 Anonymity Analysis 34

3.3.4.1 Analysis of Initiator Anonymity 34

3.3.4.2 Analysis of Responder Anonymity 37

3.4 Implementation of APAC . 38

3.4.1 Components in APAC 38

3.4.2 Content Delivery in APAC 40

3.5 Performance Evaluation . 43

3.5.1 Measurement Setup . 44

3.5.2 Bandwidth Saving . 45

3.5.3 Network Latency . 46

3.5.4 Performance under Churn 50

3.5.5 Load on Peers . 51

3.6 Security Analysis . 52

3.6.1 Degree of Initiator/Responder Anonymity in APAC . . . 52

3.6.2 Degree of Anonymity in Current Peer-assisted CDNs . . 55

3.6.3 Analysis of Churn in APAC 56

3.7 Related Work . 60

3.7.1 Security & Privacy in Peer-assisted CDNs 60

3.7.2 Anonymous Communication Systems 61

3.8 Summary . 62

4 OBLIVP2P: An Oblivious Peer-to-Peer Content Sharing System 63

4.1 Introduction . 63

4.1.1 Approach . 65

4.1.2 System and Results . 66

4.2 Problem . 67

iv

4.2.1 BitTorrent: A P2P Protocol 68

4.2.2 Threat Model . 68

4.2.3 Insufficiency of Existing Approaches 70

4.2.4 Problem Statement . 71

4.3 Our Approach . 73

4.3.1 Background: Tree-Based ORAM 73

4.3.2 Mapping an ORAM to a P2P setting 74

4.3.3 OBLIVP2P-0 : Centralized Protocol 75

4.3.4 OBLIVP2P-0 Analysis 76

4.4 OBLIVP2P-1: Distributed Protocol 77

4.4.1 Challenges . 77

4.4.2 Oblivious Selection . 79

4.4.2.1 Definitions 79

4.4.2.2 OblivSel Overview 81

4.4.2.3 Base Primitives 82

4.4.2.4 OblivSel Instantiation 84

4.4.3 OBLIVP2P-1: Complete Design 85

4.4.4 Optimization: Handling Bursts 88

4.5 Implementation and Evaluation 91

4.5.1 Linear Scalability with Peers 92

4.5.2 Latency Overhead and Breakdown 97

4.5.3 Optimization Measurements 98

4.6 OBLIVP2P-1 Analysis . 99

4.6.1 Performance . 99

4.6.2 Security Analysis . 101

4.7 Discussion . 104

4.8 Related Work . 106

4.9 Summary . 107

5 Robust Synchronous P2P Primitives Using SGX Enclaves 109

v

5.1 Introduction . 109

5.2 Problem . 114

5.2.1 Problem Definition . 114

5.2.2 Attacker Model . 115

5.2.3 Strawman Solution & Attacks 116

5.3 Solution Overview . 120

5.3.1 SGX Features and Security Properties 120

5.3.2 Overview of Our Results 124

5.4 Enclaved Reliable Broadcast Protocol 126

5.4.1 Preliminaries . 126

5.4.2 ERB details . 127

5.4.3 Analysis . 128

5.5 Enclaved Random Number Generation 130

5.5.1 Unoptimized ERNG 130

5.5.2 Optimized ERNG . 132

5.5.3 Analysis . 135

5.6 Evaluation . 136

5.6.1 ERB Evaluation . 137

5.6.2 ERNG Evaluation . 139

5.6.3 Byzantine case . 140

5.7 Primitives and Formal Definitions 142

5.7.1 Peer Channel . 142

5.7.2 Failure Modes . 144

5.7.3 Core Primitives . 146

5.7.4 Implementing Blinded Channel using SGX 148

5.8 Rethinking Reliable Broadcast Protocols 151

5.8.1 Digital Signature Schemes 152

5.8.2 Early Stopping Schemes 155

5.9 Security Analysis . 157

vi

5.9.1 ERB Analysis . 157

5.9.2 P2P Sanitization & Analysis 161

5.9.3 Unoptimized ERNG Analysis 164

5.9.4 Optimized ERNG . 165

5.10 Discussions . 168

5.10.1 Are Assumptions Reasonable? 168

5.10.2 Applications . 170

5.11 Related Work . 172

5.12 Summary . 174

6 Conclusion 175

vii

viii

SUMMARY

The World Wide Web gradually becomes an essential part of our daily life

in the digital age. The web architecture used to be a client-server model, in

which clients (or browsers) request and fetch web contents, such as HTML,

JavaScript and CSS, from web servers. Recently peer-to-peer (P2P) techniques

have been introduced into the web infrastructure, which empower browsers to

directly communicate with each other and form a P2P web overlay. On one

hand, this web overlay decentralizes the web to provide better availability of

web resources and efficiency of transferring these resources. On the other hand,

this also brings the open and unsolved problems like privacy issues to the new

web architecture. In this thesis, we analyze privacy and robustness issues in web

overlays, and propose solutions to address these issues using cryptographic and

hardware primitives.

First, we present inference attacks in peer-assisted content delivery networks

(CDNs) on top of web overlays, which can infer user’s online activities such

as browsing history. To thwart such attacks, we propose an anonymous peer-

assisted CDN (APAC), which employs onion-routing techniques to conceal

users’ identities and uses region-based circuit selection algorithm to reduce per-

formance overhead. Second, previous studies have shown that a global adver-

sary is realistic, and it can reveal users’ online activities (or access patterns) us-

ing long-term traffic analysis. Against such adversaries, we design an oblivious

peer-to-peer content sharing system (OBLIVP2P), which uses new primitives

such as distributed oblivious RAM (ORAM) in the P2P setting.

Lastly, we propose solutions to ensure the robustness of P2P primitives, as

all the utilities and security / privacy properties provided by P2P protocols (in-

cluding the aforementioned two protocols) are relied on the robustness of the

correct execution of these protocols. Recent evidence suggests that malicious

(or byzantine) nodes can easily join the open P2P systems and perniciously dis-

ix

rupt the execution of the given protocol to weaken the core utility (e.g., Bitcoin)

or the anonymity guarantee (e.g., Tor). To ensure the robustness of protocols

against such byzantine adversaries in contrast to the honest-but-curious ones

in the prior two works, we leverage a new hardware primitive, Intel software

guard extensions (SGX). By enforcing our properties, we reduce the byzantine

model to the general-omission model, where byzantine nodes have no extra ad-

vantage than omitting messages. We further propose new algorithms realizing

two fundamental primitives and improve the efficiency of P2P protocols in the

synchronous setting. For future work, we are planning to leverage SGX fea-

tures to re-design OBLIVP2P to achieve decentralization and better throughput

with low latency against byzantine adversaries. Furthermore, we can integrate

our new OBLIVP2P into WebRTC-enabled web browsers as primitives for new

proposed protocols.

x

LIST OF TABLES

2.1 Low-latency anonymous communication systems. 13

3.1 Notations for anonymity analysis. 31

3.2 Comparison with low-latency anonymous systems. 61

4.1 Various meta-information contained in the state s, for OBLIVP2P-
0 and OBLIVP2P-1. B is the block size in bits, NP the number
of peers, NB number of blocks, L the path length, and z the
bucket size. 79

4.2 Comparison of OBLIVP2P instantiation per access. B the block
size, N the number of blocks in the network, E the overhead
of a block encryption, E a multiplication in elliptic curve group,
burst the number of versions. 85

5.1 Round complexity and communication complexity for reliable
broadcast in synchronous network. 113

5.2 Round / communication complexity for random number gener-
ation protocols in synchronous distributed systems. 113

xi

xii

LIST OF FIGURES

2.1 Illustration of content delivery in current peer-assisted CDNs.
Peer vA sends requests to the peer server for resources R1 and
R2 (in 1©). The server responds to vA with a list of peers, e.g.,
vB and vC having R1 and R2 respectively (in 2©). vA connects
with vB/vC , and fetches resources from them (in 3© 4©). 12

3.1 Illustration of an inference attack to infer the responder of a re-
quest. The adversarial peer vA sends a request for a resource R
to the peer server (in 1©). Based on locality, the server replies vA
with the nearby victim vB having R (in 2©). vA fetches R from
vB (in 3©), thus the adversary infers that the victim has viewed
R recently. 21

3.2 Illustration of an inference attack to infer the initiator of a re-
quest. The user vA fetches resources from peer vB and vC which
are controlled by the adversary (in 1© 2©). Therefore, by pas-
sively observing the requests from the victim, the adversary can
determine that the victim is looking for (interested in) the re-
quested content. 21

3.3 The overview for the deployment of APAC. 28

3.4 A 8-node (6-relay) circuit from the initiator to the responder in
APAC. 32

3.5 The network latency reduction (based on the loading time with-
out APAC) decreases when increasing the degree of anonymity
of the system. 32

3.6 Effect of varying Lmax: Increasing the maximum number of in-
termediate nodes increases the degree of initiator anonymity. . . 34

3.7 Effect of varying N : Increasing the total number of joined peers
increases the degree of initiator anonymity. 34

3.8 Effect of varying fR: Increasing the number of adversarial peers
having the requested resource decreases the degree of initiator
anonymity. 35

3.9 Overview of the communication channels in APAC. 38

3.10 Overview of how a peer fetches content from another peer via
three nodes in APAC. 40

xiii

3.11 Total outgoing network traffic size of a server in response to a
request in APAC setting (APAC) and in the client-server set-
ting (BASELINE), measured in KB. 43

3.12 When the number of requests increases, the total outgoing net-
work traffic for BASELINE significantly increases, but the
traffic for APAC only slowly increases. 45

3.13 Network latency reduction (NLR) of an initiator peer in Swarmify
and APAC under three network configurations, as compared to
the baseline. All data are based on a resource with size of 2
MB and averaged over 30 runs with 95% confidence intervals
for each of them. 47

3.14 The percentage of the network latency for setup overhead of a
circuit in three configurations. 48

3.15 Network latency reduction (NLR) varies when intermediate nodes
are in different regions. “a-b-c” means the number of nodes
in the initiator’s region (a = bαinitlc), nodes randomly chosen
(b = l − bαinitlc − bαreslc) and nodes in the responder’s region
(c = bαreslc). 48

3.16 The network latency reduction (NLR) for 50 requests(sorted in
ascending order) when 100 joined peers are in APAC. 49

3.17 The success rate decreases when the length of the circuit in-
creases. 50

3.18 The success rate increases when the stay time follows the Weibull
distribution with larger λ and smaller k. (The circuit has 2 inter-
mediate nodes.) . 51

3.19 λ becomes larger and k turns smaller, when more users stay
longer on the page. 57

3.20 The stay rate decreases when the duration of a circuit and k in-
crease, as well as λ decreases. 57

3.21 The success rate increases when the number of created circuits
increases. 58

4.1 Mapping of a client / server ORAM model to a P2P system . . . 74

4.2 Oblivious Selection protocol using IT-PIR and Seed Homomor-
phic PRG as base primitives 80

xiv

4.3 Theoretical (Th) and experimental (Ex) comparison of OBLIVP2P-
0 and OBLIVP2P-1 parameters for block size of 512 KB. The
throughput for OBLIVP2P-1 linearly scales with the increase in
network size. 93

4.4 The latency for fetching a block for OBLIVP2P-1 reduces up to
213 and then becomes constant. 93

4.5 The latency for sync operation for OBLIVP2P-1 reduces up to
213 and then becomes constant. 94

4.6 The data transferred through the tracker for OBLIVP2P-0 in-
creases linearly with the number of peers 94

4.7 The throughput for blocksize 128 KB and 1 MB increases with
increase in the network size. 95

4.8 Impact of optimizations (O1-O3) on the throughput of OBLIVP2P-
1 for 214 peers and blocksize of 512 KB. 95

5.1 Each peer consists of two entities: an Enclave and an OS. The
OS models the operating system and memory. The Enclave
models the isolated memory and the secure execution of a pro-
gram. The sender Enclaves can send a message via a secure
channel to the receiver Enclaver. The grey areas are secure
against malicious OSes of byzantine nodes. 121

5.2 Termination time in seconds for ERB slightly increase with the
number of peers. 138

5.3 (Th) theoretical and (Ex) experimental comparisons of network
overall communication bandwidth in MB for ERB in function
of the number of nodes in P . 138

5.4 Termination time of ERNG in function of the number of nodes
in P . 139

5.5 Communication overhead of ERNG in function of the number
of nodes in P . 140

5.6 Time termination of ERB linearly increase with the number of
byzantine nodes in P . 141

5.7 Communication overhead of ERB in function of different byzan-
tine peers in P . 141

5.8 PeerCh
sgx: SGX-based Peer channel. 149

xv

xvi

Chapter 1

Introduction

The World Wide Web (or the web) provides assorted web resources and services

for users to conduct essential activities online, such as reading news, paying

bills and accessing medical records. In our digital era, the web has become an

integral part of everyone’s daily life. The traditional web architecture adopts

the client-server model, where a web browser sends requests and retrieves web

contents from a web server. The server is responsible for hosting all the web

resources and delivering relevant resources to clients for every request.

This way, the server becomes the centralized bottleneck, which is a ma-

jor factor influencing the efficiency of fetching resources for clients. To ad-

dress such challenge, conventional CDN operators, e.g., Akamai [1] and Cloud-

Flare [11], distribute web contents around the world-wide servers (dubbed edge

servers) for faster loading of content resources. CDN operators can increase the

geo-density of edge servers up to an extent (e.g., placing edge servers in ma-

jor cities of various countries), but fetching resources for users far away from an

edge server has major latency. In the meantime, owing to the tremendous cost of

renting CDN servers, small companies cannot afford a large-scale deployment

(say worldwide) of servers. To resolve these issues, various approaches have

been proposed utilizing proxies or client-side software as CDN servers to deliver

resources to clients [2, 33, 37, 45, 57, 62, 130, 134, 135, 149, 218, 222, 228, 231].

1

Previous studies have shown advantages of such peer-assisted CDNs systems:

they can significantly reduce the cost of all parties including Internet Service

Providers (ISPs) [147, 156]. For example, NetSession has over 25 million users

in 239 countries and territories, and offloads 70−80% of the traffic to peers

without the trade-off of reliability [232].

With the recent advances of peer-to-peer (P2P) techniques (supported by

real-time communications [59]) in web browsers, browsers can also serve as

CDN servers to deliver the fetched contents to other browsers, which helps to

offload the burden of servers and improve the efficiency of data transfer. These

P2P techniques empower browsers to directly communicate with each other for

data transmission, such as voice / video streaming. As a result, browsers act both

as clients to send requests for resources and as servers to provide web contents.

Users can retrieve web contents from multiple browsers simultaneously, instead

of the centralized server in the traditional model. This evolves the web from the

client-server model towards a new peer-to-peer model, which decentralizes the

web to provide better availability of web resources. Following the new trend

of pursuing the peer-to-peer (P2P) web, mainstream browsers, such as Google

Chrome, Firefox and Internet Explorer, have already supported real-time com-

munication (RTC) [27,59], which enables one browser to directly communicate

with another, forming a web overlay consisting of browsers as peers in a P2P

network. Moreover, various emerging browsers, including Maelstrom from Bit-

Torrent [28] and Mist from Ethereum [29], are designed to be decentralized and

support peer-to-peer communication.

However, web overlays bring not only the benefits of P2P techniques, but

also new threats. A web overlay can be abstracted as a P2P network, in which

browsers are the nodes connecting to others. Thus, the open problems in P2P

systems, such as privacy issues, are introduced into web overlays. One of most

critical threats is that due to the open (permissionless) nature of the new web

infrastructure, malicious nodes (or browsers) can easily join an overlay by con-

2

necting to another browser. Joining as legitimate peers in the overlay, malicious

nodes can either passively monitor the traffic to infer a benign user’s online ac-

tivities (e.g., requesting particular resources), or behave arbitrarily to disrupt the

execution of the given protocol. For instance, in a web overlay or a peer-assisted

CDN, a user’s online activities such as sending / requesting personalized web

pages and relevant resources are exposed to the other peers. Revealing a user’s

browsing history will significantly leak the user’s privacy. For example, a user’s

digital identity can be revealed when visiting social network websites [226];

visiting map service/political websites reflects a user’s geolocation/political ori-

entation [152]. Moreover, long-term traffic analysis through global monitor (i.e.,

observing all traffic of the whole network) is feasible in real P2P systems. For

example, many copyright-enforcement organizations and service providers are

reported to globally monitor BitTorrent traffic to identify illegal actions. It has

been shown that monitoring of BitTorrent traffic can reveal the data sent and re-

quested by the peers in the network [164, 200, 212]. Therefore, users in various

P2P systems have a risk of leaking private information (such as the resources

they upload or download) to a global adversary.

In the meantime, the robustness of P2P protocols is the basis of the core util-

ities and security / privacy properties provided by these protocols. However, the

presence of malicious (byzantine) adversaries is a major security concern in P2P

systems, as they can perform malicious behaviors, like forging, delaying and

dropping messages, to disrupt the protocol execution (robustness). For example,

recently, researchers have demonstrated that in a popular cryptocurrency — Bit-

coin — byzantine nodes can collude to eclipse or partition the honest nodes lead-

ing to double-spending and selfish mining attacks [146,189]. Further, byzantine

nodes in anonymous P2P networks can become the entry and exit nodes of an

honest node’s communication circuit, by advertising high-bandwidth connec-

tions and high-uptimes falsely [70]. These byzantine entry/exit nodes can se-

lectively deny service or severely weaken the core anonymity properties of such

3

systems as Tor, Cashmere and Hydra-Onions [47, 84].

To preserve privacy, like hiding their online traces, users typically employ

anonymous networks to conceal their digital identities. These anonymous sys-

tems include Mix network [100,117,183], Onion-routing/Tor-based systems [64,

123, 150, 204, 223], and other P2P anonymous systems [136, 178, 179, 187, 205,

207], which allow a user to be anonymous, so that the user is unidentifiable

within a set of users [199]. However, these existing applications rarely im-

pose stringent performance demands, such as in a real-time caching system.

Their primary goal is to preserve a high level of anonymity. Directly adopt-

ing these approaches may introduce non-negligible performance overhead for

clients, e.g., the client-side communication overhead for circuit setup in onion

routing-based and Crowds-based systems. On the other side, these anonymous

systems are susceptible to long-term traffic analysis, such as intersection or sta-

tistical disclosure attacks [63, 159] and end-to-end correlation attacks [49, 51].

Furthermore, these systems only consider passive adversaries but not malicious

(or byzantine) nodes, which can arbitrarily forge, delay, replay and drop mes-

sages to violate the given protocols and weaken the privacy guarantee [47, 84].

Therefore, designing robust P2P protocols continues to be an important research

problem due to the attacks possible in a byzantine setting.

Thesis Statement. The emerging web architecture that is based on web over-

lays results in new privacy and robustness issues. In this thesis, we design new

privacy-preserving P2P systems and robust P2P protocols using cryptographic

/ hardware primitives to resolve these issues.

Specifically, in this thesis, we aim to answer the following research ques-

tions: What are the real-world attacks on privacy in web overlays? How to

preserve adequate privacy as well as balance performance overhead in web over-

lays? Can we design privacy-preserving P2P systems against honest-but-curious

adversaries with global views? Further, can we devise robust P2P protocols

against byzantine adversaries?

4

Our Approach. We first employ onion-routing techniques by adding interme-

diate hops in between browsers (users) to enable a user to be unidentifiable

among a set of users [150]. With preserving anonymity of users, we also pro-

pose region-based circuit selection algorithm to achieve desired performance

gains. Second, to hide access patterns of users (or links between users and re-

sources) against long-term traffic analysis of global adversaries, which the first

system APAC does not provide, we propose OBLIVP2P– a construction for a

scalable distributed ORAM protocol in the P2P setting [153]. Lastly, in contrast

to dealing with passive adversaries, we ensure the robustness of P2P protocols

against active adversaries (or byzantine nodes), which are not handled by APAC

and OBLIVP2P. We leverage a recent trusted computing mechanism, called In-

tel SGX, to reduce the byzantine model into the general-omission model, in

which faulty nodes can only omit to send / receive messages [154]. We show

two examples of fundamental P2P protocols are realizable securely using SGX

features. Since our approaches are generic and these issues are common in

conventional P2P systems, our solutions can also be smoothly ported to P2P

systems.

1.1 Thesis Overview

Next, we present the overview of the works constituting this thesis.

1.1.1 APAC: An Anonymous Peer-assisted CDN

As the first step, we systematically study the representative applications of web

overlays called peer-assisted CDNs. We present that the current designs of peer-

assisted CDNs expose clients to privacy-invasive attacks, enabling one client to

infer the set of browsed resources of another client. To resolve this privacy

issue, we propose an anonymous peer-assisted CDN (APAC), which employs

P2P content delivery while providing initiator anonymity (i.e., hiding who sends

5

the resource request) and responder anonymity (i.e., hiding who responds to the

request) for peers. Previous anonymous systems [18, 22, 48, 117, 123, 136, 179,

183, 204, 205] focus on preserving high level of anonymity, but rarely impose

stringent performance demands, such as in a real-time caching system. In con-

trast to existing works, our locality-aware APAC is tunable to select interme-

diate nodes nearby the initiator/responder, which reduces the resource fetching

time (network latency) for peers. APAC can be a web service, compatible with

current browsers and requiring no client-side changes. Our anonymity analy-

sis shows that our APAC design can preserve a higher level of anonymity than

state-of-the-art peer-assisted CDNs. In addition, our evaluation demonstrates

that APAC can achieve desired performance gains.

1.1.2 OBLIVP2P: An Oblivious P2P Content Sharing System

In APAC, the adversary is considered to be non-global, which cannot monitor

all the traffic in the network. However, a global adversary is feasible in real

P2P systems, and previous anonymous systems are susceptible to long-term

global analysis, such as intersection attacks [63, 159] and end-to-end correla-

tion attacks [49,51]. To overcome these challenges, we propose a new approach

to protecting against persistent, global traffic analysis in P2P content-sharing

systems. Our approach advocates for hiding data access patterns, making P2P

systems oblivious. We propose OBLIVP2P— a construction for a scalable dis-

tributed ORAM protocol, usable in a real P2P setting. Our protocol achieves

the following results. First, we show that our construction retains the (linear)

scalability of the original P2P network w.r.t the number of peers. Second, the

experiments simulating about 16,384 peers on 15 Deterlab nodes can process

up to 7 requests of 512KB each per second, suggesting usability in moderately

latency-sensitive applications as-is. The bottlenecks remaining are purely com-

putational (not bandwidth). Third, the experiments confirm that in our construc-

tion, no centralized infrastructure is a bottleneck — essentially, ensuring that the

6

network and computational overheads can be completely offloaded to the P2P

network. Finally, the construction is highly parallelizable, which implies that

remaining computational bottlenecks can be drastically reduced if OBLIVP2P

is deployed on a network with many real machines.

1.1.3 Robust Synchronous P2P Primitives Using SGX Enclaves

In APAC and OBLIVP2P, we consider that an adversary can only passively

monitor the traffic in the network, but in real scenarios, malicious (byzantine)

nodes can easily join the network and perform arbitrarily, like disrupting the

execution of the given protocol. Peer-to-peer (P2P) systems such as BitTor-

rent, Bitcoin, APAC and OBLIVP2P, are susceptible to serious attacks from

byzantine nodes that join as peers. Due to well-known impossibility results

for designing P2P primitives in unrestricted byzantine settings, research has ex-

plored many adversarial models with additional assumptions, ranging from mild

(such as pre-established PKI) to strong (such as the existence of common ran-

dom coins). One such widely-studied model is the general-omission model,

which yields simple protocols with good efficiency, but has been considered im-

practical or unrealizable since it artificially limits the adversary only to omitting

messages.

In this work, we study the setting of a synchronous network wherein peer

nodes have CPUs equipped with a recent trusted computing mechanism called

Intel SGX. In this model, we observe that the byzantine adversary reduces to

the adversary in the general-omission model. As a first result, we show that by

leveraging SGX features, we eliminate any source of advantage for a byzan-

tine adversary beyond that gained by omitting messages, making the general-

omission model realizable. Second, we present new protocols that improve the

communication complexity of two fundamental primitives — reliable broadcast

and common random coins (or beacons) — over the best-known results in the

synchronous general-omission model, by utilizing SGX features. Specifically,

7

we present a reliable broadcast protocol that achieves O(N2) communication

complexity in bits and worst-case N
2

+ 2 round complexity while tolerating up

to N
2

byzantine nodes. As another example, we show a protocol to generate a

distributed common random coin that can be used as a random beacon. Our

protocol that generates an unbiased random number in presence of N
3

byzantine

peers having worst-case round and communication complexity of O(logN) and

O(N logN). We present proofs of correctness and security and confirm theoret-

ical efficiency claims with experimental evaluation on over 1000 nodes, running

on 40 machines on DeterLab. We discuss the application of both these protocols

in other P2P operations, such as random walks, shared key generation, random

beacons and load balancing protocols.

Summary of Contributions:

• We systematically analyze inference attacks on real-world web overlays or

peer-assisted CDNs, i.e., Swarmify, BemTV and P2PSP. We develop an anony-

mous peer-assisted CDN (APAC) for web applications, which involves browsers

as peers to distribute content. Our prototype implementation is available on-

line [4]. From our analysis, APAC can preserve high level of initiator/respon-

der anonymity even if 35% peers are compromised. Our evaluation demon-

strates that APAC can bring desired network latency reduction for peers and

bandwidth savings for deployed sites.

• We propose OBLIVP2P— a first candidate for an oblivious peer-to-peer pro-

tocol in content sharing systems against long-term traffic analysis of global

adversaries. Our main building block is a primitive which we refer to as

oblivious selection that makes a novel use of recent advances in Oblivious

RAM combined with private information retrieval techniques. Our prototype

implementation is available online [32]. We experimentally evaluate our pro-

tocol to measure the overall throughput of our system, latency for accessing

resources and the impact of optimizations on the system throughput.

• To deal with malicious nodes, we leverage SGX features to reduce the byzan-

8

tine model to the general-omission model, where byzantine nodes have no

extra advantage than omitting messages. By enforcing our properties, we can

improve the efficiency of P2P protocols. As the first attempt, we propose ef-

ficient protocols for reliable broadcast (ERB) and unbiased random number

generation (ERNG) in synchronous settings. We provide security analysis

and proof for our protocol constructions. Our prototype implementation is

open source and available online [34]. Our experimental evaluation confirms

the theoretical expectations of our solutions.

Statement of Joint Work: The development of techniques, protocols and sys-

tems presented in Chapter 3 and Chapter 5 was led by Yaoqi Jia. In addition to

Yaoqi Jia, contributors to the work presented in Chapter 3 include Guangdong

Bai, Prateek Saxena and Zhenkai Liang. Contributors in addition to Yaoqi Jia

for the work presented in Chapter 5 include Shruti Tople, Tarik Moataz, Deli

Gong, Prateek Saxena and Zhenkai Liang. The development of OBLIVP2P pro-

tocol in Chapter 4 was joint work of Yaoqi Jia, Tarik Moataz and Shruti Tople.

The development of OBLIVP2P system was led by Yaoqi Jia. The contributors

to the work presented in Chapter 4 also include Prateek Saxena.

Organization: We first discuss the background of web overlays as well as re-

lated work on privacy-preserving systems and robust P2P protocols in Chapter 2.

We present inference attacks against privacy on representatives of web overlays

(peer-assisted CDNs), and propose APAC that preserve certain privacy and bal-

ance performance overhead in Chapter 3. In Chapter 4, we design OBLIVP2P

to introduce ORAM to P2P systems to conceal data access patterns for the first

time. In contrast to the honest-but-curious setting, we present using SGX fea-

tures to devise robust P2P primitives against byzantine adversaries and improve

the efficiency of existing protocols in Chapter 5. Finally, we conclude and dis-

cuss future work in Chapter 6.

9

10

Chapter 2

Background

In this chapter, we first illustrate the background of web overlays. Then we

review related work on privacy-preserving systems and robust P2P protocols

including anonymous communication systems against partial adversaries, long-

term traffic analysis of global adversaries and robust P2P primitives against

byzantine adversaries.

2.1 Web Overlays

With the advent of P2P techniques in the web infrastructure, web browsers start

to be coordinated by servers to connect with each other. Each browser can act as

a client to send requests for web resources, such as HTML and JavaScript, and

also behave like a server to deliver these resources to other browsers. In terms of

distinct P2P web applications, all the involved browsers and servers form vari-

ous web overlays, which can be abstracted as P2P networks consisting of nodes

(represented by browsers / servers) and edges (represented by connections in

between nodes). Web overlays assist servers to offload resource-delivery tasks

to browsers, improving the availability of web resources and the efficiency of

transferring these resources. With the benefits brought by P2P overlays, browser

vendors provide active and substantial support to push forward the development

of the P2P-based web infrastructure. Until now, all of the mainstream browsers

11

1

2

3

4

Peer Server vP

Peer vA
Peer vB

Peer vc

Figure 2.1: Illustration of content delivery in current peer-assisted CDNs. Peer
vA sends requests to the peer server for resources R1 and R2 (in 1©). The server
responds to vA with a list of peers, e.g., vB and vC havingR1 andR2 respectively
(in 2©). vA connects with vB/vC , and fetches resources from them (in 3© 4©).

such as Chrome and IE except Safari support WebRTC [27, 59], which em-

powers browsers with P2P real-time communication. In the meantime, assorted

emerging browsers are designed to support P2P communication including Mael-

strom from BitTorrent [28] and Mist from Ethereum [29].

The representative example of web overlays is the peer-assisted CDN, en-

gaging clients (like browsers) to deliver contents to other peers. Numerous peer-

assisted CDNs have been proposed in recent years [2, 37, 45, 62, 130, 134, 135,

149, 218, 222, 228, 231]. In contrast to traditional infrastructure-based CDNs,

peer-assisted CDNs offload content delivery tasks on clients (peers) to save the

bandwidth of servers [147, 156], and reduce the latency of fetching content at

the client side. For instance, NetSession can offload 70 − 80% of the traffic

to the peers [232]. For the thorough evaluation on Etsy, Maygh is able to re-

duce the 95th-percentile bandwidth due to image content at the operator by

over 75% [231]. In peer-assisted CDNs, the peers are the clients that fetch

and distribute contents, e.g., browsers in Maygh [231] and client programs in

NetSession [2]. In such design, a peer server coordinates peers to distribute

contents. As Figure 2.1 illustrates, after communicating with the peer server,

peers can fetch contents from other nodes. To reduce the network latency, the

peer server typically assigns the initiator a peer who has the requested resource

as the responder, based on the distance between their IP addresses or geoloca-

tions (called a locality-aware peer selection algorithm). Alternatively, the server

directly responds with a list of peers having the requested content, the initiator

12

System’s Name No Instal-

lation

Initiator

Anonymity.

Responder

Anonymity.

Locality-

aware

Onion Routing/Tor-based

Systems [64, 123, 204, 223]

7 3 7 Partially

Crowds [205], & Morphmix [207],

etc. [136, 178–181, 187]

7 3 7 7

Hidden Service [48], I2P [22] &

Freenet [18], etc. [53, 71, 148, 209]

7 3 3 7

Table 2.1: Low-latency anonymous communication systems.

will contact these peers in parallel. After receiving the content, the initiator can

serve it to other peers.

Analogous to peer-assisted CDNs, other web overlays have the similar topol-

ogy, where a coordinator server instructs peers or browsers to communicate with

each other, like BitTorrent’s tracker model.

2.2 Related Work

2.2.1 Anonymous Communication Systems Against Partial Ad-

versaries

For peer-assisted CDNs, researchers have proposed solutions to preserve the

integrity and authenticity of contents [62, 218, 231]. For example, FireCoral

introduces signing service and tracker components to authenticate and verify

contents [218]. On the other hand, adversarial nodes in the network can infer

a victim node’s browsing history, i.e., what resources the victim has requested

and served. However, no systematic studies of inference attacks on peer-assisted

CDNs have been conducted yet and few defenses against such attacks are de-

ployed on peer-assisted CDNs.

Anonymous Communication Systems. One typical way to protect a user’s

privacy (like unlinking her identity and her browsing history) is to make her

13

unidentifiable among a large set of users. To achieve such anonymity, anony-

mous communication systems are often the primary choice, as they are de-

signed to hide users’ identities from third parties. Anonymous communica-

tion systems can be classified into high-latency and low-latency systems. High-

latency anonymous communication systems, e.g., Mixminion [117] and Mix-

master [183], are designed to be against a global passive adversary who can ob-

serve all traffic in the network. However, the high-latency message transmission

(e.g., several hours) makes them unsuitable to be implemented in peer-assisted

CDNs.

As Table 2.1 shows, there are four design considerations for low-latency

communication systems from the system’s perspective. No installation indicates

that an approach does not require the client to install any software. initiator /

responder anonymity means that the initiator / responder is unidentifiable among

an set of peers. A system is locality-aware if its algorithm is based on the

locations of peers. Onion routing/Tor-based systems [64, 123, 204, 223], semi-

centralized systems [85, 86], and P2P low-latency anonymous systems [18, 22,

48, 53, 71, 136, 148, 178–181, 187, 205, 207, 209] provide initiator anonymity.

For instance, MorphMix creates paths on an unstructured overlay to forward

communications; ShadowWalker is based on a random walk over redundant

structured topologies and Pisces uses social networks to achieve anonymous

communications. Further, Hidden Service [48], I2P [22], Freenet [18], and other

approaches [53, 71, 91, 148, 209] also preserve responder anonymity.

2.2.2 Long-term Traffic Analysis of Global Adversaries

In reality, apart from the partial adversary in the previous section, a global

adversary capable of performing long-term analysis in the network is proven

to exist and not rare. For instance, globally monitoring of BitTorrent traf-

fic has shown to reveal the data requested and sent by the peers in the net-

work [164,200,212]. Nevertheless, anonymous systems, like mix networks and

14

onion routing, are susceptible to long-term traffic analysis as shown in Sec-

tion 4.2. Statistical disclosure attacks, proposed by Danezis and enhanced by

other researchers, improve the likelihood of de-anonymizing users on these sys-

tems [114, 116, 119, 120, 173, 175, 197, 219]. Moreover, existing traffic analysis

attacks on onion routing based approaches [127, 128, 191, 224, 225] can reveal

users’ identities with observing multiple communication rounds. Other P2P sys-

tems like Crowds [205], Tarzan [136], MorphMix [207], AP3 [178], Salsa [187],

ShadowWalker [179], Freenet [18] offer anonymity for users. However, these

systems show limits against global adversary with long-term traffic analysis ca-

pabilities.

2.2.3 Robust P2P Primitives Against Byzantine Adversaries

As one of the fundamental P2P primitives, reliable broadcast has been exten-

sively studied in the byzantine setting.

Reliable Broadcast. Reliable broadcast has been extensively studied since the

1980s, and is closely related to the problem of byzantine agreement (BA). Sev-

eral excellent surveys on the problem are available [160,220]. Byzantine agree-

ment can also achieve reliable broadcast [88,92,94,155,176,185,201,220]. For

the asynchronous network, Bracha’s classic reliable broadcast protocol requires

O(N2) communication complexity and tolerates up to N
3

byzantine nodes [89,

90]. Cachin and Tessaro [95] leverage erasure codes to improve efficiency and

reduce communication complexity. However, as the time is not bounded, mes-

sages may incur arbitrary delays, and most protocols do not guarantee terminat-

ing runs, except under some special assumptions such as sharing a “common

coin” [88, 201].

Without any extra assumptions, reliable broadcast and byzantine agreement

in the synchronous setting can tolerate N
3

byzantine nodes at most, and with

min{f + 2, t + 1} round complexity [124, 162, 195]. Lamport et al. and Pease

et al. propose protocols terminating within t + 1 rounds and tolerating up to

15

N
3

byzantine nodes, but with exponential communication complexity [162,195].

Berman et al. achieve O(poly(N)) communication complexity but only tol-

erating upto N
4

byzantine nodes [76]. Garay et al. later present a byzantine

agreement protocol terminating within min{f + 5, t+ 1} rounds [138, 139].

To tolerate a larger fraction of byzantine nodes, additional assumptions are

often needed. A common assumption is that of having a one-time trusted dealer

that pre-deploys PKI in the infrastructure. This assumption, for instance, allows

digital signatures to be used for authentication, wherein a message claimed to be

sent by a node A can be assured to be originating from A [125, 133, 157, 162].

This weakens the capabilities of the byzantine adversary, which cannot forge

messages on behalf of honest nodes. Researchers have proposed protocols to

use digital signatures to boost the resilience from N
3

to N − 1, but the commu-

nication complexity is still large, i.e., O(exp(N)) and O(N3) [125, 162]. Katz

et al. extend the work of Feldman and Micali [132] to employ authenticated

channels, and present protocols tolerating N
2

byzantine nodes with O(poly(N))

complexity [157]. Fitzi et al. also give an authenticated BA protocol that beats

this bound (N
2

) but under specific number-theoretic assumptions [133]. Abra-

ham et al. provide a solution with early stopping (min{f + 2, t + 1}) and

polynomial complexity [61].

16

Chapter 3

Anonymity in Peer-assisted CDNs:

Inference Attacks and Mitigation

3.1 Introduction

Web overlays are used for various systems, and peer-assisted CDNs are one of

the representative applications. The peer-assisted CDN is a new content distri-

bution paradigm supported by CDNs (e.g., Akamai), which enables clients to

cache and distribute web content on behalf of a website. Content Delivery Net-

works (CDNs) were introduced a decade ago. To distribute data to end users in

a fast way, CDN operators (e.g., Akamai [1] and CloudFlare [11]) assist sites

to deliver content to end users with their multiple data centers across the world.

Complementary to these infrastructure-based approaches, numerous CDNs have

adopted peer-to-peer techniques to distribute content, e.g., Swarmify [45], Peer-

CDN [37] Akamai NetSession [2], Squirrel [149], CoralCDN [134, 135], Flow-

erCDN [130] and Maygh [231].

On one hand, involving end users as peers (client-side CDNs) to distribute

data in peer-assisted CDNs reduces the fetching time of resources and saves

the bandwidth of CDNs’ servers. For instance, Akamai NetSession can offload

over 70% of the traffic to peers with high reliability [232]. On the other hand, in

17

contrast to infrastructure-based systems in which trusted centralized servers are

deployed, untrusted peers in peer-assisted CDNs can easily join the system. The

compromised or malicious peers can then a) modify content and inject unautho-

rized content; b) delay or deny content delivery to other peers; c) misreport their

contributions to manipulate the accounting for commercial services [62, 232];

d) infer which peer they deliver/fetch a resource to/from, and what content the

peers have requested.

In practice, peer-assisted CDNs introduce various measures to tackle these

security issues. For example, to protect the authenticity and integrity of the

content in peers, FireCoral introduces the signing service to authenticate con-

tent, and peers can verify the content with the hash information supplied by

the tracker [218]. In addition, Aditya et al. proposed RCA, a reliable client

accounting system for NetSession to discover all misreportings and protocol

violations by faulty or malicious clients and quarantine these potentially col-

luding clients [62]. However, privacy leakage in peer-assisted CDNs has not

been actively studied yet, and anonymity is also seldom considered by existing

peer-assisted CDNs.

Although the majority of resources (e.g., images) served on CDNs are pub-

licly accessible for all users, a user’s online activities (e.g., visiting personalized

web pages and fetching relevant resources) have been proven to be privacy-

sensitive. For example, a user’s digital identity can be revealed when visiting

social network websites [226]; visiting map service/political websites reflects a

user’s geolocation/political orientation [152]. Revealing a user’s browsing his-

tory will significantly leak the user’s privacy. To demonstrate this threat, we

present inference attacks on peer-assisted CDNs: by placing controlled peers

and observing the requested contents in the system, the adversary can effec-

tively infer content-access activities of benign peers.

To demonstrate the effectiveness of the proposed inference attacks, we con-

duct inference attacks against widely used peer-assisted CDNs, including Swarmify,

18

BemTV and P2PSP. From our experiments, we find that in any of these systems,

when a peer (i.e., an initiator) sends a request for a specific resource, the server

assists the initiator to directly fetch the content from another nearby peer (i.e.,

the responder) based on locality, without any mechanism to conceal the initia-

tor’s or the responder’s identity. Therefore, the adversary who controls a num-

ber of peers is capable of mounting inference attacks on existing peer-assisted

CDNs to identify the initiator or responder of a forwarded request. Through the

observed communication, the adversary can infer the user’s browsing history

and preferences. The adversary can then use this information for spear phish-

ing, personal targeted advertisements, and social engineering attacks [163].

The primary goal of peer-assisted CDNs is to save the server’s bandwidth

and reduce client-side network latency. It is quite challenging to conceal peers’

identities (IP addresses) to mitigate inference attacks as well as to preserve

reasonable responsiveness for the deployed site. On the other hand, although

anonymous mechanisms have been well studied in communication systems [18,

22, 48, 117, 123, 136, 179, 183, 204, 205], their previous applications rarely im-

pose stringent performance demands such as in a real-time caching system.

Their primary goal (e.g., onion routing [204], Tor [123], Mixminion [117] and

Crowds [205]) is to preserve high level of anonymity. Directly adopting these

approaches may introduce non-negligible performance overhead for clients, e.g.,

the client-side communication overhead for circuit setup in onion routing-based

and Crowds-based systems. For instance, Mixminion can introduce several-hour

latency for message transmission [117].

To address these challenges, we develop an Anonymous Peer-assisted CDN

(APAC) for web applications. APAC involves client-side browsers as peers to

distribute content without requiring any software installation for users. Once

users visit the deployed site, APAC’s client-side code will assist their browsers

to join APAC as peers and serve resources to other users. APAC is compatible

with mainstream browsers and requires negligible modification on the deployed

19

websites. In practice, the adversarial peers can exist uniformly in the system

or densely surround the victim. To achieve an adequate level of anonymity in

different scenarios, we introduce a new region-based circuit selection algorithm

to construct a path (denoted as circuit) consisting of peers. Our APAC encap-

sulates the request with standard layered encryption and the initiator can fetch

the content via the constructed circuit.

Our goal is not to build a perfect anonymity-preserving system, as it may

introduce huge performance overhead, but we aim to enable the system to make

trade-off between performance and anonymity, which is significantly beyond

that of current peer-assisted CDNs. Using a standard measure of degree of

anonymity [122], we show that APAC can preserve a high degree of initiator/re-

sponder anonymity (i.e., at 0.8 degree of anonymity recommended for anony-

mous communication systems by Diaz et al. [122]), with only two intermediate

peers for a circuit even if 35% of all peers are under the adversary’s control. Our

locality-aware APAC is tunable to select intermediate nodes nearby the initia-

tor/responder, which reduces the resource fetching time (network latency) for

peers. Our evaluation in a city-wide network shows that with two intermediate

peers for a circuit, APAC can reduce 44.1% client-side network latency and

save 97.3% server-side bandwidth when fetching 2 MB1 resources via peers,

with 0.8 degree of anonymity.

Contributions. Compared to regular CDN services, APAC saves the bandwidth

of the CDNs edge server, and reduces the latency for peer when the edge server

and peers are not in the same city. In contrast to single-hop peer-assisted CDNs

such as Swarmify, APAC provides an adequate level of anonymity for peers, but

it trades off the performance, e.g., network latency. In summary, we provide

the following contributions:

• We systematically analyze inference attacks on real-world services, i.e., Swarmify,

BemTV and P2PSP.

1 Since the averaged total size of transferred data when loading a site is 2268 KB [50], we
use the fetching time of 2 MB resources as the representative.

20

1

2
3

Peer Server vP

Peer vA
(Adversary)

Peer vB
(Victim)

Figure 3.1: Illustration of an inference attack to infer the responder of a request.
The adversarial peer vA sends a request for a resource R to the peer server (in
1©). Based on locality, the server replies vA with the nearby victim vB having R

(in 2©). vA fetches R from vB (in 3©), thus the adversary infers that the victim
has viewed R recently.

1

Peer vA
(Victim)

2 Peer vB
(Adversary)

Peer vC
(Adversary)

Figure 3.2: Illustration of an inference attack to infer the initiator of a request.
The user vA fetches resources from peer vB and vC which are controlled by the
adversary (in 1© 2©). Therefore, by passively observing the requests from the
victim, the adversary can determine that the victim is looking for (interested in)
the requested content.

• We develop an anonymous peer-assisted CDN (APAC) for web applications,

which involves browsers as peers to distribute content. Our prototype imple-

mentation is available online [4]. From our analysis, APAC can preserve high

level of initiator/responder anonymity even if 35% peers are compromised.

• APAC is compatible with current browsers, and requires no client-side in-

stallation. Our evaluation demonstrates that APAC can bring desired net-

work latency reduction for peers and bandwidth savings for deployed sites.

APAC can customize and balance between three considerations: anonymity,

performance and compatibility with browsers.

21

3.2 Motivation & Problem Statement

3.2.1 Inference Attacks & Real-world Examples

As shown in Figure 2.1, a typical peer-assisted CDN does not conceal the ini-

tiator’s/responder’s identity (IP address) for each request. By observing the for-

warded requests from the controlled peers in the system, the adversary can effec-

tively infer the initiator/responder of each request, and further infer the victim’s

browsing history and preferences (as shown in Figure 3.1 and 3.2). We term

such attacks as inference attacks. In an inference attack, when any of the adver-

sarial peers is the responder/initiator of a request, the adversary can definitely

determine which peer is the initiator/responder of the request. By profiling a

user’s browsing history and preferences with the inference attack, the adversary

can infer the victim’s digital identity [226] and precise geolocation [152], as

well as further abuse the sensitive information for spear phishing, personally

targeted advertisements, or even social engineering attacks [163].

Inference attacks in peer-assisted CDNs have not been carefully studied.

We analyze inference attacks on three real-world services, including Swarmify,

BemTV and P2PSP, to show the prevalence and effectiveness of such attacks2.

Swarmify. Swarmify [45] assists the deployed site to deliver content to users

from other peers based on locality. It requires sites to include a service-specific

library based on WebRTC [59] and deploy optional changes on resources. Al-

though all communications between peers in Swarmify are encrypted, our study

demonstrates that it does not guarantee anonymity for peers.

We have mounted an inference attack as follows. We first deployed Swarmify

on a website and set 10 images and 2 videos as the targeted resources. For the

first time, we launched a Chrome browser as the victim’s peer. The victim’s peer

randomly fetched part of resources (unknown to the attacker) from the remote

2 Previous work [231, 232] mentions that peers can learn the IP addresses of the connect
peers in numerous peer-assisted CDNs, e.g., NetSession, FireCoral, FlowerCDN and Maygh.
Thus, these services are conceptually vulnerable to inference attacks too.

22

server. To infer what content the victim has requested, we located the adver-

sarial node nearby the victim’s peer in the same local area network (LAN), and

used Wireshark [58] to eavesdrop on the network traffic from/to the controlled

node. When the malicious peer requested all resources, we clearly observed that

the peer server replied with the victim’s IP address and instructed the malicious

node to fetch particular resources from the victim’s peer. Therefore, the attacker

can infer the responder’s identity (the victim’s IP address) and what content

the responder holds. For the second time, the adversarial peer first fetched and

buffered all content from the site. When the victim’s peer requested several re-

sources, the controlled peer was instructed to distribute the particular resources

to the victim’s peer. Observing the traffic from the controlled peer, the adver-

sary identified the victim’s IP address and the requested resources. Hence we

conclude that Swarmify is vulnerable to inference attacks.

BemTV & P2PSP. BemTV [5] is a hybrid CDN and P2P infrastructure for

streaming live videos over HTTP, which is also built upon WebRTC with the aim

of utilizing clients’ web browsers to relay the streamed media files. BemTV re-

quires additional setup on the server side to manage connections between peers,

but this is completely transparent to peers.

We have tested BemTV to live-stream a sample video that had been accessed

by several computers located within a university network infrastructure. While

streaming out the media files, we observed the incoming and outgoing traffic of

requests from a computer that acted as an adversary. For each media file, the

attacker was able to figure out which specific users (determined by the mapping

of IP address) fetched/delivered the media content from/to the adversarial peer.

Based on this information, the adversary is capable of determining who is the

initiator/responder and further infer the exact video that the victim is watching.

In addition, it turns out that BemTV does not guarantee the content integrity

between peers in the network, which opens up possibilities for content pollution

attacks [137, 151, 186]. Besides BemTV, we have also carried out inference

23

attacks on another video streaming service called P2PSP [35]. We find that

P2PSP suffers the same anonymity issues as BemTV does.

Key findings. Our analysis (in Section 3.6.2) reveals that existing peer-assisted

CDNs (including Swarmify, BemTV and P2PSP) cannot preserve an adequate

level of anonymity when over 20% peers in the network are malicious. Our

analysis is conservative, as we assume that the peer-assisted CDN’s server ran-

domly assigns a peer having the requested resource as the responder for the

request. In reality, if the CDN is locality-aware and instructs the peers to fetch

content from nearby peers, it is even easier for the adversary to identify the peers

near her controlled peers. Hence the existing peer-assisted CDNs provide much

worse anonymity for users than that in our conservative analysis.

3.2.2 Problem Statement

In this chapter, for a particular message (i.e., resource request), we call the peer

who initiates the request the initiator, and call the peer who responds the request

the responder. We define initiator/responder anonymity to mean that the adver-

sary cannot identify the initiator/responder among peers for a resource request.

The assumptions on the adversary are:

• Internal: The adversary controls some of peers, which are part of the system

and can observe the information about forwarded packets.

• Partial: The adversary controls a limited number of peers (e.g., a fraction f),

and cannot perform any traffic analysis on the rest of the system.

• Non-adaptive: The adversary places nodes first, and then the system con-

structs a circuit for the request. Once the request is in progress, the adversary

cannot alter the placement of peers.

We consider an honest-but-curious adversary, which follows the protocol and

places nodes randomly in the network or nearby a victim to increase their chance

to determine whether the victim initiates/responds a request. We assume that

existing accounting mechanisms [62] can be deployed to discover protocol-

24

violating peers, e.g., massively sending or delaying/denying content delivery re-

quests [62]. Sybil attacks [118,126,229] and denial-of-service attacks (DOS) [196]

are out of scope in this chapter.

The adversary’s goal is to identify the initiator/responder of a request with

high probability. At the beginning of the request, any benign peer is indistin-

guishable as the initiator/responder. When the request is in progress, the adver-

sarial peers may be chosen as hops for the request. Hence the adversary can

make some observations of the request and gain more knowledge to infer the

initiator/responder with higher probability. An anonymous system is required

to guarantee that the adversary’s observations give minimal advantage to deter-

mine the initiator/responder. Such an adversary’s advantage can be quantified

as an entropy metric — the amount of uncertainty in determining the initia-

tor/responder of a request to be a specific victim node. Considering the initiator

anonymity, we define the system’s entropy as:

Definition 3.2.1. Given a request in the system, where Ψ is the set of peers, and

pu is the probability that the peer u is the initiator of the request, the entropy

H(I) for the system is defined by:

H(I) = −
∑
u∈Ψ

pu log2 (pu) (3.1)

If the adversary has no a priori information on the request, the system pre-

serves the maximum entropy HM . With some observations, e.g., the respon-

der is adversarial and monitors the forwarded packets, the adversary has higher

probability to infer the initiator, as well as the system’s entropy decreases. Let

O be the set of all observations for the adversary. When an observation o ∈ O

occurs with the probability P (o), the corresponding entropy is H(I|o).

Definition 3.2.2. The conditional entropy of the system on observing O is de-

fined by:

H(I|O) =
∑
o∈O

P (o) ·H(I|o) (3.2)

25

The advantage gained by the adversary with observation O is the differ-

ence in the entropy before and after O, that is: HM − H(I|O). The degree of

anonymity is defined as the normalized value of this difference in certainty of

the adversary’s guesses about a victim being the initiator:

Definition 3.2.3. The degree of initiator anonymity provided by a system is

defined by:

D(I|O) = 1− HM −H(I|O)

HM

=
H(I|O)

HM

(3.3)

The larger D(I|O) is, the higher level of anonymity a system provides.

D(I|O) = 0 or D(R|O) = 0 means absolutely no anonymity, i.e., the adver-

sary knows with 100% the initiator or responder of a request; When the initiator

or responder is not identifiable among all peers, D(I|O) = D(R|O) = 1. To

preserve an adequate level of anonymity, the degree of anonymity for a system

is at least ε (ε = min{D(I|O)}). In this chapter, we set ε as 0.8, which is sug-

gested by a previous study [122]. Hence, if D(I|O) and D(R|O) in a system

are over 0.8, we consider the system preserve an adequate level of initiator/re-

sponder anonymity. Analogous to H(I|O) and D(I|O), we define H(R|O) and

D(R|O) to quantify the responder anonymity in a system.

3.3 Anonymous Peer-assisted CDN

In this section, we present our anonymous CDN system APAC that provides

protections against inference attacks as well as balances the performance over-

head. To build practical anonymous peer-assisted CDNs, we have three goals

below.

Anonymity: In a peer-assisted CDN, the adversary may control a fraction f

of peers. The adversarial peers can be uniformly scattered in the network or

densely surround the victim. When a benign peer sends/responds a request to

another peer to fetch/deliver a resource, our system should conceal its identity

and the linkability to the requested resource. Therefore, other peers do not know

26

who is the initiator/responder of the request.

Performance: Peer-assisted CDNs are designed to assist customers (e.g., sites)

to save bandwidth of servers and reduce latency of delivering content to users.

Our system should not sacrifice this merit. Therefore, one important goal for us

is to balance performance and anonymity.

Compatibility: Our design should introduce no (or minor) changes on websites

and clients, such that our system can be easily deployed on various web ap-

plications and is user-friendly. Compared with other peer-assisted CDNs (e.g.,

NetSession) that require the end users to install standalone software, our system

can attract more users to join as peers for content delivery.

3.3.1 Design of APAC

Overview. APAC consists of two primary components: a peer server run by the

site operator, and the client-side code implemented in JavaScript and executed

in each peer, i.e., a user’s web browser. Independent of the site’s content server

(or the CDN’s edge server), the peer server does not directly deliver content, but

maintains the connections with peers and coordinates peers to fetch data either

from the content server or other peers. At the beginning, when peers request

resources, the peer server instructs them to retrieve the content from the content

server. The peers who have retrieved the content will store it and be ready to dis-

tribute it. When the total number of joined peers and the number of peers having

resources are sufficient to preserve the required anonymity based on proper con-

figurations, the peer server will construct circuits for new requests. The server

chooses nodes based on our selection algorithm, and arranges them into a path

(or circuit), through which the request and content will be transmitted. Then

the initiators of requests fetch content from other peers via the circuits. After

receiving the content from other peers, peers first verify its integrity, then store

and serve it to other peers. We detail the functionalities and implementation in

Section 3.4. As Figure 3.3 illustrates, analogous to current peer-assisted CDNs,

27

Edge (Content) Server

Peer

APAC Peer Server

APAC APAC

Figure 3.3: The overview for the deployment of APAC.

APAC can be deployed for different edge (content) servers, and serves users far

from the nearest edge server. We show the performance of APAC in a city-wide

scale in Section 3.5. Next, we demonstrate how APAC achieves the three design

goals.

Anonymity: We introduce a new region-based circuit selection algorithm that

APAC’s peer server uses to construct circuits for requests. A circuit consists

of three categories of nodes: nodes nearby the initiator and the responder, and

nodes chosen globally (not included in the first two categories). To provide ini-

tiator/responder anonymity, APAC’s peer server communicates with peers and

constructs a circuit for each requests, instead of letting the initiator to construct

the circuit in conventional onion routing-based approaches, which only preserve

initiator anonymity. Each request in APAC is encrypted as a layered encryption

packet with the keys of selected nodes for the circuit in the peer server, and is

transferred through the circuit. In this way, the initiator and responder know

what resource is requested, but cannot identify each other. Any intermediate

node only knows its predecessor and successor, but does not know the transmit-

ted content, or determine which peer is the initiator or responder. In contrast to

the current peer-assisted CDNs, in which controlling one node in a request is

enough to identify the initiator/responder, it is difficult for the adversary to infer

the initiator when only controlling the responder or several intermediate peers.

To preserve higher level of anonymity, APAC can set a longer length for the

circuit. APAC can also be adjusted to select all intermediate nodes globally to

avoid choosing disproportionate number of adversarial peers.

28

For a given circuit, by controlling the first relay, the responder and at least

half of the intermediate peers alternatively in the circuit, the adversary can de-

termine the initiator [230]. We show that an adversarial placement of peers

(e.g., placing more peers nearby the victim) does not give significant advan-

tage over a randomized placement by an honest-but-curious adversary (details

in Section 3.6.1). Even in the analysis of the worst case that the adversary

can learn the distance between any two controlled peers, our system can still

preserve an adequate level of anonymity with proper configurations (details in

Section 3.3.4.1).

Performance: We design APAC to be locality-aware to achieve good perfor-

mance. With APAC’s peer server, we can avoid the non-negligible overhead for

the circuit setup on the client. Furthermore, based on the locality information

of all peers maintained by the server, we utilize the region-based circuit selec-

tion algorithm to balance the anonymity and performance. Instead of randomly

choosing intermediate peers, our algorithm can reduce the network latency by

selecting peers nearby the initiator/responder. By adjusting the maximum length

of the circuit and the distribution factors (controlling the number of intermediate

nodes in each region), APAC can provide significant network latency reduction

and bandwidth savings as well as preserve a high degree of anonymity. We

discuss the design of circuit construction in the next section, and evaluate the

performance in Section 3.5.

Compatibility: We provide a web overlay with WebRTC [59] supported by

mainstream browsers (e.g., Firefox and Chrome) to achieve the peer-to-peer

communication and data transmission among different peers (browsers). Thus

when visiting a deployed website as usual, the user’s browser will automatically

join APAC as peers to fetch/distribute content from/to other peers in a transpar-

ent manner. Meanwhile, APAC’s client-side code only requires the retrofitted

website to specify the targeted resources. No specification means all static re-

sources on the page can be distributed via peers. We demonstrate the details in

29

Algorithm 1: Region-based Circuit Selection Algorithm in APAC
input : N− number of peers, vinit− initiator, vres− responder, R− requested

resource, Lmax− the maximum number of intermediate nodes (or relays),
αinit, αres(0 ≤ αinit + αres ≤ 1)− distribution factors, Ninit− number of
peers nearest to vinit, Nres− number of peers nearest to vres, SR− set of peers
having R, NR = |SR|, G− topology graph of peers

output: cir−selected circuit
1 vres ← randomSelect(SR)
2 l← random(1, Lmax)
3 cirinit ← 〈〉; cirim ← 〈〉; cirres ← 〈〉
4 if bαinitlc ≥ 1 then
5 G′ ← removeFrom(G, {vres})
6 Sinit ← selectNearest(G′, vinit, Ninit)
7 cirinit ← randomSelectNodes(Sinit, bαinitlc)
8 end
9 if bαreslc ≥ 1 then

10 G′ ← removeFrom(G,Sinit)
11 Sres ← selectNearest(G′, vres, Nres)
12 cirres ← randomSelectNodes(Sres, bαreslc)
13 end
14 if l − bαinitlc − bαreslc ≥ 1 then
15 G′ ← removeFrom(G,Sinit ∪ Sres)
16 Sim ← getNodes(G′)
17 cirim ← randomSelectNodes(Sim, l − bαinitlc − bαreslc)
18 end
19 cir ← concatenate(vinit, cirinit, cirim, cirres, vres)
20 return cir

Section 3.4.

3.3.2 Circuit Construction

The key technique of our approach is the locality-aware circuit selection algo-

rithm. Given a set of parameters of the anonymity requirements and threat lev-

els, the algorithm selects a circuit with optimized performance. In this section

we discuss the algorithm, and discuss parameter selection in the next section.

When other peers have already cached the requested resources, a peer can

fetch content from them. We propose the circuit selection algorithm for APAC

to choose intermediate peers from three categories: near-initiator, globally ran-

dom (not nearby the initiator/responder) and near-responder nodes as a circuit

for each request. Every request in APAC is encapsulated in layers of encryption

(like onions) and transferred via the circuit.

Algorithm 1 describes our region-based circuit selection algorithm. In APAC,

30

Notation Description

lcir The circuit’s length (number of nodes including the ini-

tiator and responder in the circuit - 1)

l, Lmax Number of intermediate peers or relays (l = lcir−1), the

maximum l

Sinit The set of Ninit peers nearest to the initiator

Sres The set of Nres peers nearest to the responder

S,SR,Sim The set of all peers in the system, the set of peers having

a resource R, S− Sinit − Sres

N , Ninit, Nres, NR Number of peers in S, Sinit, Sres, SR

αinit, αres Fraction of nodes for the circuit in Sinit, Sres

f , fR, finit, fres, fim Fraction of peers are compromised in the system, SR,

Sinit, Sres, Sim

Table 3.1: Notations for anonymity analysis.

the peer server maintains certain information about the current network (e.g., the

total number of peers). The input parameters Lmax, αinit , αres, N, NR, Ninit,

andNres are decided by the peer server based on the trade-off between anonymity

and performance, defined in Table 3.1.

• The peer server randomly chooses one peer as the responder from the set of

peers having the requested resource R (line 1),

• Based on the range from 1 to Lmax, the number of intermediate nodes (l) is

determined (line 2).

• According to the distribution factor αinit, the peer server randomly picks

nodes nearby the initiator as the first part of the circuit3 (line 4 - 7).

• According to another distribution factor αres, the peer server selects nodes

nearby the responder as the last part of the circuit (line 8 - 11).

• The remaining nodes of the circuit are randomly chosen from the rest of all

peers (line 12 - 15).

3The distances between the chosen peers and the initiator/responder are measured based on
the peers’ geographical coordinates, which can be obtained via navigator.geolocation [19] or
using the GeoIP service to map network addresses to physical locations.

31

Graph G

initiator
responder

2
6

3

4
1

5

Figure 3.4: A 8-node (6-relay) circuit from the initiator to the responder in
APAC.

Figure 3.5: The network latency reduction (based on the loading time without
APAC) decreases when increasing the degree of anonymity of the system.

• The peer server concatenates all the nodes (including the initiator, intermedi-

ate nodes and responder) in sequence as the circuit for the request (line 16).

Figure 3.4 demonstrates a 8-node circuit constructed by the peer server in APAC.

3.3.3 Parameters Selection

Depending on the requirement of anonymity/performance for the deployed web

application, the input parameters for Algorithm 1 can be adjusted based on the

analysis in Section 3.3.4 and 3.5. In this section, we briefly illustrate the primary

factors to select these parameters.

The maximum number of intermediate nodes Lmax. The distribution of peers

in the network, the required anonymity, the fraction of adversarial peers and

other factors affect the selection of Lmax. As an in-advance conclusion, to

achieve better anonymity, the system is supposed to select largerLmax (as shown

32

in Figure 3.6, 3.7 & 3.8). On the other hand, to achieve better performance of the

system, the smaller Lmax is preferred (as shown in Figure 3.13). As Figure 3.5

shows, by adjusting the setting of APAC at the sweet spot, the system can pre-

serve an adequate level of anonymity (i.e., 0.8 degree of anonymity) with minor

performance overhead4. In our experiment, setting two intermediate nodes for

the circuit makes the system at the sweet spot.

Distribution factors αinit & αres. To provide higher level of anonymity for

peers even when adversarial peers are densely near the initiator/responder, the

system can select smaller αinit/αres andNinit/Nres to diversify the intermediate

nodes on the circuit. Thus the probability to choose an adversarial node as

the intermediate node is approximate to f , which does not give the adversary

significant advantage. APAC can enlarge αinit & αres to reduce client-side

network latency for peers (as shown in Figure 3.15 & 3.16).

The other parameters N, NR, Ninit & Nres. By increasing the total number

of peers N and the number of peers having requested resources NR, the system

can preserve higher level of anonymity, but it requires more users to join the

system to start the content delivery via peers. To reduce the client-side network

latency, the system can set small Ninit & Nres to let intermediate nodes nearby

the initiator/responder.

The security parameters such as the maximum number of intermediate nodes

Lmax and distribution factors αinit & αres can be tuned to adjust the anonymity

level of APAC. To achieve higher level of anonymity for peers, the developer

can select larger Lmax to increase the length of a circuit and larger N /NR to in-

crease the threshold of starting using APAC, as well as choose smaller αinit/αres

and Ninit/Nres to diversify the intermediate nodes on the circuit. To preserve

initiator/responder anonymity for peers, currently peers cannot overrule the se-

curity parameters set by the developer; otherwise, adversarial nodes may choose

4 The figure is based on our anonymity analysis in Section 3.3.4 (Figure 3.6) and perfor-
mance analysis in Section 3.5 (Figure 3.13). We consider that 100 peers (35% are adversarial)
join APAC in one city, increasing the circuit’s length can provide higher level of anonymity to
benign peers but introduce more network latency.

33

0.1 0.2 0.3 0.4 0.5 0.6 0.7
f

0.4

0.6

0.8

1.0

D(I|O)

Lmax = 0

Lmax = 1

Lmax = 2

Lmax = 3

Lmax = 4

Lmax = 5

Lmax = 6

D(I|O) = 0.8

Figure 3.6: Effect of varying Lmax: Increasing the maximum number of inter-
mediate nodes increases the degree of initiator anonymity.

50 100 150 200
N

0.6

0.7

0.8

0.9

1.0

1.1

D(I|O)

f= 0.25, Lmax = 2

f= 0.25, Lmax = 3

f= 0.35, Lmax = 2

f= 0.35, Lmax = 3

f= 0.45, Lmax = 2

f= 0.45, Lmax = 3

D(I|O) = 0.8

Figure 3.7: Effect of varying N : Increasing the total number of joined peers
increases the degree of initiator anonymity.

low level of anonymity to easily infer the identity of the initiator/responder for a

circuit. In the extreme scenario where a peer seeks an even higher privacy guar-

antee, it can opt out APAC to directly fetch resources from the resource server

as fallback.

3.3.4 Anonymity Analysis

In this section, we analyze the anonymity of APAC in a mathematical way

and demonstrate the way to choose proper parameters for the circuit selection

algorithm based on the requirement of anonymity.

34

0.2 0.4 0.6 0.8 1.0
fR

0.65

0.70

0.75

0.80

0.85

0.90

D(I|O)

fres= 0.35, Lmax = 2

fres= 0.35, Lmax = 3

fres= 0.35, Lmax = 4

fres= 0.45, Lmax = 2

fres= 0.45, Lmax = 3

fres= 0.45, Lmax = 4

D(I|O) = 0.8

Figure 3.8: Effect of varying fR: Increasing the number of adversarial peers
having the requested resource decreases the degree of initiator anonymity.

3.3.4.1 Analysis of Initiator Anonymity

Considering the initiator vinit issues a request for a resource R, the peer server

sets up a (l+ 2)-node circuit based on the selection algorithm (in Algorithm 1),

and the responder vres delivers R. Our analysis follows the definitions in Sec-

tion 3.2.2 and the notations in Table 3.1.

In APAC, each intermediate node in a circuit only knows its predecessor

and successor. To identify the initiator of a circuit and link the requested re-

source to it, the adversary has to infer the circuit’s length, control the responder

(i.e., to know which resource is requested) and the first relay (i.e., to identify

the predecessor as the initiator). The padding for each encryption layer makes

the adversary difficult to infer the relative positions of the controlled peers in

a circuit. Thus to confirm one of the controlled nodes is the first relay (only

when the adversary knows the length), the adversary has to control the respon-

der and some intermediate nodes in the circuit to reconstruct the circuit. For a

given circuit, by controlling the first relay, the responder and at least half of the

intermediate peers alternatively in the circuit, the adversary can determine the

initiator [230]. However, we consider the worst case that the adversary can learn

the distance between any two controlled peers by passively logging forwarded

requests and transmitted data as well as timing attacks5. Thus by determining

5 To precisely determine the distance between two peers is difficult but possible for the ad-
versary with timing attacks [66,97]. To show the effectiveness of APAC against the adversary,
we analyze the initiator anonymity in this worst case.

35

the correct circuit’s length as well as compromising the first relay and the re-

sponder, the adversary can infer that the first relay’s predecessor is the initiator.

We assume that OI is the observation that the adversary can identify the

initiator for a circuit with the probability P (OI) that OI occurs. Based on the

derivation in Section 3.6.1, the degree of initiator anonymity can be computed

as:

D(I|O) =
H(I|O)

HM

= (1− P (OI))
log2 ((1− f)N)

log2N
(3.4)

In practice, the adversarial peers can exist uniformly in the system or densely

around the initiator/responder. Next, we discuss the degree of initiator anonymity

in these two scenarios.

Randomly placing peers in the system. In this case, the fractions of adversarial

peers are equal in three different regions, i.e., finit = fres = f . If fR = f ,

the probability for the adversary to identify the initiator of the circuit (proved

in Section 3.6.1) P (OI) = 1
Lmax

∑Lmax
l=1

f2

Lmax−l+1
. Therefore, the degree of

initiator anonymity can be represented as:

D(I|O) =

(
1− 1

Lmax

Lmax∑
l=1

f2

Lmax − l + 1

)
log2 ((1− f)N)

log2N
(3.5)

To quantify the effects of Lmax and N to the degree of initiator anonymity, we

plot Equation 3.6.2 as Figure 3.6 and 3.7. LetN = 100, Lmax = 0, 1, 2, 3, 4, 5, 6,

Figure 3.6 shows that increasing the maximum circuit length can increase the

degree of initiator anonymity. The first plot (Lmax = 0) represents the degree of

anonymity for current peer-assisted CDNs (derivation in Section 3.6.2). We can

see that the system does not hold 0.8 degree of anonymity even when f < 0.2.

On the contrary, APAC preserves 0.8 degree of anonymity when Lmax = 2 and

over 35% peers are compromised. As shown in Figure 3.7, increasing the to-

tal number of joined peers can slowly increase the initiator anonymity. From

Figure 3.6 and 3.7, we can see that when Lmax ≥ 2 and N ≥ 100, APAC can

preserve the suggested degree of anonymity (i.e., 0.8), even if 35% of all peers

are under the adversary’s control.

36

Placing peers nearby the initiator/responder. For a targeted peer, the adver-

sary may increase fR by storing the requested resource in more controlled peers

and enlarge finit/fres by locating controlled peers nearby the initiator/responder.

As we discussed in Section 3.3.1, without considering the worst case, the place-

ment of peers nearby the initiator/responder does not help the adversary to gain

significant advantage. Next we discuss the influence of this placement of peers

in the worst case. If the first relay is in the initiator’s region or the responder’s

region (l1 > 0 or l1 = l2 = 0 & l3 > 0 as shown in Equation 3.6.1), then

P (OI) = 1
Lmax

·
∑Lmax

l=1
finitfR

Lmax−l+1
or P (OI) = 1

Lmax

∑Lmax
l=1

fresfR
Lmax−l+1

. The de-

gree of initiator anonymity can be computed as (using fres as the representative):

D(I|O) =

(
1− 1

Lmax

Lmax∑
l=1

fresfR
Lmax − l + 1

)
log2 ((1− f)N)

log2N
(3.6)

To quantify the effects of fR and Lmax to the degree of initiator anonymity,

we plot Equation 3.3.4.1 as Figure 3.8. Let N = 100, f = 0.35, as shown in

Figure 3.8, increasing fR and fres can decrease the initiator anonymity. How-

ever, if we set αinit and αres properly, which makes l1 = 0 and l3 = 0, then

P (OI) = 1
Lmax
·
∑Lmax

l=1
fimfR

Lmax−l+1
. If we also setNinit = Nres = 0, then fim = f .

Hence increasing fres does not directly decreaseD(I|O). On the contrary, when

fres or finit increases, fim may decrease accordingly as f is the same. In this

case, if fim = 0.35, the first, second and fourth plots in Figure 3.8 can represent

the degree of initiator anonymity accordingly. Thus when Lmax = 2, APAC

can preserve over 0.8 degree of the initiator anonymity if fR is around 0.45.

3.3.4.2 Analysis of Responder Anonymity

Analogous to initiator anonymity, in order to identify the responder of a given

circuit, the adversary has to determine the circuit’s length as well as control

the last relay and the initiator. We assume that OR is the observation that the

adversary can identify the responder for a circuit with the probability P (OR)

that OR occurs. The degree of responder anonymity can be computed as (details

37

of the derivation in Section 3.6.1):

D(R|O) =
H(R|O)

HM

= (1− P (OR))
log2 ((1− f)N)

log2N
(3.7)

The analysis for the two scenarios: adversarial peers uniformly exist in the

system and more adversarial peers near the initiator/responder, is similar to the

analysis for the degree of initiator anonymity. As a result, if we properly tune the

parameters, e.g., Lmax = 2, N = 100, bαinitlc = 0 and bαreslc = 0, APAC can

preserve 0.8 degree of initiator/responder anonymity even if 35% of all peers

are adversarial and have different distributions.

3.4 Implementation of APAC

In this section, we discuss the implementation details of APAC. We implement

APAC with 2600+ lines of code as well as several libraries and frameworks.

APAC’s client-side code is written in JavaScript with 1000+ lines of code, apart

from three libraries [13, 38] The peer server is also written in JavaScript with

1600+ lines of code based on Node.js platform and PeerServer [38]. Our pro-

totype implementation is available online [4]. APAC is compatible with main-

stream browsers (e.g., Chrome, Firefox and Opera) and various operating sys-

tems (e.g., Mac OS, Linux and Windows). Similar to other peer-assisted CDNs

(e.g., Swarmify), APAC is designed not to violate the same-origin policy —

APAC is deployed “per website” along with the client-side scripts.

3.4.1 Components in APAC

In APAC, the communications between the peer server and peers are over HTTPS

(e.g., TLS protocol [52]), and the data transmission among peers are over We-

bRTC which uses DTLS protocol [15] as shown in Figure 3.9. TLS and DTLS

protocols ensure that communication channels are secure and the adversary can-

38

Peer Server vP

Peer vA

HTTPS HTTPS

STUN STUN
DTLS

Peer vB

Figure 3.9: Overview of the communication channels in APAC.

not eavesdrop or tamper with any message in the communications among peers

and servers. APAC utilizes Session Traversal Utilities for NAT (STUN) [43] to

deal with Network Address Translator (NAT) [30] traversal. In this way, even

behind NAT a peer can communicate with another peer with a public IP address

or also behind NAT.

Resources in APAC. Similar to other CDNs, e.g., Swarmify and NetSession,

only static resources (e.g., files, images and videos) are delivered in APAC.

To ensure content integrity, we use flat naming mechanism for resources, i.e.,

naming the resource with its hash value. Alternatively, we can attach the hash

value for each resource request, then the peer can verify the content with the

value at the client side. Since the content server is trusted, the peer only needs

to verify the integrity of the resource fetched from other peers. To preserve

authenticity, peers are limited to fetch resources provided/authenticated by the

content server from other peers. The content server in APAC is the website’s

server or the CDN’s edge server, which stores the website’s pages and resources.

To retrofit a website to deploy APAC, developers only need to append APAC’s

client-side code on pages. Optionally, developers can explicitly specify several

shared resources instead of sharing all resources in the page.

Peer Server in APAC. The peer server is in charge of maintaining the con-

nections with peers, the properties of each peer (e.g., identity, IP address, peer

key, locality and names of stored resources) and the properties of each resource

(e.g., location in the content server and identities of peers having the resource).

Meanwhile, when a peer requests a resource, the peer server either assists the

39

peer to fetch the content from the server or constructs a circuit for the peer to

retrieve the resource from another peer. Key management and path choosing

are done by the peer server, and peer servers can be distributed to improve fault

tolerance.

Peers in APAC. To achieve our third goal (compatibility), APAC is designed

to support a plug-and-play style joining/leaving without any solicited action.

When a user visits the retrofitted site, APAC’s client-side code automatically

assists the user’s browser to join APAC as peers to fetch/deliver content from/to

other peers, without any additional installation of extensions or software. Users

leave APAC’s network when closing tabs, like Swarmify.6 The client-side code

is purely based on JavaScript and compatible with all mainstream browsers.

With WebRTC [59], the code enables browser-based real-time communication

and data transmission for peers. It also helps peers to store the requested con-

tents in indexedDB [24] (i.e., a high-performance client-side storage), which

enables peers to directly load the same resources from indexedDB without is-

suing new requests. With data URI scheme [14] 7, the client-side code appends

the content fetched from the server, another peer or indexedDB to the specific

location in the visiting page.

3.4.2 Content Delivery in APAC

In this section, we illustrate how peers fetch content from the content server,

other peers and indexedDB in APAC.

Initiation of peers. When a user first visits the site deployed with APAC, the

client-side code will negotiate with the peer server to assist the user’s browser

to join the system as a peer. The user’s browser issues an initiation request to

the peer server with the current IP address or coordinates obtained from nav-
6 To support opt-out in APAC for users, the website can host two copies, i.e., the original one

and the retrofitted one. A user can explicitly choose which one to visit via setting preferences in
the site’s first page.

7 The data URI scheme encodes data with base64, which introduces certain overhead. We
use other serialization techniques for data transmission to reduce the overhead, and only use
URI scheme when appending the data to web pages.

40

Peer vA
(Initiator)

Peer vB
(Intermediator)

Peer Server vP

1
2

7

Peer vC
(Responder)

3 4

6 5

Figure 3.10: Overview of how a peer fetches content from another peer via three
nodes in APAC.

igator.geolocation [19]. After receiving the request, the server recognizes the

user’s browser as a new peer, and responds the peer with an identity and a peer

key (symmetric key). Meanwhile, the server records the peer with its proper-

ties, i.e., identity, IP address, peer key and locality (derived from IP addresses

or coordinates). As for the peer key, after a period of time, each peer will com-

municate with the peer server to update a new key. After the initiation, the

new peer can take advantage of the service provided by APAC to fetch/deliver

resources from/to other peers.

Fetching content from the content server. When the total number of peers and

the number of peers having the requested resource do not meet the requirement

for anonymity (the input parameters in the circuit selection algorithm), the peer

server will instruct peers to retrieve resources directly from the content server.

In this case, the peer server responds the peer with the requested resource’s

original URL on the content server. Then the peer issues another request to the

content server to retrieve the resource. After receiving the resource, the peer

stores it in indexedDB, appends it to the page and updates the caching status to

the peer server.

Fetching content from other peers. Content delivery via peers can start to

operate when the system is sufficient to preserve the required anonymity as dis-

cussed in Section 3.3.4. We illustrate how peer vA fetches a resource R from vC

41

via a 3-node circuit (as shown in Figure 3.10) step by step8

• 1©: Peer vA issues a request for a resource R to the peer server vP ;

• 2©: After receiving the request, vP first searches for online peers having R.

Then vP sets up a 3-node circuit based on the configuration, constructs the

packet below with layered encryption, and responds vA with the packet.

{
IDvB , KR,

{
IDvC , NoncevB ,{

Rname, KR, NoncevC
}
KvC

}
KvB

}
KvA

(3.8)

KvA , KvB and KvC are peer keys for vA, vB and vC respectively. IDvB and

IDvC are the identities for vB and vC . KR is the key generated by vP for

vA and vC to encrypt/decrypt R. Rname is the requested resource’s name.

NoncevB and NoncevC contain the timestamp and padding, which make any

intermediate node difficult to determine its relative position on the circuit.

With Advanced Encryption Standard (AES) [113], the data (i.e., Rname, KR

andNoncevC) is encrypted byKvC (denoted by {...}KvC),KvB andKvA layer

by layer.

• 3©: Peer vA receives the packet, decrypts it with KvA , and obtains IDvB (i.e.,

the next peer to contact),KR and the remaining cipher text. Then vA forwards

the remaining data to vB.

• 4©: While receiving the packet from vA, vB obtains IDvC and NoncevB by

decrypting it with KvB . After verifying the timestamp in NoncevB , vB for-

wards the remaining packet to vC .

• 5©: Peer vC receives the packet from vB, strips off the layer withKvC , and ob-

tains Rname, KR and Noncevres . vC verifies the timestamp in Noncevres and

searches Rn in its indexedDB. If the timestamp is not out of date and R exists

in the indexedDB, vC responds to vB with
{
R,NonceR

}
KR

. Otherwise, vC

8 Alternatively, the peer server can also construct a circuit and instruct the responder to
deliver the requested resource to the initiator via the circuit. However, in this way every two
nodes also have to set up a connection first and then perform data transmission, which is the
same as the original design and does not save extra time for content delivery.

42

responds to vB with an empty packet.

• 6©: After receiving the response from vC , vB directly forwards the packet to

vA.

• 7©: When receiving
{
R,NonceR

}
KR

from vB, vA decrypts it with KR and

obtains R. vA verifies the integrity of R. If the obtained packet is empty or R

is bogus, vA issues another request for R to vP . Otherwise, vA stores R in its

indexedDB and issues a request to vP to update the status that vA has R.

Fetching content from indexedDB. Once a peer successfully fetches a re-

source from the content server or another peer (with verifying the integrity)

and stores it in the indexedDB, the peer will directly load the resource from its

indexedDB instead of issuing a new request afterwards. APAC is compatible

with the current browser cache, i.e., the default cache and HTML5 application

cache. The APAC’s client-side code typically appends resources using data URI

scheme. Since these cache mechanisms support to cache resources with data

URI scheme, they can help to speed up the loading time for these resources.

3.5 Performance Evaluation

To demonstrate the effectiveness of APAC, we evaluate the network throughput

of the deployed site’s server, and the network latency of fetching resources in

APAC. We investigate the following research questions in this section.

• What is the bandwidth saving of APAC compared with non-peer-to-peer

client/server system?

• What is the latency reduction of APAC with various configurations (e.g., cir-

cuit’s length and distribution factors)?

3.5.1 Measurement Setup

We have deployed APAC on a website that provides images of different sizes

in a range of 1 KB - 2 MB. APAC supports all standard text and media for-

43

1KB 10KB 100KB 1MB 2MB
101

102

103

Resource Size

T
ra

ffi
c

Si
ze

(K
B

) BASELINE
APAC

Figure 3.11: Total outgoing network traffic size of a server in response to a re-
quest in APAC setting (APAC) and in the client-server setting (BASELINE),
measured in KB.

mats, e.g., html, JavaScript, jpg, ogg and mp4. Since the majority of requests in

popular websites are for images [231], we use images as the representatives of

distributed resources in our experiment. Both the site’s content server (i.e., edge

server) and the peer server are located in City A9. Considering a typical scenario

that peers and the content/peer server are in different cities, we place peers in

City B different from City A. We launch over 100 different browser instances

with located across City B. When browsing the same site deployed with APAC,

these browsers join the system as peers.

To measure the network throughput, we deploy a performance measurement

tool called iftop on the content server as well as the systems hosting browser

instances. To measure the client-side network latency in various situations, we

adjust the settings in the circuit selection algorithm. We vary the number of

nodes on the circuit from 2 (no intermediate node) to 6 by changing Lmax, and

diversify the locations of intermediate nodes (tuning distribution factors αinit

and αres) in City B. We demonstrate how these settings for circuit construction

affect the performance of APAC.

Comparison to other CDNs. CDN operators can increase the geo-density of

edge servers up to a point (e.g., placing edge servers in major cities of various

countries), but fetching resources for users far away from an edge server has

9 In this chapter, City A represents New York City, and B represents Singapore. In our
evaluation, we deployed one peer server, which is adequate for our experiments of 100 peers.
For a large scale of users, e.g., 1 million, multiple peer servers can be deployed to handle
requests in parallel.

44

major latency. Considering this typical scenario, we place peers and the peer/-

content server (or CDN’s edge server) in different cities in our experiment set-

ting. In this setting, compared to regular CDN services that clients directly fetch

resources from the CDN’s edge server, APAC can reduce network bandwidth

and network latency. We show the details of bandwidth savings in Figure 3.11

and 3.12, and network latency reduction in Figure 3.13. For example, when ev-

ery circuit has up to 4 nodes, APAC can reduce 97.3% bandwidth for the CDN’s

edge server and reduce 27.4% to 44.1 network latency of fetching 2 MB re-

sources for peers. Naturally, a single-hop peer-assisted CDN, such as Swarmify,

can achieve higher network latency reduction (e.g., 69.4% for Swarmify case)

than APAC does. However, it does not preserve the anonymity guarantee which

APAC aims to provide. We provide the detailed comparison on latency reduc-

tion in Figure 3.13.

3.5.2 Bandwidth Saving

First, we measure how much bandwidth can be saved by deploying APAC on

the server side. We record the total size of network packets that go out from the

content/peer server after the circuit (Lmax = 2 for this experiment) has been es-

tablished and the initiator starts fetching a specific resource (labeled asAPAC).

As a baseline, we also measure the size of outgoing network traffic from the con-

tent server in the typical client-server environment (labeled as BASELINE).

We define the bandwidth saving (labeled as BS) as the percentage reduction

from BASELINE.

Figure 3.11 shows the total size of outgoing network traffic from the server

in client-server and APAC settings. The total size of outgoing packets from

the server in APAC (APAC) is much smaller than the size of network traffic

in the normal client-server setting (BASELINE), and this applies to all re-

sources with different sizes. The reason is that peers in APAC can fetch a large

fraction of resources from other peers instead of the server. When the initiator

45

Figure 3.12: When the number of requests increases, the total outgoing network
traffic for BASELINE significantly increases, but the traffic for APAC only
slowly increases.

fetches a resource of 2 MB1, APAC can save 97.3% of the server’s bandwidth10.

When the total number of requests increases, APAC can significantly save the

bandwidth as shown in Figure 3.1211.

3.5.3 Network Latency

Next, we measure the network latency when fetching content in APAC with dif-

ferent peer placements. According to the statistics until 15th February 2016 [50],

the averaged total size of transferred data when loading a site is 2268 KB. Thus

in our experiment, we use the loading time of 2 MB resources (i.e., images) as

the representative. With fixing the size of the resource to 2 MB, we evaluate

APAC under the settings where the initiator, responder and intermediate nodes

are located in: 1) the same LAN, 2) the same WLAN and 3) different LANs

but in the same city (i.e., City B, labeled as “WAN-City”). We then vary the

length of circuit as well as distribution factors and compare those results with

a baseline: the network latency for a browser in City B to directly fetch the

resource from the content server without APAC12. Analogous to BS, we de-

fine the client-side network latency reduction NLR as the percentage reduction

from BASELINE. The higher the percentage of NLR is, the better is the
10 BASELINE = 2020 KB, APAC = 55.1 KB, and BS = 97.3%.
11 We set the requirement for the total number of peers as 100, thus the content delivery via

peers starts to operate when 100 peer join the system.
12 During the initial investigation, we observed the baseline latency (BASELINE) to be

9420 ms.

46

Swarmify 2-node 3-node 4-node 5-node 6-node
0

20

40

60

80

N
L

R
(%

)

LAN

WLAN

WAN-City

Figure 3.13: Network latency reduction (NLR) of an initiator peer in Swarmify
and APAC under three network configurations, as compared to the baseline. All
data are based on a resource with size of 2 MB and averaged over 30 runs with
95% confidence intervals for each of them.

performance (0% = BASELINE). All our results are the average of 30 runs

with 95% confidence intervals for each of them.

Varying the circuit’s length. In Figure 3.13, “Swarmify” represents the Swarmify

system, and “2-node” represents the non-anonymous peer-to-peer setting in APAC,

i.e., 2 nodes without any intermediate nodes. Since they do not have any inter-

mediate nodes to route data, they have the largest network latency reduction, i.e.,

69.4% for Swarmify in WAN and 76.1% for APAC in LAN respectively. Due to

the implementation issue, Swarmify does not properly support P2P data trans-

mission in LAN and WLAN, so the NLR for Swarmify in LAN and WLAN

are quite small in Figure 3.13. We have reported this issue to their developer

team. Since APAC involves more intermediate nodes than a single-hop non-

anonymous system like Swarmify, APAC naturally shows a less latency im-

provement than Swarmify. This is illustrated in Figure 3.13, for a 4-node circuit

where APAC provides a latency reduction (49.7%) lower than the performance

obtained for Swarmify (69.4%) and non-anonymous setting (76.1%). Notably,

APAC still outperforms the baseline. In general, with the increase of the cir-

cuit’s length, the network latency reduction decreases, as more hops are required

to route the transmitted data. In the three configurations, the latency in LAN is

the smallest, as all the peers in the circuit are nearby. Since the bandwidth in

WLAN is limited, the latency in WLAN is larger than the other two settings.

We also evaluate the setup latency of a circuit for various number of interme-

47

2-node 3-node 4-node 5-node 6-node
0

1

2

3

4

P
er

ce
n

ta
ge

(%
) LAN

WLAN

WAN-City

Figure 3.14: The percentage of the network latency for setup overhead of a
circuit in three configurations.

3-0-0 2-1-0 2-0-1 1-2-0 1-1-1 1-0-2 0-3-0 0-2-1 0-1-2 0-0-3
0

10

20

30

N
L

R
(%

)

Figure 3.15: Network latency reduction (NLR) varies when intermediate nodes
are in different regions. “a-b-c” means the number of nodes in the initiator’s
region (a = bαinitlc), nodes randomly chosen (b = l − bαinitlc − bαreslc) and
nodes in the responder’s region (c = bαreslc).

diate nodes. As Figure 3.14 shows, the setup latency of a circuit is only a small

fraction of the network latency. For example, the setup latency of a circuit for 2

to 6 nodes is 11.6 ms, 83.8 ms, 152.7 ms, 227.3 ms, and 308.5 ms respectively

in the LAN setting. The percentage of the network latency for each of them is

0.52%, 2.28%, 3.22%, 3.77%, and 3.98% respectively.

Varying the distribution factors αinit and αres. In addition to adjusting the

circuit’s length, we can also tune the distribution factors αinit and αres to reduce

the latency in APAC. For a 5-node circuit, we place the initiator and respon-

der in two different regions (different LANs across City B), and we diversify

the locations of intermediate peers to change αinit and αres. As Figure 3.15

illustrates, setting more intermediate nodes around the initiator/responder (in-

creasing αinit/αres) for a circuit, the system further reduces the network latency.

Thus for the circuit construction, the system can select larger αinit and αres to

reduce performance overhead. For the best case in our experiment, the system

48

0 5 10 15 20 25 30 35 40 45 50

20

40

60

requests

N
L

R
(%

)

0-2-0/0-1-0
2-0-0/1-0-0

Figure 3.16: The network latency reduction (NLR) for 50 requests(sorted in
ascending order) when 100 joined peers are in APAC.

can reduce 27.8% latency only by adjusting the distribution factors. The sys-

tem can be set as not “locality-aware” and randomly chooses all intermediate

nodes (i.e., 0-3-0 setting) for the circuit. This configuration causes the worst

performance, but it enables the system to preserve the best level of anonymity

comparing to other settings.

Overall performance. We evaluate the overall performance in APAC for the

deployed site, when 100 peers (browsers) have joined APAC and are available

for content delivery. We set the maximum number of intermediate nodes on a

circuit as 2 (Lmax = 2), and record each 50 different resource requests in APAC

when all intermediate nodes are randomly chosen (0-2-0/0-1-0 for bαinitlc =

bαreslc = 0) and all relays are nearby the initiator (2-0-0/1-0-0 for bαinitlc = l)

respectively. The average NLR for the 0-2-0/0-1-0 and 2-0-0/1-0-0 settings are

27.4% and 44.1% respectively. The 0-2-0/0-1-0 setting has the considerable

network latency reduction, though it holds the worst performance comparing to

other settings analogous to Figure 3.15. The 0-2-0/0-1-0 setting provides the

higher level of anonymity than the 2-0-0/1-0-0 one, which makes the adversary

that places peers near the victim gain limited advantage over the honest-but-

curious adversary as discussed in Section 3.3.4.1. As Figure 3.16 demonstrates,

the latency reduction in the 2-0-0/1-0-0 setting is much larger than the other one,

which reflects that tuning distribution factors αinit and αres can assist APAC to

provide reasonable performance.

Key findings. As we discussed in Section 3.3.4, when the circuit has up to

49

two relays (Lmax = 2), and adversarial peers uniformly exist in the network

(f = finit = fres = fR), APAC can preserve the adequate degree of initiator/re-

sponder anonymity (i.e., 0.8). As we show in this section, with intermediate

peers up to 2 (Lmax = 2) and proper setting for distribution factors (αinit/αres),

APAC can save 97.3% bandwidth for the site’s server and reduce 27.4%/44.1%

network latency of fetching 2 MB resources for peers within one city. Therefore,

APAC can preserve initiator/responder anonymity with considerable bandwidth

saving and latency reduction.

3.5.4 Performance under Churn

By default, APAC is deployed without any browser extensions, so once a user

closes the tab for the retrofitted site, her browser (or peer) will leave APAC’s

network. If the peer happens to be a node in a circuit, its departure will break

down the circuit, and the initiator has to issue another request. Therefore, as a

part of the dynamics of peer participation or churn [216], the departure of peers

in the duration of a request/circuit (i.e., from the creation of the circuit to its

teardown) influences the success of data transmission through the circuit. To

quantify the success rate of circuits under Churn, we mathematically analyze

this issue based on a previous study conducted by Liu et al. [169]. It shows

that the time users spend on a web page follows Weibull distribution [60]. We

assume that the stay time of users on the deployed site’s pages also follows

Weibull distribution, and we detail our analysis in Section 3.6.3.

As an in-advance conclusion, we show that the success rate of a circuit de-

creases when its length l or its duration t′ increases in Figure 3.17. We can

see that if data transmission via a circuit is finished quickly (i.e., the circuit has

short duration), e.g., a small-size resource transferred in a high-speed network,

the success rate of the circuit is quite high, e.g., over 90% when the median

stay time is 39.8 s and t′ = 2. This indicates that over 90% requested resources

can be successfully transmitted via circuits for the first time without issuing ad-

50

� � � � � ��
��

���

���

���

���

������� ����

� = �

� = �

� = �

� = �

� = �

�������� = ���

Figure 3.17: The success rate decreases when the length of the circuit increases.

2 4 6 8 10
t'

0.80

0.85

0.90

0.95

1.00

Success Rate

λ = 70, k = 0.65

λ = 70, k = 0.35

λ = 95, k = 0.65

λ = 95, k = 0.35

λ = 120, k = 0.65

λ = 120, k = 0.35

Psuccess = 0.8

Figure 3.18: The success rate increases when the stay time follows the Weibull
distribution with larger λ and smaller k. (The circuit has 2 intermediate nodes.)

ditional requests. In some cases, e.g., fetching 2 MB resources via a 4-node

circuit, the duration of the circuit is similar to the fetching time directly from

server (9.42 s), the success rate is still around 80%. If the site can incentivize

users to stay longer on the page, the success rate can increase a lot, e.g., over

95% with 42.1 s median stay time (as plotted in Figure 3.18). Alternatively, the

site operator can create several backup circuits for one request, and the complete

data transmission through any circuit is counted as the success for the request.

This can drastically increase the success rate, e.g., over 2 backup circuits can

make the success rate over 99% (details in Section 3.6.3).

3.5.5 Load on Peers

We consider CPU and bandwidth for APAC to evaluate the load on peers. The

size of the client side code of APAC is 9.5 KB, and 68KB when including all

additional libraries. This is significantly smaller than the average-transfer data

51

(2268 KB [50]) when loading websites. APAC would not affect the client-side

performance much. Notably, most of the JavaScript files are static and cached.

We instrumented the htop and iftop tools [21, 23] to measure the average

CPU usage and bandwidth for peers in a 3-node circuit for 10 times. Each client

runs on a machine with a typical PC configuration Intel i7-2600 CPU of 3.4

GHz and 8 GB memory. We find that APAC only incurs a reasonable 0.88% of

CPU overhead and 4.21MB bandwidth per circuit for the clients. Further, the

site operator can also limit the maximum number (e.g., 10) of joining circuits

for one peer in one cycle of completing data transmission in a circuit, to avoid

exhausting the peer’s available bandwidth.

3.6 Security Analysis

3.6.1 Degree of Initiator/Responder Anonymity in APAC

Initiator Anonymity. In our analysis, we consider the worst case for the system

that the adversary can learn the distance between any two controlled peers by

passively logging and timing attacks. We assume that peers are compromised

independently. Let OI be the observation that the adversary can determine the

initiator for a given circuit with probability P (OI). For a given circuit in APAC,

the probability of identifying the initiator of the circuit equals to the probability

that the adversary determines the correct circuit’s length as well as controls the

first relay and the responder. Due to the distribution factors αinit and αres, the

first relay may be in Sinit, Sim or Sres. Based on Algorithm 1, for a circuit

in APAC, the responder is randomly chosen in SR. Following the notations

in Table 3.1, for a given circuit with l intermediate nodes, the probability of

52

controlling the first relay and the responder can be computed as:

P (QI |L = l) =

finitfR if l1 ≥ 1

fimfR if l1 = 0, l2 ≥ 1

fresfR if l1 = l2 = 0, l3 ≥ 1

(3.9)

where l1 = bαinitlc, l2 = l − bαinitlc − bαreslc, l3 = bαreslc, and fim =

fN−finitNinit−fresNres
N−Ninit−Nres .

In APAC, the length of the circuit is variable, and number of intermedi-

ate nodes is randomly chosen from 1 to Lmax. Thus the probability that the

number of intermediate nodes is l can be computed as P (L = l) = 1
Lmax

.

For a specific circuit with l relays, when the adversary controls the first relay

and the responder, he still cannot precisely determine the predecessor of the

first relay as the initiator, as he does not know the exact length of the circuit.

Therefore, l, l + 1,..., Lmax can be considered as the number of intermedi-

ate nodes, and the probability that the adversary guesses the correct length is

P (L′ = l|(QI |L = l)) = 1
Lmax−l+1

. The probability that OI occurs when L = l

can be represented as P (OI |L = L) = P (L′ ∩ QI |L = l) = P (QI |L =

l)P (L′ = l|(QI |L = l)) = P (QI |L = l) 1
Lmax−l+1

. Generally, for a specific

circuit, the probability that the adversary can identify the initiator is:

P (OI) =
Lmax∑
l=1

P (L = l)P (OI |L = l)

=
1

Lmax

Lmax∑
l=1

P (QI |L = l)

Lmax − l + 1

(3.10)

Under this condition, the adversary can precisely to determine which peer is the

initiator. Thus the entropy for identifying the initiator is H(I|OI) = 0.

When the adversary does not have the observation OI as above, it is im-

possible for the adversary to directly identify the circuit’s initiator. From the

adversary’s perspective, the initiator anonymity set is (1 − f)N . Therefore the

entropy under this situation is: H(I|¬OI) = −
∑(1−f)N

i=1
1

(1−f)N
log2

1
(1−f)N

=

53

log2 ((1− f)N). From the adversary’s observation O (i.e., OI and ¬OI), the

overall entropy for the system can be represented asH(I|O) = (1−P (OI)) log2

((1− f)N). For the ideal case, every peer has the equal probability of 1
N

to be

identified as the initiator. The maximum entropy HM = log2N . Therefore, the

degree of initiator anonymity for the system can be computed as:

D(I|O) =
H(I|O)

HM

= (1− P (OI))
log2 ((1− f)N)

log2N
(3.11)

Responder Anonymity. Analogous to derivation for degree of initiator anonymity,

we can derive Equation 3.3.4.2 for degree of responder anonymity. We briefly

illustrate the derivation for degree of responder anonymity. Let OR be the ob-

servation that the adversary can determine the responder for a given circuit with

probability P (OR) to occur. For a given circuit in APAC, the probability of

identifying the responder of the circuit equals to the probability that the adver-

sary determines the correct circuit’s length and controls the last relay and the

initiator. Following the notations in Table 3.1, we show the difference between

P (QR|L = l) and P (QI |L = l) below. For a given circuit with l intermedi-

ate nodes, the probability of controlling the last relay and the initiator can be

computed as:

P (QR|L = l) =

fresf if l3 ≥ 1

fimf if l3 = 0, l2 ≥ 1

finitf if l3 = l2 = 0, l1 ≥ 1

(3.12)

where L1, l2, l3 and fim are defined same as Equation 3.6.1, and we assume that

every peer is equally to be the initiator for a request.

In APAC, the length of the circuit is variable, and number of intermediate

nodes is randomly chosen from 1 to Lmax. Analogous to Equation 3.6.1, for

a specific circuit, the probability that the adversary can identify the responder

can be represented as P (OR) = 1
Lmax

∑Lmax
l=1

1
Lmax−l+1

P (QR|L = l). From the

54

adversary’s observationO (i.e.,OR and ¬OR), the overall entropy for the system

can be computed as H(R|O) = (1− P (OR)) log2 ((1− f)N). Therefore, the

degree of responder anonymity for the system can be computed as:

D(R|O) =
H(R|O)

HM

= (1− P (OR))
log2 ((1− f)N)

log2N
(3.13)

The adversary’s advantage on placement of peers. In the normal analysis,

for a 8-node circuit (l = 6) as shown in Figure 3.4, the initiator, intermediate

peers and responder are vinit, v1, v2, v3, v4, v5, v6, and vres respectively. By

controlling v1 (nearby the initiator), v3 (globally), v5 (nearby the responder) and

vres, the adversary can definitely determine that vinit is the initiator. Referring

to the notations in Table 3.1, we assume that the adversary controls a fraction

f of N peers in APAC, a fraction finit/fres of Ninit/Nres peers nearby the

initiator/responder are adversarial, and fR is the fraction of adversarial peers

having the requested resource. If the adversary randomly places adversarial

peers in APAC, then f = finit = fres, and the adversary has the probability

Prand = f 3fR to infer the initiator. If the adversary places more peers around

the initiator/responder to increase finit/fres, she has the probability Pnear =

finitfres
fN−finitNinit−fresNres

N−Ninit−Nres fR to determine the initiator. Let f = fR = 0.35,

N = 1000, Ninit = Nres = 300, we find that the adversary’s advantage of using

the second strategy over the first one is quite limited: ∆adv = max{Pnear} −

Prand = 0.0154 − 0.0150 = 0.004, where Pnear = max{Pnear} when finit =

fres = 0.39.

3.6.2 Degree of Anonymity in Current Peer-assisted CDNs

For a given request in peer-assisted CDNs, the initiator can be identified when

the responder is adversarial. We assume that OI is the observation when the

responder of a particular request is under the adversary’s control with the prob-

ability P (OI) that OI occurs. Analogous to Section 3.6.1, we can derive the

55

same Equation 3.6.1, but the meaning of P (OI) is different. The entropy for the

system with different observations (OI and ¬OI) can be computed as:

H(I|O) = P (OI)H(I|OI) + (1− P (OI))H(I|¬OI)

= (1− P (OI)) log2 ((1− f)N)

(3.14)

where N is the number of all peers. When OI occurs, the adversary can defi-

nitely identify the initiator, thus H(I|OI) = 0; otherwise, from the adversary’s

perspective, the initiator anonymity set is (1 − f)N . The probability that a

benign peer in the system is the initiator is 1
(1−f)N

. Thus the entropy for the

system when ¬OI occurs is H(I|¬OI) = −
∑(1−f)N

i=1
1

(1−f)N
log2

1
(1−f)N

=

log2 ((1− f)N). For the ideal case, every peer has the equal probability of

1
N

to be identified as the initiator. The maximum entropy HM can be calcu-

lated as HM = −
∑N

i=1
1
N

log2
1
N

= log2N . Therefore, the degree of responder

anonymity can be computed as:

D(I|O) =
H(I|O)

HM

= (1− P (OI))
log2 ((1− f)N)

log2N
(3.15)

When the adversarial peers are uniformly scattered in the system, then an adver-

sarial peer having the resource has the probability f to be chosen as the respon-

der, i.e., the probability that the responder is adversarial P (OI) = fR = f . As

the first plot (Lmax = 0) in Figure 3.6 shows, the degree of initiator anonymity

is less than 0.8 when f ≥ 0.2. Analogous to the initiator anonymity, the current

peer-assisted CDNs cannot preserve an adequate degree of responder anonymity

when over 20% peers are adversarial.

3.6.3 Analysis of Churn in APAC

A user joins APAC when visiting the deployed site from her web browser, and

leaves APAC when closing the tab. As an inherent property of peer-to-peer

systems, the dynamics of peer participation, or churn [216], especially the stay

56

50 100 150 200
t

0.2

0.4

0.6

0.8

1.0
Cumulative Distribution Function (CDF)

λ = 50, k = 0.65

λ = 50, k = 0.80

λ = 70, k = 0.65

λ = 70, k = 0.80

λ = 90, k = 0.65

λ = 90, k = 0.80

Figure 3.19: λ becomes larger and k turns smaller, when more users stay longer
on the page.

� � � � � ��
��

����

����

����

����

���� ����

λ = ��� � = ����

λ = ��� � = ����

λ = ��� � = ����

λ = ��� � = ����

λ = ��� � = ����

λ = ��� � = ����

����� = ���

Figure 3.20: The stay rate decreases when the duration of a circuit and k in-
crease, as well as λ decreases.

time of peers, affect the success rates of data transmission for circuits. To pro-

vide a mathematical understanding of users’ page-leaving behaviors, Liu et al.

analyzed page-visit stay time for 205,873 different pages for which they had

captured upwards of 10,000 visits, and showed that the time users spend on a

web page follows Weibull distribution [169]. Based on their finding, we can

assume that the stay time13 of users on our deployed site also follows Weibull

distribution. We further calculate the stay rate of users in the duration of a cir-

cuit, and then compute the success rate of the circuit, i.e., all intermediate nodes

and the responder stay in the network till data transmission via the circuit is

completed.

The cumulative distribution function for the Weibull distribution is

ω(t|k, λ) = 1− exp

(
−
(
t

λ

)k)
t ≥ 0 (3.16)

13In this chapter, we treat Dwell time studied in Liu et al.’s work as the stay time of users on
a page.

57

� � � � ��
��

����

����

����

����

����

������� ����

�� = �

�� = �

�� = �

�� = �

�� = �

��������� = ���

Figure 3.21: The success rate increases when the number of created circuits
increases.

with t, λ and k are the stay time (dwell time), the scale and shape parameters,

respectively. As shown in Figure 3.19, the longer of the average stay time is, the

larger λ is and the smaller k is. For a (l + 2)-node circuit created at time T , we

assume that the duration of the circuit is t′ and the average number of page visits

is Nv. It takes t′ seconds for the circuit to complete data transmission, and thus

the minimal duration requirement for all nodes in this circuit is t′. For users who

visit the site t seconds ahead the creation of the circuit, (1− ω(t+ t′|k, λ))Nv

of them are remaining after the teardown of the circuit, and (1− ω(t|k, λ))Nv

users stay on the page at least till T . Since the peer server selects nodes for the

circuit at T , we can compute the stay rate for users existing at T and lasting for

t′ below:

Pstay(t
′|k, λ) =

INIT+∞
0 (1− ω(t+ t′|k, λ))Nv dt

INIT+∞
0 (1− ω(t|k, λ))Nv dt

(3.17)

Furthermore, the probability that all intermediate nodes and the responder stay

for t′ or the success rate of the circuit is14:

Psuccess(t
′, l|k, λ) = Pstay(t

′|k, λ)l+1 (3.18)

Based on the study of Liu et al. [169], λ for 80% of stay-time distributions is

no more than 70, and the median value of k vary from 0.65 to 0.80. Figure 3.20

shows that when the duration t′ and k are larger, or λ is smaller, then the stay

14We assume that the number of peers for the creation of a circuit is large enough to ignore
the probability that the same peer is selected as the intermediate node for multiple circuits.

58

rate is lower, more users existing at T may leave before the teardown of the

circuit. For λ = 70 and k = 0.65, 0.80 (representing that the median stay time

is 39.8 s or 44.3 s15), the stay rate is always over 90% when the duration of

the circuit is 9.42 s (i.e., the fetching time of a 2 MB resource from the remote

server). Figure 3.17 presents that with λ = 70 and k = 0.65 (the median stay

time is 39.8 s), the longer length of the circuit may cause the success rate of

data transmission lower. For a 4-node circuit, the success rate is always over

75% even if t′ = 10. If the duration t′ is short enough (e.g., 2 s), the success

rate is always over 90%, which means over 90% circuits can be successfully

completed. For the retrofitted site of APAC, the site can incentivize users to stay

longer on the page, then the stay-time distribution can have larger λ and smaller

k, further the success rate becomes higher, e.g., over 95% when λ = 120 and

k = 0.35 (the median stay time is 42.1 s) in Figure 3.18.

Once the site operator observes that the distribution of stay time does not

provide a proper success rate for a circuit (e.g., 80%), the site operator can

suspend the circuit-based data transmission and reuse the client-server mode.

Alternatively, as a relaxation of anonymity, the site operator can create several

backup circuits for one request, and the complete data transmission through any

circuit is counted as the success for the request. In this case, the success rate can

be represented as:

P ′success(Nc, t
′, l|k, λ) = 1− (1− Psuccess(t′, l|k, λ))Nc (3.20)

with the number Nc of circuits for one request. Figure 3.21 shows that with

λ = 70, k = 0.65 and l = 2, 1 backup circuit16(in total 2 circuits) for one

request can drastically increase the success rate (e.g., over 90%). For over 2

15 The median stay time for Weibull distribution is:

Tmedian(k, λ) = λ (ln 2)
1
k (3.19)

16 In Figure 3.21, we use the same-length circuits as backup circuits for one request. In fact,
the peer server can set up backup circuits of any length (not larger than Lmax).

59

backup circuits, the success rate of one request is always over 99% even the

duration is 10 s. In the worst case, as a relaxation of compatibility, the site can

employ APAC in an extension and ask users to install it. The extension checks

whether the client is in any circuit whenever the client is attempting to leave

APAC. If so, the extension will take over and complete data transmission for

the pending circuits.

3.7 Related Work

In this section, we discuss recent work related to security & privacy in peer-

assisted CDNs and anonymous communication systems.

3.7.1 Security & Privacy in Peer-assisted CDNs

Numerous peer-assisted CDNs have been proposed in recent years [2,37,45,62,

130, 134, 135, 149, 218, 222, 228, 231]. In contrast to traditional infrastructure-

based CDNs, peer-assisted CDNs offload content delivery tasks on clients (peers)

to save the bandwidth of servers [147, 156], and reduce the latency of fetching

content at the client side. For instance, NetSession can offload 70− 80% of the

traffic to the peers [232]. For the thorough evaluation on Etsy, Maygh is able

to reduce the 95th-percentile bandwidth due to image content at the operator by

over 75% [231].

Meanwhile, researchers also propose solutions to preserve the integrity and

authenticity of content [62, 218, 231]. For example, FireCoral introduces sign-

ing service and tracker components to authenticate and verify content [218].

All content in Maygh is self-certifying [231]. Aditya et al. proposed RCA

for NetSession to detect and quarantine malicious clients [62]. On the other

hand, no systematic studies of inference attacks on peer-assisted CDNs have

been conducted yet and few defenses against such attacks are deployed on peer-

assisted CDNs. In this work, we systematically analyze inference attacks on

60

System’s Name No Instal-

lation

Initiator

Anonymity.

Responder

Anonymity.

Locality-

aware

Onion Routing/Tor-based

Systems [64, 123, 204, 223]

7 3 7 Partially

Crowds [205], & Morphmix [207],

etc. [136, 178–181, 187]

7 3 7 7

Hidden Service [48], I2P [22] &

Freenet [18], etc. [53, 71, 148, 209]

7 3 3 7

APAC 3 3 3 3

Table 3.2: Comparison with low-latency anonymous systems.

peer-assisted CDNs, and have mounted attacks on three popular systems, i.e.,

Swarmify, BemTV and P2PSP. Furthermore, we propose APAC to mitigate this

class of attacks with minor performance overhead. We raise the bar significantly

beyond what the current peer-assisted CDNs have.

3.7.2 Anonymous Communication Systems

As we have discussed in Chapter 2, researchers have proposed numerous anony-

mous communication systems to provide anonymity for users as shown in Ta-

ble 3.2. Nevertheless, the primary goal for these approaches is to preserve

high level of anonymity. They typically require users to install client-side soft-

ware and are not locality-aware by default17. In Tor-based approaches, typically

the initiator creates/constructs the circuit and selects the intermediate nodes for

each request. Therefore these approaches preserve initiator anonymity, but can-

not hide the responder’s identity. Furthermore, together with the peer-to-peer

anonymous communication systems, these systems introduce non-negligible

circuit setup latency when the initiator indirectly communicates with interme-

diate nodes to set up the circuit. For example, the circuit setup latency for a

4-hop circuit in ShadowWalker is 1820 ms [179]. Therefore, we cannot directly

apply previous mechanisms (as shown in Table 2.1) to achieve our predefined

17The relay selection algorithm in Tor can be adjusted to be locality-aware [64].

61

three goals. In APAC, we utilize the peer server (instead of peers) to construct

the circuit for each request, which avoids the non-negligible overhead and pre-

serves responder anonymity. Further, based on the locality information of all

peers maintained by the server, we optimize the onion routing’s circuit selection

algorithm in APAC by introducing distribution factors, which can be tuned to

locate intermediate peers nearby the initiator/responder to reduce network la-

tency. Comparing to previous low-latency approaches, APAC can achieve all

the primitives listed in Table 3.2.

3.8 Summary

In this chapter, we systematically study inference attacks on peer-assisted CDNs.

Further, we developer an anonymous peer-assisted CDN called APAC, which

preserves a high degree of anonymity that is significantly beyond what current

peer-assisted CDNs have. Our performance evaluation shows that the locality-

aware APAC can bring desired network latency reduction for content fetching

and bandwidth savings for deployed sites.

62

Chapter 4

OBLIVP2P: An Oblivious

Peer-to-Peer Content Sharing

System

4.1 Introduction

In this chapter, we cope with such global adversary in the generic content shar-

ing P2P systems, in which web overlays are included. In the last chapter, we

consider a partial adversary, but a global adversary capable of long-term traffic

analysis is feasible in real-world P2P systems. Content sharing P2P systems,

especially P2P file-sharing applications such as BitTorrent [7], Storj [44] and

Freenet [18] are popular among users for sharing files on the Internet. More

recently, peer-assisted CDNs such as Akamai Netsession [1] and Squirrel [149]

are gaining wide adoption to offload web CDN traffic to clients. The conve-

nient access to various resources attract millions of users to join P2P networks,

e.g., BitTorrent has over 150 million active users per month [56] and its file-

sharing service contributes 3.35% of all worldwide bandwidth [36]. However,

the majority of such P2P applications are susceptible to long-term traffic anal-

ysis through global monitoring; especially, analyzing the pattern of commu-

63

nication between a sender and a receiver to infer information about the users.

For example, many copyright enforcement organizations such as IFPI, RIAA,

MPAA, government agencies like NSA and ISP’s are reported to globally mon-

itor BitTorrent traffic to identify illegal actors. Monitoring of BitTorrent traf-

fic has shown to reveal the data requested and sent by the peers in the net-

work [164,200,212]. Unfortunately, while detecting copyright infringements is

useful, the same global monitoring is applicable to any user of the P2P network,

and can therefore collect benign users’ data. Thus, users of such P2P systems

are at a risk of leaking private information such as the resources they upload or

download.

To hide their online traces, users today employ anonymous networks as a so-

lution to conceal their digital identities or data access habits. Currently, anony-

mous networks include Mix networks [100, 117, 183], and Onion routing/Tor-

based systems [64,123,204,223], as well as other P2P anonymity systems [136,

178, 179, 187, 205, 207]. Such systems allow the user to be anonymous, so that

the user is unidentifiable within a set of users [199].

Although above solutions provide an anonymity guarantee, they are vulner-

able to long-term traffic pattern analysis attacks, which is an important threat

for P2P systems like BitTorrent [63, 127, 128, 159, 224, 225]. Researchers have

demonstrated attacks targeting BitTorrent users on top of Tor that reveal infor-

mation related to the resources uploaded or downloaded [8, 80]. Such attacks

raise the question - is anonymizing users the right defense against traffic pattern

analysis in P2P content sharing systems?

In this chapter, we investigate a new approach to solve the problem of persis-

tent analysis of data communication patterns. We advocate that data / resource

access pattern hiding is an important and necessary step to thwart leakage of

users data in P2P systems. To this end, we present a first candidate solution,

OBLIVP2P— an oblivious protocol for peer-to-peer content sharing systems.

Hiding data access patterns or making them oblivious unlinks user’s identity

64

from her online traces, thereby defending against long-term traffic monitoring.

4.1.1 Approach

For hiding data access patterns between a trusted CPU and an untrusted memory,

Goldreich and Ostrovsky proposed the concept of an Oblivious RAM (ORAM) [142].

We envision providing similar obliviousness guarantees in P2P systems, and

therefore select ORAM as a starting point for our solution. To the best of our

knowledge, OBLIVP2P is the first work that adapts ORAM to accesses in a P2P

setting. However, directly employing ORAM to hide access patterns in a P2P

system is challenging. We outline two key challenges in designing an oblivious

and a scalable P2P protocol using ORAM.

Obliviousness. The first challenge arises due to the difference in the setting of a

standard ORAM as compared to a P2P content sharing system. Classical ORAM

solutions consists of a single client which securely accesses an untrusted storage

(server), wherein the client is eventually the owner and the only user of the data

in the memory. In contrast, P2P systems consist of a set of trusted trackers

managing the network, and multiple data owners (peers) in the network. Each

peer acts both as a client as well as a server in the network i.e., a peer can either

request for a data or respond to other peer’s request with the data stored on its

machine. Hence, adversarial peers present in the network can see the plaintext

and learn the data requested by other peers, a threat that does not exists in the

traditional ORAM model where only encrypted data is seen by the servers.

Scalability. The second challenge lies in seeking an oblivious P2P system that

1) the throughput scales linearly with the number of peers in the network, 2)

has no centralized bottleneck and 3) can be parallelized with an overall accept-

able throughput. In standard ORAM solutions, the (possibly distributed) server

is responsible for serving all the data access requests from a client one-by-one.

In contrast, P2P systems operate on a large-scale with multiple peers (clients)

requesting resources from each other simultaneously without overloading a par-

65

ticular entity. To retain scalability of P2P systems, it is necessary to ensure

that requests can be served by distributing the communication and computation

overhead.

Solution Overview. We start with a toy construction (OBLIVP2P-0) which di-

rectly adapts ORAM to a P2P setting, and then present our main contribution

which is a more efficient solution (OBLIVP2P-1).

Centralized Protocol (OBLIVP2P-0): Our centralized protocol or OBLIVP2P-

0, is a direct adaptation of ORAM in a P2P system. The peers in the network

behave both like distributed storage servers as well as clients. They request a

centralized, trusted tracker to access a particular resource. The tracker performs

all the ORAM operations to fetch the resource from the network and returns it

to the requesting peer. However, this variant of OBLIVP2P protocol has limited

scalability as it assigns heavy computation to the tracker, making it a bottleneck.

Distributed Protocol (OBLIVP2P-1): As our main contribution, we present

OBLIVP2P-1 which provides both obliviousness and scalability properties in

a tracker-based P2P system. To attain scalability, the key idea is to avoid any

single entity (say the tracker) as a bottleneck. This requires distributing all the

ORAM operations for fetching and sharing of resources among the peers in

the network, while still maintaining obliviousness guarantees. To realize such

a distributed protocol, our main building block, which we call Oblivious Se-

lection (OblivSel), is a novel combination of private information retrieval with

recent advances in ORAM. Oblivious Selection gives us a scalable way to se-

curely distribute the load of the tracker. Our construction is proven secure in the

honest-but-curious adversary model. Constructions and proofs for arbitrarily

malicious fraction of peers is slated for future work.

4.1.2 System and Results

We provide a prototype implementation of both OBLIVP2P-0 and OBLIVP2P-

1 protocols in Python. Our source code is available online [32]. We exper-

66

imentally evaluate our implementation on DeterLab testbed with 15 servers

simulating up to 214 peers in the network. Our experiments demonstrate that

OBLIVP2P-0 is limited in scalability with the tracker as the main bottleneck.

The throughput for OBLIVP2P-1, in contrast, scales linearly with increase in

the number of peers in the network. It attains an overall throughput of 3.19

MBps for a network of 214 peers that corresponds to 7 requests per second for a

block size of 512 KB. By design, OBLIVP2P-1 is highly parallelizable over the

computational capacity available in a real P2P network. Further, our protocol

exhibits no bottleneck on a single entity in experiment, thereby confirming that

the network and the computational overhead can be completely offloaded to the

P2P network.

Contributions. We summarize our contributions below:

• Problem Formulation. We formulate the problem of making data access

pattern oblivious in P2P systems. This is a necessary and important step

in building defenses against long-term traffic analysis.

• New Protocols. We propose OBLIVP2P— a first candidate for an obliv-

ious peer-to-peer protocol in content sharing systems. Our main building

block is a primitive which we refer to as oblivious selection that makes

a novel use of recent advances in Oblivious RAM combined with private

information retrieval techniques.

• System Implementation & Evaluation. Our prototype implementation

is available online [32]. We experimentally evaluate our protocol to mea-

sure the overall throughput of our system, latency for accessing resources

and the impact of optimizations on the system throughput.

4.2 Problem

Many P2P applications are not designed with security in mind, making them

vulnerable to traffic pattern analysis. We consider BitTorrent as our primary

67

case study. However, the problem we discuss is broadly applicable to other

P2P file sharing systems like Gnutella [20], Freenet [18] and Storj [44] or peer-

assisted CDNs such as Akamai Netsession [1], Squirrel [149] and APAC [150].

4.2.1 BitTorrent: A P2P Protocol

The BitTorrent protocol allows sharing of large files between users by dividing

it into blocks and distributing it among the peers. It has a dynamic network,

made up of a number of nodes that join the network and volunteer themselves

as peers. Each peer holds data blocks in its local storage and acts both as a client

/ requester and server / sender simultaneously. There exists a tracker that tracks

which peers are downloading / uploading which file and saves the state of the

network. It keeps information regarding the position or the IP addresses of peers

holding each resource but does not store any real data blocks. A peer requests

the tracker for a particular resource and the tracker responds with a set of IP

addresses of peers holding the resource. The requester then communicates with

these IP addresses to download the blocks of the desired resource. The peers

interact with each other using a P2P protocol1. The requester concatenates all

the blocks received to construct the entire resource.

4.2.2 Threat Model

In our threat model, we consider the tracker as a trusted party and peers as

passive honest-but-curious adversaries i.e., the peers are expected to correctly

follow the protocol without deviating from it to learn any extra information.

In P2P systems including CDNs (content delivery networks) and BitTorrent,

passive monitoring is already a significant threat on its own. We consider the

following two types of adversaries:

1We want to emphasize that there are other models of P2P networks without tracker based
on DHT that we are not addressing in this work.

68

Global Passive Adversary. Since BitTorrent traffic is public, there exist tools

like Global BitTorrent Monitor [42] or BitStalker [72] that support accurate and

efficient monitoring of BitTorrent. Previous research has shown that any BitTor-

rent user can be logged within a span of 3 hours, revealing his digital identity

and the content downloaded [104]. Further, the adversary can log the commu-

nication history of the network traffic to perform offline analysis at a later stage.

Hence, we consider it rational to assume the presence of a global adversary with

the capability to observe long term traffic in the network.

Passive Colluding Peers. Some of the peers in the P2P network can be con-

trolled by the global adversary. They can further collude to exchange data with

other adversarial peers in the system. While colluding these “sybil” peers can

share information such as observed / served requests and the contents stored at

their local storage. Their goal is to collectively glean information about other

peers in the network. A formal definition of passive colluding peers is as fol-

lows:

Definition 4.2.1. (Passive Colluding peers) We say that a peer Pi passively col-

ludes with peer Pj if both peers share their views without any modification,

where a view consists of: a transcript of the sequence of all accesses made by

Pi, a partial or total copy of peer’s private storage, and a transcript of the ac-

cess pattern induced by the sequence of accesses. We denote by C(Pi) the set of

colluding peers with Pi.

Note that from the above definition, we have a symmetric relation such that

if Pi ∈ C(Pj) for i 6= j, then Pj ∈ C(Pi) and further C(Pi) = C(Pj). It follows

that if Pi /∈ C(Pj), then C(Pi) and C(Pj) are disjoint.

Our protocol tolerates a fraction of c adversarial peers in the network such

that c ∈ O(N ε), where N is the total number of peers in the network and ε < 1.

Although the P2P network undergoes churn, we assume the fraction of adversar-

ial peers c remains within the asymptotic bounds of O(N ε). Our choice of the

upper bound for c ensures an exponentially small advantage to the attacker; for

69

an application that can tolerate higher attacker’s advantage, a larger malicious

fraction can be allowed.

4.2.3 Insufficiency of Existing Approaches

Existing techniques propose anonymizing users to prevent traffic pattern analy-

sis attacks. However, these solutions are not sufficient to protect against a global

adversary with long term access to communication patterns.

Unlinkability Techniques (e.g. Mixnet). Existing anonymity approaches “un-

link” the sender from the receiver (see survey [115]). Chaum proposed the first

anonymous network called mix network [100], which shuffles messages from

multiple senders using a chain of proxy servers and sends them to the receiver.

Another recent system called Riposte guarantees traffic analysis resistance by

unlinking a sender from its message [109]. However, all these systems are prone

to attack if an adversary can observe multiple request rounds in the network.

For example, consider that Alice continuously communicates with Bob us-

ing a mixnet service. A global adversary observes this communication for a

couple of rounds, and records the recipient set in each round. Let the senders’

set consists of S1 = {Alice, a, b, c} and S2 = {a′, b′, Alice, c′}, and the recipi-

ents’ set consists of R1 = {x, y, z, Bob} and R2 = {x′, y′, Bob, z′} for rounds

1 and 2 respectively. The attacker can then infer the link between sender and

receiver by intersecting S1∩S2 = {Alice} and R1∩R2 = {Bob}. The attacker

learns that Alice is communicating with Bob, and thus breaks the unlinkabil-

ity. This attack is called the intersection, hitting set or statistical disclosure at-

tack [63,159]. Overall, one time unlinkability is not a sufficient level of defense

when the adversary can observe traffic for arbitrary rounds.

Path Non-Correlation (e.g. Onion routing). Another approach for guar-

anteeing anonymity is to route the message from a path such that the sender

and the receiver cannot be correlated by a subset of passive adversarial nodes.

Onion-routing based systems like Tor enable anonymous communication by us-

70

ing a sequence of relays as intermediate nodes (called circuit) to forward traf-

fic [69, 123]. However, Tor cannot provide sender anonymity when the attacker

can see both the ends of the communication, or if a global adversary observes

the entire network. Hence, if an attacker controls the entry and the exit peer then

the adversarial peers can determine the recipient identity with which the initiator

peer is communicating [127, 128, 224, 225]. This is a well-known attack called

the end-to-end correlation attack or traffic confirmation attack [49, 51].

4.2.4 Problem Statement

Our goal is to design a P2P protocol that prevents linking a user to a requested re-

source using traffic pattern analysis. Section 4.2.3 shows how previous anonymity

based solutions are susceptible to attacks in our threat model. In this work, we

address this problem from a new viewpoint, by making the communication pat-

tern oblivious in the network. We advocate that hiding data / resource access

pattern is a necessary and important step in designing traffic pattern analysis

resistant P2P systems.

In a P2P system such as BitTorrent, a user accesses a particular resource by

either downloading (Fetch) or uploading (Upload) it to the network. We propose

to build an oblivious P2P content sharing protocol (OBLIVP2P) that hides the

data access patterns of users in the network. We formally define an Oblivious

P2P protocol as follows:

Definition 4.2.2. (Oblivious P2P): Let (P1, · · · , Pn) and T be respectively a set

of n peers and a tracker in a P2P system. We denote by −→xi = (xi,1, · · · , xi,M)

a sequence of M accesses made by peer Pi such that xi,j = (opi,j, fidi,j, filei,j)

where opi,j = {Upload,Fetch}, fidi,j is the filename being accessed, and filei,j is

the set of blocks being written in the network if opi,j = Upload.

We denote by A(−→xi) the access pattern induced by the access sequence −→xi

of peer Pi. The access pattern is composed of the memory arrays of all peers

accessed while running the sequence −→xi . We say that a P2P is oblivious if for

71

any two equal-length access sequences −→xi and −→xj by two peers Pi and Pj such

that

• Pj /∈ C(Pi)

• ∀k ∈ [M] : xi,k = Fetch ⇔ xj,k = Fetch ∧ xi,k = Upload ⇔ xj,k =

Upload

• ∀k ∈ [M], |filei,k| = |filej,k|

are indistinguishable for all probabilistic poly-time adversaries except for

C(Pi), C(Pj), and tracker T .

Scope. OBLIVP2P guarantees resistance against persistent communication traf-

fic analysis i.e., observing the path of communication and thereby linking a

sender to a particular resource. OBLIVP2P does not prevent against:

a) Active Tampering: An adversarial peer can tamper, alter and deviate from

the protocol to learn extra information. Admittedly, this can have an impact on

obliviousness, correctness and availability of the network.

b) Side Channels: An adversary can monitor any peer in the system to infer its

usage’s habits via side channels: the number of requests, time of activity, and

total number of uploads. In addition, an adversary can always infer the total

file size that any peer is downloading or uploading to the P2P network. Litera-

ture shows that some attacks such as website fingerprinting can be based on the

length of file requested by peers [191].

c) Orthogonal Attacks: Other attacks in P2P file sharing systems consist of

threats such as poisoning of files by uploading corrupted, fake or misleading

content [161] or denial of service attacks [129]. However, these attacks do not

focus on learning private information about the peers and hence are orthogonal

to our problem.

Admittedly, our assumption about honest-but-curious is less than ideal and

simplifies analysis. We hope that our construction spurs future work on tack-

ling the active or arbitrary malicious adversaries. Emerging trusted computing

72

primitives (e.g., Intel SGX [25]) or cryptographic measures [192] are promising

directions to investigate. Lastly, OBLIVP2P should not be confused with tra-

ditional anonymous systems where a user is anonymous among a set of users.

OBLIVP2P does not guarantee sender or receiver anonymity, but hides data ac-

cess patterns of the users.

4.3 Our Approach

As a defense against traffic pattern analysis, we guarantee oblivious access pat-

terns in P2P systems. We consider Oblivious RAM as a starting point.

4.3.1 Background: Tree-Based ORAM

Oblivious RAM, introduced by Goldreich and Ostrovsky [142], is a crypto-

graphic primitive that prevents an adversary from inferring any information via

the memory access pattern. Tree-based ORAM introduced by Shi et al. [210] of-

fers a poly-logarithmic overhead which is further reduced due to improvements

suggested in the follow up works [87, 112, 121, 182, 206, 213]. In particular, we

use Ring ORAM, [206], one of the latest improvements for tree-based ORAM in

our protocol. In Ring ORAM, to store N data blocks, the memory is organized

in a (roughly) logN -height full binary tree, where each node contains z real

blocks and s dummy blocks. Whenever a block is accessed in the tree, it is as-

sociated to a new randomly selected leaf identifier called, tag. The client stores

this association in a position map PosMap along with a private storage (stash).

To read and write to the untrusted memory, the client performs an Access fol-

lowed by an Evict operation described at a high level as follows:

• Access(adr): Given address adr, the client fetches the leaf identifier tag

from PosMap. Given tag, the client downloads one block per every node

in the path P(tag) that starts from the root and ends with the leaf tag. The

73

Trusted Client

	

Untrusted Server
	
	

Trusted Tracker

Peers

Posi%on	 map	 	 Posi%on	 map	

Node path

Peer-to-Peer network

Figure 4.1: Mapping of a client / server ORAM model to a P2P system

client decrypts the retrieved blocks, and retrieves the desired block. This

block is appended to the stash.

• Evict(A, ν): After A accesses, the client selects a path P(ν) based on a

deterministic reverse lexicographic order, downloads the path, decrypts

it and appends it to the stash. The client runs the least common ancestor

algorithm to sort the blocks as in [213]. Finally, the client freshly encrypts

the blocks and writes them back to the nodes in the path.

The stash is upper bounded by O(logN). The overall bandwidth may reach

' 2.5 logN , forN blocks stored. In Ring ORAM, eviction happens periodically

after a controllable parameter A = 2z accesses where z is the number of blocks

in each bucket [206].

4.3.2 Mapping an ORAM to a P2P setting

We start from a traditional ORAM in a client / server model where the client

is trusted and the server is not, and simulate it on a tracker / peers setting. In

particular, we consider that the server’s memory is organized in a tree structure,

and we delegate every node in the tree to a peer. That is, a full binary tree of

N leaves is now distributed among Np = 2N − 1 peers (refer to Figure 4.1).

In practice, many nodes can be delegated to many peers based on the storage

capacity of each peer.

74

Contrary to the client / server setting where the client is the only one who

can fetch, modify or add a block, in P2P, the peers can also request and add

new blocks. In addition, the peers are volatile, i.e, many peers can join or leave

the network. Moreover, from a security perspective, the network peers do not

trust each other, and an adversarial peer can always be interested in finding out

the block being retrieved by other peers. To avoid this, the tracker instructs the

peers in a P2P system to save encrypted blocks in their local memory (different

from the conventional BitTorrent model). Our construction ensures that the peer

neither has the keys necessary to decrypt its storage nor can it collude with

other adversarial peers to recover it. In this setting, we first present a strawman

approach that guarantees our security goal but is restricted in terms of scalability.

4.3.3 OBLIVP2P-0 : Centralized Protocol

Almost all ORAM constructions are in a client / server setting and not designed

for a P2P setting. A simple approach is to map the role of the trusted client in

an ORAM setting (refer to Figure 4.1) to the trusted tracker in a P2P system.

The client in ORAM is simulated by the trusted tracker (storing the position

map, private keys and the stash) and the server by the untrusted peers (storing

the encrypted blocks). With such a mapping from an ORAM model to a P2P

setting, a peer (initiator) can request for a resource to the tracker. To access a

particular resource, the tracker fetches the blocks from a path in the tree and

decrypts them to get the desired block. It then returns the requested resource

to the initiator peer. This simple plug-&-play construction satisfies all our P2P

security requirements.

In OBLIVP2P-0, the trusted tracker behaves as the client in traditional ORAM

model. Whenever a peer requests a block, the tracker performs all the ORAM

access work, and then sends the plaintext block to the initiator. The tracker

downloads the path composed of a logarithmic number of nodes, writes back

the path with a fresh re-encryption before routing the block to the initiator. As

75

long as the tracker is trusted, this ensures the obliviousness property of peers’

accesses, as stated by definition 4.2.2.

Upload algorithm. To upload a file, the peer divides it into data blocks and

sends the blocks to the tracker. The tracker appends the block to the stash stored

locally while generating new random tags. The tracker updates accordingly

TagMap, and FileMap (refer to Table 4.1).

Fetch algorithm. To fetch a file, the peer sends the file identifier, as an instance

a filename, to the tracker. The tracker fetches from the FileMap and TagMap the

corresponding blocks and sends requests to the corresponding peers to retrieve

the blocks, following the Ring ORAM Access protocol. For every retrieved

block, the tracker sends the plaintext block to the requesting peer.

Sync algorithm. The synchronization happens after everyA ' 2z accesses [206]

(e.g., nearly 8 accesses) at which point the tracker evicts the stash.

Tracker as Bottleneck. In OBLIVP2P-0, the tracker has to transmit / encrypt

a logarithmic number of blocks on every access. The tracker requires a band-

width of O(logN · B) where B is the block size and the computation cost of

O(logN · E) where E is time for encrypting / decrypting a block. Moreover,

our evaluation in Section 4.5 shows that the eviction step is network-intensive.

In a P2P setting with large number of accesses per second, the tracker creates a

bottleneck in the network.

4.3.4 OBLIVP2P-0 Analysis

Our analysis follow from Ring ORAM construction. To access a block the

tracker has to transmit ∼ 2.5 logN · B bits per access. During a block access

or eviction, any peer at any time transmits O(B) bits. The tracker’s main com-

putational time consists of decrypting and encrypting the stash. Since the stash

has a size of O(logN) blocks, the tracker does O(logN) blocks encryption/de-

cryption. In terms of storage, every peer has (z + s) blocks to store, where z is

76

number of real blocks and s is a parameter for dummy blocks. From a security

perspective, it is clear that if there are two sequences verifying the constraints of

Definition 4.2.2, a malicious peer monitoring their access pattern cannot infer

the retrieved blocks, since after every access the block is assigned to a random

path in the simulated ORAM.

4.4 OBLIVP2P-1: Distributed Protocol

In this section, we describe our main contribution, OBLIVP2P-1 protocol that

provides both security and scalability properties. In designing such a protocol,

our main goal is to avoid any bottleneck on the tracker i.e., none of the real

blocks should route through the tracker for performing an access or evict opera-

tions of ORAM. We outline the challenges in achieving this property while still

retaining the obliviousness in the network.

4.4.1 Challenges

First Attempt. A first attempt to reduce tracker’s overhead is to modify OBLIVP2P-

0 such that the heavy computation of fetching the path of a tree and decrypting

the correct block is offloaded to the initiator peer. On getting a resource request

from a peer, the tracker simply sends information to the peer that includes the

path of the tree to fetch, the exact position of the requested block and the key

to decrypt it. However, unlike standard ORAM, the peer in our model is not

trusted. Giving away the exact position of the block to the initiator peer leaks

additional information about the requested resource in our model, as we explain

next.

Recall that in a tree-based ORAM, blocks are distributed in the tree such that

the recently accessed blocks remain in the top of the tree. In fact, after every

eviction the blocks in the path are pushed down as far as possible from the root

of the tree. As an instance, after N deterministic evictions, all blocks that were

77

never accessed are (very likely) in the leaves. Conversely, consider that an ad-

versarial peer makes two back-to-back accesses. In the first access, it retrieves

a block from the top of the tree while in the second access it retrieves a block

from a leaf. The adversarial peer (initiator) learns that the first block is a pop-

ular resource and is requested before by other peers while the second resource

is a less frequently requested resource. This is a well known issue in tree-based

ORAM, and is recently formulated as the block history problem [208]. Dis-

closing the block position, while hiding the scheme obliviousness requires to

address the block history challenge in ORAM. Unfortunately, an ORAM hides

the block history only if the communication spent to access a block dominates

the number of blocks stored in the entire ORAM. This would be asymptotically

equivalent to downloading the entire ORAM tree from all the peers. We refer

readers to [208] for more details.

Second Attempt. Our second attempt is a protocol that selects a block while

hiding the block position from the adversary i.e., to hide which node on the

path holds the requested block. Note that in a tree-based ORAM, disclosing the

path does not break obliviousness, but leaking which node on the path holds the

requested block is a source of leakage. One trick is to introduce a circuit, a set

of peers from the P2P network, that will simulate the operations of a mixnet.

That is, the peers holding the path of the tree send their content to the first peer

in the circuit, who then applies a random permutation, adds a new encryption

layer, and sends the permuted path to the second peer and so on. The tracker,

who knows all the permutations, can send the final block position (unlinked

from original position) to the initiator, along with the keys to decrypt the block.

The mixing guarantees that the initiator does not learn the actual position of the

block. We note that mixing used here is for only one accessed “path”, which

is already randomized by ORAM. Hence, it is not susceptible to intersection

attack discussed in Section 4.2.3. Finally, the initiator then peels off all layers

of the desired block to output the plaintext block.

78

Structure Mapping Purpose

FileMap file id fid to block addresses {adri}i∈[fB] Blocks identification

TagMap block address adr to tag
$←− [NB] Path identification

NetMap
peer id pid to network info(

IP, port
)
∈ {0, 1}128+16

Network representation

PosMap
block address adr to path and bucket

position pos ∈ [Np]× [L · z + |stash|]
Block exact localization

KeyMap block address adr to key value k
$←− Zq

Input of key block

generation

StashList peers’ identifiers {pidi}i∈[|stash|] Stash localization

Table 4.1: Various meta-information contained in the state s, for OBLIVP2P-0
and OBLIVP2P-1. B is the block size in bits, NP the number of peers, NB

number of blocks, L the path length, and z the bucket size.

However, there is an important caveat remaining in using this method. Note

that the initiator has the keys to peel off all the layers of encryption and hence it

has access to the same encrypted block fetched from the path in the tree. Thus,

it can determine which peer’s encrypted block was finally selected as the output

of the mixnet. Hence, delegating the keys to the initiator boils down to giving

her the block position. One might think of eliminating this issue by routing the

block through the tracker to peel off all layers, but this will just make the tracker

again a bottleneck.

So far, our attempts have shown limitations, but pointed out that there is a

need to formally define the desired property. Considering a tracker, the initiator,

and the peers holding the path, we seek a primitive that given a set of encrypted

blocks, the initiator can get the desired plaintext block, while no entity can in-

fer the block position but the tracker. We refer to this primitive as Oblivious

Selection (OblivSel) and describe it next.

79

Select&m"random&peers"

Compute&an&Encrypted&Share&
(using&IT9PIR)&

Decrypt&the&Retrieved&Share&
(using&SH9PRG)&

Combine&Decrypted&Shares&

&
&
&
&
&
&

!
!
!
!
!
!
!

OblivSel!

Step 1

Step 2

Step 3

Step 4

Enc&Block1& Enc&Block2& Enc&Block3&

Dec&Block3&

Figure 4.2: Oblivious Selection protocol using IT-PIR and Seed Homomorphic
PRG as base primitives

4.4.2 Oblivious Selection

4.4.2.1 Definitions

We define OblivSel and its properties as follows:

Definition 4.4.1. (Oblivious Selection). OblivSel is a tuple of two probabilistic

algorithms (Gen, Select) such that:

• (~σ,~r) ← Gen(k, pos): a probabilistic algorithm run by the tracker, takes

as input a key k and the block position pos, picks uniformly at random

m peers (P1, · · · , Pm), and outputs (~σ,~r) where ~σ = {σ1, · · · , σm} and

~r = {r1, · · · , rm} such that (σi, ri) is given to the ith peer Pi.

• ∆ ← Select(~σ,~r,Enc(k1, block1), · · · ,Enc(kL, blockL)): a probabilistic

algorithm run by m peers, takes as input ~σ, ~r, and a set of encrypted

blocks Enc(ki, blocki), for i ∈ [L], and outputs the value ∆.

80

Definition 4.4.2. OblivSel, is correct, if

Pr[∀ pos ∈ [L], k ∈ {0, 1}λ, (~σ,~r)← Gen(k, pos);

∆← Select(~σ,~r,Enc(k1, block1), · · · ,Enc(kL, blockL));

∆ = Dec(k,Enc(kpos, blockpos))] = 1

For instance, if (Enc,Dec) is a private key encryption, OblivSel returns a

decrypted block when the key given as input to the Gen function is the same as

the private key of the block i.e., ∆ = blockpos if k = kpos.

Definition 4.4.3. (Position Hiding.) We say that OblivSel is a position hiding

protocol if for all probabilistic polynomial time global adversaries, including

the initiator and the m peers, guess the position of the block pos with a negligi-

ble advantage in the implicit security parameter.

4.4.2.2 OblivSel Overview

The intuition for constructing OblivSel stems from the fact that the tracker can-

not give the position or private key of the desired block to the peers in the net-

work.

To privately select a block from the path without leaking its position, we pro-

pose to use an existing cryptographic primitive, called information-theoretical

private information retrieval (IT-PIR) [103]. IT-PIR requires a linear compu-

tation proportional to the data size that makes it expensive to use for real time

settings. However, note that in our setting, we want to obliviously select a block

from a logarithmic number of blocks (i.e., a path of the tree). Thus, applying

IT-PIR over tree-based ORAM comes with significant computational improve-

ment, hence making it practical to use in our protocol. The high level idea is

to apply IT-PIR primitive only on one path since the obliviousness is already

guaranteed by the underlined tree-based ORAM construction.

Figure 4.2 shows the steps involved in our OblivSel primitive. As a first step,

81

the tracker randomly samples m peers from the network. For a bounded num-

ber of colluding adversarial peers in the system, this sample will contain at least

one honest peer with high probability. The blocks of the path are fetched by all

of the m peers. Each of the m peers then locally computes an encrypted share

of the desired block using IT-PIR from the set of input blocks. Note that the

tracker must not download the shares or it will violate our scalability require-

ment. On the other hand, we require to decrypt the block without giving away

the private key to the network’s peers. For this purpose, we make use of a sec-

ond cryptographic primitive — a seed homomorphic pseudo-random generator

(SH-PRG) [81]. The tracker generates a valid key share for each of the m peers

to be used as seeds to the PRG function. Each peer decrypts (or unblinds) its

encrypted share using its own key share such that the combination of decrypted

shares results in a valid decryption of the original encrypted block in the tree.

This property is ensured by SH-PRG and explained in detail in Section 4.4.2.3.

Finally, each peer submits its decrypted share to the initiator peer who combines

them to get the desired plaintext block. The colluding peers cannot recover the

private key or the encrypted block since there is at least one honest peer who

does not disclose its private information. This solves the issues raised in our

second attempt.

Remark. OblivSel primitive can be used as a black box in different settings such

as distributed ORAMs to decrease the communication overhead. We further

show in Section 4.4.2.4 that OblivSel is highly parallelizable and can leverage

peers in the network such that the computation takes constant time.

4.4.2.3 Base Primitives

Information-theoretic PIR. Information-theoretic private information retrieval

(IT-PIR) [103] is a cryptographic primitive that performs oblivious read oper-

ations while requiring multiple servers m ≥ 2. In the following, we present

the details of one of the first constructions of IT-PIR by Chor et al. [103] which

82

Algorithm 2: IT-PIR protocol by Chor et al. [103]
1 (r1, · · · , rm)← Query(q, L, pos)

• randomly generate m− 1 random vectors such that ri
$←− ZL

q

• compute rm such that for all j ∈ [L] \ {pos}, set rm,j = −
∑m−1
k=1 rk,j ,

otherwise, rm,pos = 1−
∑m−1
k=1 rk,j

Ri ← Compute(ri,DB)

• parse database such as DB = (block1, · · · , blockL)

• compute Ri =
∑L
j=1 ri,jBlockj

blockpos ← Recover(R1, · · · ,Rm): compute blockpos =
∑m
j=1Ri

is secure even when m− 1 among m servers collude passively, i.e., the servers

collude in order to recover the retrieved block while not altering the protocol. An

IT-PIR is a tuple of possibly randomized algorithms IT− PIR = (Query,Compute,

Recover). Query takes as an input the block position pos to be retrieved, and

outputs an IT-PIR query for m servers. Compute runs independently by ev-

ery server, takes as input the corresponding IT-PIR query and outputs a share.

Recover takes as inputs all shares output by all m servers, and outputs the plain-

text block. We give the construction in Algorithm 2.

Seed homomorphic PRG (SH-PRG). A seed homomorphic PRG,G, is a pseudo-

random generator over algebraic group with the additional property that if given

G(s1) and G(s2), then G(s1 ⊕ s2) can be computed efficiently. That is, if the

seeds are in a group (S,⊕), and outputs in (G,⊗), then for any s1, s2 ∈ S,

G(s1 ⊕ s2) = G(s1)⊗G(s2). We refer to [188] for more details.

Decryption / Re-encryption using SH-PRG. Leveraging the property of SH-

PRG, we explain the encryption, decryption and re-encryption of a block in our

protocol. Every block in the tree is encrypted as Enc(k1, block) = block +

G(k1). The decryption of the block can be then represented as block = Dec(k1,

Enc(k1, block)) = block + G(k1)− G(k1) For re-encrypting the encrypted block

with a different key k2, the tracker decrypts the encrypted block with a new

secret key of the form k1 − k2 such that, Dec(k1 − k2,Enc(k1, block)) = block+

G(k1)− G(k1 − k2) = block + G(k2) = Enc(k2, block).

83

Algorithm 3: OblivSel with seed-homomorphic PRG
1 (~σ,~r)← Gen(k, pos)

• set ~r = (r1, · · · , rm)← IT− PIR.Query(q, L, pos);

• set ~σ = (σ1, · · · , σm), s.t., (σ1, · · · , σm−1)
$←− Sm−1, and σm = k−

∑m−1
i=1 σi;

block← Select(~σ,~r,DB) // Every peer Pi

• compute Esharei ← IT− PIR.Compute(ri,DB);

• set Dsharei = Esharei −G(σi);
// Initiator

• compute ∆ =
∑m
i=1Dsharei;

4.4.2.4 OblivSel Instantiation

In the following, we present an instantiation of OblivSel. We consider a set of

L encrypted blocks. Each block blocki is a vector of elements in a finite group

G of order q. For every block, the key is generated at random from Zq. The

tracker has to keep an association between the block key and its position. An

algorithmic description is given in Algorithm 3.

The tracker runs the Gen algorithm, which takes as inputs the secret key

k with which the block is encrypted and the block’s position pos, and outputs

a secret shared value of the key, ~σ, as well as the IT-PIR queries, ~r. Every

peer Pi holds a copy of the L encrypted blocks and receives a share of the

key, σi, as well as its corresponding query, ri. Next, every peer runs locally

an IT− PIR.Compute on the encrypted blocks and outputs a share, Esharei.

After getting the encrypted share Esharei, each peer subtracts the evaluation

of the SH-PRG G on σi from Esharei (Esharei −G(σi)) to get the decrypted

share Dshare. Finally, initiator outputs the sum of all the Dsharei’s received

from the m peers to get the desired decrypted block. As long as there is one

non-colluding peer among the m peers and G is a secure PRG, the scheme is

position hiding.

Highly Parallelizable. Notice that, in Algorithm 3, each of the m peers per-

forms scalar multiplications proportional to the number of encrypted input blocks.

The encrypted blocks can be further distributed to different peers such that each

84

Scheme

Tracker

bandwidth

(bits)

Network

bandwidth (#

blocks)

Tracker #

encryp-

tion

Network

computa-

tional

overhead

Network

Storage

overhead

Tracker

storage #

blocks

0
O(logN ·

B)
O(1)

O(logN ·

E)
− O(1) O(logN)

1 O
(

log3N
)

O(logN
N) − O(log 4N

N · E) O(burst) −

Table 4.2: Comparison of OBLIVP2P instantiation per access. B the block size,
N the number of blocks in the network, E the overhead of a block encryption,
E a multiplication in elliptic curve group, burst the number of versions.

peer performs constant number of scalar multiplications. Given the availability

of enough peers in the network, OblivSel is extremely parallelizable and there-

fore provides a constant time computation.

OblivSel as a building block. OblivSel protocol can be used as a building block

in our second and main OBLIVP2P-1. For fetching a block, an invocation of

OblivSel is sufficient as it obliviously selects the requested block and returns it

in plaintext to the initiator. Additional steps such as re-encrypting the block and

adding it to stash are required to complete the fetch operation. The details of

these steps are in Section 4.4.3.

However, the eviction operation in ORAM poses an additional challenge.

Conceptually, an eviction consists of block sorting, where the tracker re-orders

the blocks in the path (and the stash). Fortunately, our protocol can perform

eviction by several invocation of OblivSel primitive. Given the new position for

each block, the P2P network can be instructed to invoke OblivSel recursively

to output the new sorted path. The encryption of blocks has to be refreshed,

but this is handled within OblivSel protocol itself when refreshing the key, using

seed homomorphic PRG. We defer the concrete details of performing oblivious

eviction to Section 4.4.3.

85

4.4.3 OBLIVP2P-1: Complete Design

In a P2P protocol for a content sharing system the tracker is responsible for

managing the sharing of resources among the peers in the network. To keep a

consistent global view on the network, the tracker keeps some state information

that we formally define below:

Definition 4.4.4. P2P network’s state consists of: (1) number of possible net-

work connections per peer, and (2) a lookup associating a resource to a (set of)

peer identifier.

The tracker can store more information in the state depending on the P2P

protocol instantiating the network. We start first by formalizing a P2P protocol.

Definition 4.4.5. A P2P protocol is a tuple of four (possibly interactive) algo-

rithms P2P = (Setup,Upload,Fetch, Sync) involving a tracker, T , and a set of

peers, (P1, · · · , Pn), such that:

• s′ ← Setup(s, {pid}): run by the tracker T , takes as inputs a state s and

a (possibly empty) set of peers identifiers {pid}, and outputs an updated

state s′.

•
(
out, (A′1, · · · , A′m), s′

)
← Upload

(
(fid, file), (A1, · · · ,Am), s

)
: is an in-

teractive protocol between an initiator peer, a (possibly randomly se-

lected) set of m ≥ 0 peers, and a tracker T . The initiator peer has as

input a file identifier fid, and the file file, the peers’ input is memory ar-

ray Ai each, while for the tracker its state s. The initiator’s output is

out ∈ {⊥, file}, the peers output each a modified local memory A′i, while

the tracker outputs an updated state s′.

• (file,⊥, s′) ← Fetch
(
fid, (A1, · · · ,Am), s

)
: is an interactive protocol be-

tween an initiator peer, a (possibly randomly selected) set ofm ≥ 0 peers,

and a tracker T . The initiator peer has as input a file identifier fid, the

peers’ input is a memory array Ai each, while for the tracker its state

86

s. The initiator outputs the retrieved file file, each peer gets ⊥, while the

tracker outputs an updated state s.

•
(
(A′1, · · · , A′m), s′

)
← Sync

(
(A1, · · · ,Am), s

)
: is an interactive protocol

between the tracker and a (possibly randomly selected) set of m ≥ 0

peers. The peers’ input is a memory array Ai each, while for the tracker

its state s. The peers output each a (possibly) modified memory array A′i,

while the tracker outputs an updated state s′.

Note that a modification of a file already stored in the network is always

considered as uploading a new file.

Setup Algorithm. In a P2P network, different peers have different storage ca-

pacities and hence we differentiate between the number of blocks, NB, and the

number of physical peers NP . For this, we fragment the conceptual ORAM tree

into smaller chunks where every peer physically handles a number of buckets

depending on its local available storage. In addition, to keep a consistent global

view on the network, the tracker keeps some state information. In OBLIVP2P-1,

the state is composed of different meta-information that are independent of the

block size: FileMap, PosMap, TagMap, NetMap, KeyMap, and StashMap. Ta-

ble 4.1 gives more details about the metadata. The state also contains a counter

recording the last eviction step, and ∼ B
log q

points sampled randomly from a

q-order elliptic curve group G to be used for DDH seed homomorphic PRG,

where B is the block size. The number of points in the generator needs to be

equal to those in the data block. These points are publicly known to all peers

in the network. The tracker randomly distributes the stash among the peers and

records this information in the StashList.

Fetch Algorithm. The Fetch process is triggered when a peer requests a partic-

ular file. The tracker determines the block tag and position from its state for all

the blocks composing the file. The m peers, the tracker, and the initiator runs

OblivSel protocol such that the initiator retrieves the desired block. The OblivSel

is invoked a second time to add a new layer to the retrieved block and send it

87

Algorithm 4: Fetch(fid, s): OBLIVP2P-1 fetch operation
Input: file id fid, and state s
Output: file {block}, and updated state s
// Initiator requests tracker for a file

1 {adr} ← FileMap(fid);
2 for adr in {adr} do
3 (tag, pos)←

(
TagMap(adr),PosMap(adr)

)
;

4 k← KeyMap(adr);
5 compute (~σ,~r) := OblivSel.Gen(k, pos);
6 set A =

(
stash,P(tag, 1), · · · ,P(tag, L)

)
;

// Initiator retrieves the block
7 compute block := OblivSel.Select(~σ,~r,A);

// Re-encryption with a new secret

8 compute k
$←− Zq;

9 compute (~σ,~r) := OblivSel.Gen(k, pos);
10 append ∆ := OblivSel.Select(~σ,~r,A) to the stash, and update state s;
11 end

to the peer who will hold the stash. The tracker updates its state, in particular,

update KeyMap with the new key, update the PosMap with the exact position

of the block in the network (in the stash), and TagMap with the new uniformly

sampled tag. We provide an algorithmic description of the Fetch process in

Algorithm 4.

Sync Algorithm. The Sync in OBLIVP2P-1 consists of: (1) updating the state

of the network, but also, (2) evicting the stash. The tracker determines the path

to be evicted, tag = ν mod 2L and then fetches the position of all blocks in

the stash and the path, P(tag). The tracker then generates, based on the least

common ancestor algorithm (LCA), a permutation π that maps every block in

A =
(
stash,P(ν mod 2L, 1), · · · ,P(ν mod 2L, L)

)
to its new position in A′, a

new array that will replace the evicted path and the stash. The block A[π(i)] will

be mapped obliviously to A′[i], for all i ∈ [|stash|+z ·L]. The oblivious mapping

between A and A′ is performed by invoking OblivSel between the tracker, the

peers in the path and m peers, |stash|+z ·L times. Note that (1) the blocks in A′

are encrypted with a freshly-generated key, and (2) the mapping is not disclosed

to any peers in the path as long as there is one non-colluding peer. Refer to

Algorithm 5 for more detail about the Sync algorithm.

Upload Algorithm. A peer can request the tracker to add a file. For this, the

88

Algorithm 5: Sync(s): OBLIVP2P-1 sync operation
Input: tracker state s
// Fetch necessary parameters

1 ν ← s;
2 {adr} ← PosMap−1(ν mod 2L);
3 for adr in {adr} do
4 set T = T ∪ tag← TagMap(adr);
5 end
6 set A =

(
stash,P(ν mod 2L, 1), · · · ,P(ν mod 2L, L)

)
;

7 Initialize an array A′, π ← LCA(T, ν);
// tracker generates key shares

8 for l from 1 to z · L+ |stash| do
9 if ∃adr, l = PosMap(adr) then

10 set k← KeyMap(adr);

11 set k′′ = k′ − k, k′
$←− Zq;

12 compute (~σl, ~rl) = OblivSel.Gen(k′′, π(l));
13 else
14 set k′′

$←− Zq , compute (~σl, ~rl)= OblivSel.Gen(k′′, π(l));
15 end
16 end

// Peers generate the new array A′

17 for j from 1 to z · L+ |stash| do
18 set A′[j] = OblivSel.Select(~σj , ~rj ,A);
19 end
20 for j ∈ [m], send A′j [1, · · · , |stash|] and A′j [|stash|+ 1, · · · , L] to peers in P(ν) and

the stash, and update state s;

tracker selects uniformly at random a set of m peers. The peer sends the file

in a form of blocks. Every block is secret shared such that every peer in the m

peers receives a share. The tracker generates a secret unique to the block, k. The

tracker secret shares k to the m peers. The peers evaluate a seed-homomorphic

PRG on the received shares and add it to the block share. Finally, the block is

appended to a randomly selected peer in the network to hold a part of the stash.

4.4.4 Optimization: Handling Bursts

OBLIVP2P-1 has a functional limitation inherited by ORAMs. Any access can-

not be started unless the previous one has concluded 2. In our case, the tracker

can handle fetching several blocks before starting the Sync operation. In our

setting, we target increasing the P2P network throughput while leveraging the

network storage and communication. In order to build a scalable system, we

2We do not consider a multi-processor architectures as those considered in OPRAM litera-
ture [87].

89

propose several optimizations.

O1: Replication. In Ring ORAM, A = 3 accesses can be performed before an

eviction is required. To support A parallel accesses, we replicate every block A

times in the tree. This absorbs the fetching access time and allows A simulta-

neous accesses, even for requests to the same resource. Additionally, we may

replicate every block over A times on different peers, in case that the peer hold-

ing the block is offline due to churn, and cannot serve the block to the other

peers. Lastly, the network operator can deploy multiple trackers to serve peers

simultaneously, which leads to the throughput of OBLIVP2P-1 proportional to

the number of trackers.

O2: Pipelining. While the eviction is highly parallelizable in OBLIVP2P-1, an

eviction can take a considerable amount of time to terminate. If we denote by

f the average number of fetch requests in the P2P network, and by t the time

to perform an eviction, then the system can handle all the accesses if t < 1
f

.

However, in practice t > 1
f

and therefore the accesses will be queued and creates

a bottleneck. To address this issue, we create multiple copies of the buckets that

are run with different instances of OBLIVP2P-1 protocol which overlays on the

same network. In the setup phase, every node creates l copies of its bucket

space. Every bucket will be associated to different versions of OBLIVP2P-

1 instantiations. For example, with replication we can handle A accesses in

parallel on the (same) ith version of the buckets, but the upcoming accesses

will be made on the (i + 1)th version. This will absorb the eviction time. To

sum up, having different versions will increase the throughput of the system

to l
f

. In order to prevent pipeline stalls, we need to choose l ≥ t · f in our

implementation.

Another aspect (not considered for our implementation) for further opti-

mizations in our versioning solution is to distribute the communication over-

head of the peers in the network. In fact, the peers holding blocks at the higher

level of the tree will be accessed more often compared to lower levels. In order

90

to distribute the communication load on the network peers, peers’ location can

be changed for different versions such that: the peer at the ith level of the tree

in the jth version will be placed at the (L − i + 1)th level of the tree in the

(j + 1)th version.

O3: Parallelizing Computation across m Peers. The scalar multiplication in

the elliptic curve is expensive and can easily delay the fetch and sync time. For

this, we consider every peer in the OblivSel as a set of peers. Whenever there is a

need to perform scalar multiplication over a path, several peers participate in the

computation and only the representative of the set will perform the aggregation.

This optimization speeds up the OblivSel to be proportional to the number of

peers’ used to parallelize a single peer.

4.5 Implementation and Evaluation

Implementation. We implement a prototype of OBLIVP2P-0 and OBLIVP2P-1

in Python. The implementation contains 1712 lines of code (LOC) for OBLIVP2P-

0 and 3226 for OBLIVP2P-1 accounting to a total of 4938 lines measured using

CLOC tool [10]. Our prototype implementation is open source and available

online [32]. As our building block primitives, we implement the Ring ORAM

algorithm, IT-PIR construction and seed-homomorphic PRG. For Ring ORAM,

we have followed the parameters reported by authors [206]. Each bucket con-

tains z = 4 blocks and s = 5 dummy blocks. The eviction occurs after every 3

accesses. The blocks in OBLIVP2P-0 are encrypted using AES-CBC with 256

bit key from the pycrypto library [40]. For implementing IT-PIR and seed ho-

momorphic PRG in OBLIVP2P-1, we use the ECC library available in Python

[41]. We use the NIST P-256 elliptic curve as the underlying group.

Experimental Setup. We use the DeterLab network testbed for our experi-

ments [16]. It consists of 15 servers running Ubuntu 14.04 with dual Intel(R)

Xeon(R) hexa-core processors running at 2.2 Ghz with 15 MB cache (24 cores

91

each), Intel VT-x support and 24 GB of RAM. The tracker runs on a single server

while each of the remaining servers runs approximately 2400 peers. Every peer

process takes up to 4 − 60 MB memory which limits the maximum network

size to 214 peers in our experimental set up. The tracker is connected to a 128

MBps link and the peers in each server share a bandwidth link of 128 MBps as

well. We simulate the bandwidth link following the observed BitTorrent traffic

rate distribution reported in [79]. In our experimental setting, multiple peers are

simulated on a single machine hence our reported results here are conservative.

In the real BitTorrent setting, every peer has its own separate CPU.

Evaluation Methodology. To evaluate the scalability and efficiency of our sys-

tem, we perform measurements for a) the overall throughput of the system b)

the latency for Fetch and Sync operations and c) the data transferred through

the tracker for both OBLIVP2P-0 and OBLIVP2P-1. All our results are the av-

erage of 50 runs with 95% confidence intervals for each of them. Along with

the experimental results, we plot the theoretical bounds computed based on Ta-

ble 4.2. This helps us to check if our experiments match our theoretical expec-

tations. In addition, we perform separate experiments to demonstrate the effect

of our optimizations on the throughput of our OBLIVP2P-1 protocol. For our

experiments in this section, we leverage the technical optimization introduced

in Section 4.4.4.

We vary the number of peers in the system from 24 to 214 peers (capacity of

our testbed) and extrapolate them to 221 peers. Note that, when increasing the

number of peers, we implicitly increase the total data size in the entire network

which is computed as the number of peers × the block size. That is, our P2P

network handles a total data size that spans from 16 KB to 32 GB. For our eval-

uation, we consider each peer holds one ORAM bucket because of the limited

available memory. In reality, every peer can hold more buckets. Note that, we

linearly extrapolate our curves to show the expected results for larger number

of peers starting from 215 − 221 (shown dotted in the Figures) , and therefore

92

 0.0625

 0.25

 1

 4

 16

 64

25 27 29 211 213 215 217 219 221

T
hr

ou
gh

pu
t

(M
By

te
/s

)

Number of peers

TH-OblivP2P-0
TH-OblivP2P-1
EX-OblivP2P-0
EX-OblivP2P-1

Figure 4.3: Theoretical (Th) and experimental (Ex) comparison of OBLIVP2P-
0 and OBLIVP2P-1 parameters for block size of 512 KB. The throughput for
OBLIVP2P-1 linearly scales with the increase in network size.

larger data size in the network. Aligned to the chunks in BitTorrent, we select

our blocksize as 128 KB, 512 KB and 1 MB.

4.5.1 Linear Scalability with Peers

The throughput is an important parameter in designing a scalable P2P protocol.

We define the throughput, as the number of bits that the system can serve per

second.

From Figure 4.3, we observe that the throughput of OBLIVP2P-0 decreases

with the increase in the total number of peers in the network. For a network

size of 214 peers, the experimental maximum throughput is 0.91 MBps. As we

extrapolate to larger network size, the maximum throughput decreases, e.g., for

221 peers, the throughput is 0.64 MBps. This shows that as the network size

increases, the tracker starts queuing the requests that will eventually lead to a

saturation. However, for OBLIVP2P-1, the maximum throughput for network

size of 214 is 3.19 MBps and is 3.29 MBps when extrapolated to 221 peers. The

throughput increases as there are more peers available in the network to dis-

tribute the computation costs. The throughput shows a similar behaviour for

blocksize of 128 KB and 1 MB (as shown in Figure 4.7). Hence, we expect

93

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

25 27 29 211 213 215 217 219 221

La
te

nc
y

(m
s)

Number of peers

TH-OblivP2P-0
TH-OblivP2P-1
EX-OblivP2P-0
EX-OblivP2P-1

Figure 4.4: The latency for fetching a block for OBLIVP2P-1 reduces up to 213

and then becomes constant.

 0

 1

 2

 3

 4

 5

 6

 7

25 27 29 211 213 215 217 219 221

La
te

nc
y

(s
)

Number of peers

TH-OblivP2P-0
TH-OblivP2P-1
EX-OblivP2P-0
EX-OblivP2P-1

Figure 4.5: The latency for sync operation for OBLIVP2P-1 reduces up to 213

and then becomes constant.

94

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

 256

25 27 29 211 213 215 217 219 221

D
at

a
(M

By
te

)

Number of peers

TH-OblivP2P-0
TH-OblivP2P-1
EX-OblivP2P-0
EX-OblivP2P-1

Figure 4.6: The data transferred through the tracker for OBLIVP2P-0 increases
linearly with the number of peers

 0.0625

 0.25

 1

 4

 16

 64

25 27 29 211 213 215 217 219 221

T
hr

ou
gh

pu
t

(M
By

te
/s

)

Number of peers

B=128 KB
B=1MB

Figure 4.7: The throughput for blocksize 128 KB and 1 MB increases with
increase in the network size.

95

 0.00390625

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

NO O1 O2 O3

T
hr

ou
gh

pu
t

(M
By

te
/s

)

OblivP2P optimizations

Theoretical
Experimental

Figure 4.8: Impact of optimizations (O1-O3) on the throughput of OBLIVP2P-1
for 214 peers and blocksize of 512 KB.

OBLIVP2P-1 to provide better throughput in a real setting where more com-

putational and communication capacity for each peer can be provisioned. The

throughput values for OBLIVP2P-1 are calculated after applying all the 3 opti-

mizations discussed in Section 4.4.4. The behaviour of the theoretical through-

put matches our experimental results. The theoretical throughput has higher

values as it does not capture the network latency in our test environment.

Result 1. Our results show that the centralized protocol is limited in scalability

and cannot serve a large network. Whereas, the throughput for OBLIVP2P-1

linearly scales (0.15 − 3.39 MBps) with increasing number of peers (25 − 221)

in the network.

Result 2. For a block of size 512 KB and 214 peers, OBLIVP2P-1 serves around

7 requests / second which can be enhanced with multiple copies of ORAM trees

in the network.

Remark. The throughput may be acceptable to privacy-conscious users (e.g.,

whistleblowers), where privacy concerns outweigh download / upload latencies.

As long as the number of request initiators is small, the perceived throughput

remains competitive with a non-oblivious P2P system. Further, the network

operator can deploy multiple trackers to serve peers simultaneously, which leads

96

to the throughput of OBLIVP2P-1 proportional to the number of trackers.

4.5.2 Latency Overhead and Breakdown

We define the latency as the time required to perform one ORAM operation in

our P2P protocol. We measure the latency for the following operations:

Fetch. Figure 4.4 shows that the average time for fetching a block of 512 KB in-

creases for OBLIVP2P-0 with increase in the size of the network. This is due to

the increased computation and bandwidth overhead at the tracker. However, for

OBLIVP2P-1, the latency initially reduces with the increasing number of peers

(from 25 to 211) and then becomes constant after the network is large enough

(around 213) to distribute the computation cost in the network3. OBLIVP2P-1

has a higher latency for fetch as compared to OBLIVP2P-0 due to the expensive

computation required for performing scalar multiplication. The average time for

fetching a block of size 512 KB is around 0.31 s for a network size of 214 peers

and remains steady with increase in the number of peers.

Sync. We measure the time for performing a sync operation for different net-

work sizes. Figure 4.5 shows that the time for performing a sync operation

increases in OBLIVP2P-0 with increase in the number of peers. Whereas for

OBLIVP2P-1, the sync time reduces gradually at first and then becomes steady

after the network size reaches 213 peers which is as expected through our theo-

retical calculation. OBLIVP2P-1 uses the peers in the network to distribute the

computation load and hence the sync time tends to be steady for large network

sizes.

Data transferred through tracker. Figure 4.6 shows the amount of data that

is transferred through the tracker per request. We perform this measurement to

show that the centralized tracker becomes a bottleneck in OBLIVP2P-0. The

3 Since a large number of nodes (e.g., over 1000 nodes) share one physical machine, its
limited computation power drastically affects our result. Therefore, to be more realistic, we use
the ideal computing time for each node solely in one physical machine as the computing time
per node, and simulate our experiments for OBLIVP2P-1.

97

amount of data that the tracker has to process increases with increase in the

number of peers. At 221 peers, the amount of data is 118 MB (almost) reaching

the bandwidth limit (128 MBps) of the tracker. Whereas, for OBLIVP2P-1 the

amount of data transferred is around 1 MB for 221 peers. This implies that the

tracker could manage up to 128 copies of ORAM tree in parallel, which will

increase the overall throughput by 128 times.

Result 3. OBLIVP2P has no centralized infrastructure as a bottleneck, ensuring

that communication and computational overhead can be completely offloaded

to the network.

4.5.3 Optimization Measurements

We perform incremental experiments to quantify the impact of each of the in-

troduced optimizations on the overall throughput in Section 4.4.4, as shown in

Figure 4.8. We fix the number of peers in the network to be equal to 214 and

the block size to 512 KB. We chose our optimization parameters based on our

results in section 4.5.3. We fix the number of replicas to be equal to A = 3,

i.e., the same data block is replicated three times. The burst parameter needs to

be in O(B
log q

logNp), where Np is the number of peers, B the block size, and q

the elliptic curve group order. Finally, we fix the number of parallel peers in the

OblivSel.Select algorithm to be in O(B
log q

logNp).

O1: Replication. Replication enables to perform A = 3 fetch operations in

parallel. This implies that the throughput theoretically increases 3 times when

compared to our baseline without any optimizations. Our experimental results

show that we have 2.55 times improvement over the baseline, as expected theo-

retically.

O2: Pipelining. We evaluate the effect of our optimization (O2) that absorbs the

eviction time by pipelining the fetch requests to different versions of the ORAM

tree in the P2P network. We show that this optimization, when coupled to (O1),

has theoretically increased the overall throughput by 23.05 times if compared

98

to the baseline. Our experiments are aligned to our theoretical results and show

17.2 times improvement over the baseline with a burst parameter of 17. Clearly,

if the number of versions increases beyond 17, then OBLIVP2P-1 can handle

parallel accesses, hence increasing the system throughput.

O3: Parallelizing m peers. We measure the effect of parallelizing the compu-

tation load of m peers by leveraging more peers in the network on the overall

throughput of the system. We increase the number of peers to 116 peers that

are used to compute the fetch and sync operations. Our theoretical result shows

an improvement of 4398 times over the baseline, when coupled with (O1) and

(O2). Our experiments support this result and demonstrates 1589 times im-

provement, the difference is due to the real network latency are not considered

in our theoretical calculation.

Result 4. OBLIVP2P-1 is subject to several optimizations due to its highly

parallelizable design.

4.6 OBLIVP2P-1 Analysis

In this section, we present the theoretical analysis on computation / communi-

cation overhead of tracker / peers and security analysis for OBLIVP2P-1.

4.6.1 Performance

We report OBLIVP2P-1 computation and communication overhead for the tracker

and the network in Table 4.2. In particular, OBLIVP2P-1’s tracker transmits a

number of bits independent of the block size, the tracker does not perform any

computation on the blocksize or store any block locally.

Tracker overhead. To fetch a block, the tracker invokes OblivSel twice. While

for the eviction, the tracker performs OblivSel
(
L · z + |stash|

)
times. That is,

it is sufficient to first analyze OblivSel overhead and than just conclude for the

overall tracker overhead.

99

Within one instance of OblivSel, the tracker computes an IT− PIR.Query

that outputsm vectors form peers, each of sizeL·z+|stash|. Each IT− PIR.Query

vector costs log q(L · z + |stash|) bits, where q is the group order. The tracker

also needs to generate shares for the key, where the shares are in Zq. That is,

one OblivSel costs the tracker O
(
m · log q · (L · z + |stash|)

)
.

That is, the tracker has to transmit O
(
m · log q · (L · z + |stash|)2

)
bits.

Considering L, |stash| ∈ O(logN), q the group order in poly(N), m the num-

ber of peers and z the bucket size as constants, then the tracker needs to send

O(log3N) bits independently of the block size. That is, if block ∈ Ω(log3N),

the tracker has a constant communication work per block. Moreover, the tracker

is very lightweight as it does not perform any heavy computation like encryption

/ decryption of blocks, which permits the tracker to handle frequent accesses.

Peers overhead. Considering the communication between the peers, the main

communication overhead comes from block transfer from the peers holding the

path to the selected m peers. The m peers are selected uniformly at random.

Each peer receives (z · L + |stash|) blocks from the peers in the selected path

and the stash. That is, in terms of communication overhead, the peers sends on

average
∑L

i=0
z
2i

+ (z·L+|stash|)
N

+ z
N

blocks per peers in the network. Considering

z constant and L, |stash| ∈ O(logN), implies that every peer is expected to

transmit O(logN
N

) blocks per access.

In terms of computation, the main computational bottleneck consists of the

scalar multiplication from the seed homomorphic PRG. For every OblivSel, ev-

ery peer needs to perform (z ·L+ |stash|) · B
log q

scalar multiplications per block.

The second term, B
log q

, represents the number of points that a block contains.

We also have (z ·L+ |stash|) instances of OblivSel during the eviction. That is,

the total number of scalar multiplication equals O
(
(z · L+ |stash|)2 · B

log q

)
. Fi-

nally, the amortized computation over the total number of peers in the network

equals O(log4N
N

) multiplications per eviction, considering B ∈ Ω(log3N) and

q ∈ poly(N).

100

4.6.2 Security Analysis

We show that OBLIVP2P-1 is an oblivious P2P as stated by Definition 4.2.2.

For this, it is sufficient to show that an adversary cannot distinguish between

a randomly generated string and the access pattern leaked by any peer’s real

access. This underlines the fact that the access pattern is independent of the

address of the requested block. In our threat model, the adversary can have

access to the content of buckets, monitors the communication between the peers,

and has a total view of the internal state of dishonest peers. Buckets’ content is

assumed to be transmitted without any additional layer of encryption.

We present our address-tag experiment AT that captures our security defi-

nition. Let OBLIVP2P = (Setup,Upload,Fetch, Sync) represents an oblivious

P2P protocol. Let E = (Gen,Enc,Dec) be an IND$− CPA encryption scheme.

Let G be a secure pseudo-random generator. ATOblivP2P
A,E,G refers to the instantia-

tion of the address-tag experiment by algorithms OBLIVP2P, E , G, and adver-

sary A. We denote by Col the event that m peers in the network collude and set

Pr[Col] = δm, by Bδm the Bernoulli distribution, and λ the security parameter.

In the following, we fix the number of colluding peers c ∈ O(N ε), for 0 <

ε < 1. We consider every peer in the network as a random variable distributed

based on a Bernoulli distribution with probability equal to c
N
∈ O(N ε−1). Let

us denote by (X1, · · · , Xm) the random variables of the selected peers for every

instantiation of OblivSel. Note that Pr[Col] = Pr[X1 = 1 AND · · · Xm = 1].

Since all Xi’s are independent, then, Pr[Col] = Πm
i=1 Pr[Xi = 1] = (c

N
)m. That

is, δm = (c
N

)m which implies under our assumptions that δm ∈ O(2logN ·m·(ε−1)).

In the following experiment, we only consider the Fetch algorithm for obliv-

iousness analysis. In our model, Upload sequences are indistinguishable by con-

struction assuming that peers uploads blocks that are randomly distributed, and

using random key for every block encryption. The experiment ATOblivP2P
A,E,G (λ, b)

consists of:

• The adversary A picks one access operation (Fetch, adr,⊥) and sends it

101

to the challenger C

• If b = 1, pick X
Bδm←−− {0, 1}, if X = 1, then set var = adr , otherwise

var = ⊥ and set

π1 ={
(
P(tag, 1), · · · ,P(tag, L)

)
, tag← TagMap[adr],(

Enc(q1), · · · ,Enc(qm)
)
,

(q1, · · · , qm)← IT− PIR.Query(pos),

pos← PosMap[adr], var}

If b = 0, set π0 = {
(
P1, · · · , PL

) $←− Gz×L,(
q1, · · · , qm

) $←− {0, 1}λ×m,⊥}

• Adversary A has access to an oracle OOblivP2P that issues the access pat-

terns for polynomial number of accesses (while paths are re-encrypted for

every request)

• A outputs b′

• The output of the experiment is 1 if b = b′, otherwise 0. If ATOblivP2P
A,E,G (λ, b′) =

1, we say that A won the experiment.

The experiment differentiates between a realistic setting where the adver-

sary can see the access pattern, and in which a possible colluding setting can

happen with a pre-fixed probability, δm, and an ideal setting where the adver-

sary receives a random string. We slightly re-formulate Definition 4.2.2 below.

Definition 4.6.1. We say that a P2P is oblivious iff for all PPT adversaries A,

there exists a negligible function negl such that:

Pr[ATOblivP2P
A,E,G (λ, 1) = 1]− Pr[ATOblivP2P

A,E,G (λ, 0) = 1] ≤ negl(λ)

Theorem 4.6.1. If ∀N > 1, and ∀ε < 1, ∃m > 1 s.t. 2logN ·m·(1−ε) ∈ negl(λ), G

is a secure pseudo-random generator, E is IND$− CPA secure, then OBLIVP2P-

1 is an oblivious P2P as in Definition 4.6.1.

Proof. To prove our theorem, we proceed with a succession of games as follows:

102

• Game0 is exactly the same as ATOblivP2P
A,E,G (λ, 1)

• Game1 is the same as Game0 except that the blocks in the bucketsP(tag, i)

are replaced with random points from G

• Game2 is the same as Game1 except that the the encrypted IT− PIR queries

are replaced with random strings

From games’ description, we have

Pr[Game0 = 1] = Pr[ATOblivP2P
A,E,G (λ, 1) = 1], (4.1)

For Game1, we can build a distinguisher B1 that reduces security of G to PRG

security such that:

Pr[Game0 = 1]− Pr[Game1 = 1] ≤ AdvPRGB1,G (λ), (4.2)

Similarly for Game1, we can build a distinguisherB2 that reduces E to IND$− CPA

security such that:

Pr[Game1 = 1]− Pr[Game2 = 1] ≤ AdvIND$−CPA
B2,E (λ), (4.3)

We need now to compute Pr[Game2].

Pr[Game2] = Pr[Col] · Pr[Game2 = 1| Col]+

Pr[Col] · Pr[Game2 = 1| Col]

=δm + (1− δm)
1

N

On the other side Pr[ATOblivP2P
A,E,G (λ, 0) = 1] = 1

N
, since the tag is generated

uniformly at random for every access.

Pr[Game2]− Pr[ATOblivP2P
A,E,G (λ, 0) = 1] = δm(1− 1

N
) (4.4)

103

From equations 4.6.2, 4.6.2, 4.6.2, and 4.6.2 we obtain:

Pr[ATOblivP2P
A,E,G (λ, 1)]− Pr[ATOblivP2P

A,E,G (λ, 0) = 1] ≤

δm(1− 1

N
) + AdvIND$−CPA

B2,E + AdvPRGB1,G .

Since δm ∈ O(2logN ·m·(ε−1)), this ends our proof.

Quantitatively, if the number of peers in the network equals 220, number

of colluding peers in the network is c = N
1
2 and m = 12, then δ12 = 2−120.

Given the number of colluding peers and total number of peer, the value of m

can always be adjusted to handle the desired colluding probability δm. In case

of churn, the fraction c can vary and therefore the length of the circuit m has

to be adapted to the new value. Furthermore, we implicitly assumed so far that

no peer among the m selected leaves in the middle of the OblivSel process. If

that occurs, the entire process has to abort, re-calculates the number of required

peers m, and perform the OblivSel from scratch.

4.7 Discussion

Existing approaches. A valid question to investigate is whether existing solu-

tions such as unlinkability or path non-correlation techniques can be extended

to handle global adversaries and therefore prevent traffic analysis at the cost of

providing more resources. It is easy to see that unlinkability techniques (e.g.,

mixnet) can provide better security in a P2P network under some assumptions.

As an instance, assuming the case where a large number of peers behave as

senders and issue requests that will be mixed by sufficient network peers before

being answered by corresponding receivers’ peers. Also, assuming that there

is at least one honest peer in the mixing network, this solution would provide

slightly the same level of security as OBLIVP2P where a global adversary can-

104

not distinguish the senders’ peers access pattern. However, this solution suffers

from two downsides. First, there is a need to have sufficient number of senders’

peers on-line in order to prevent intersection attacks. That is, in order to prevent

traffic analysis, the number of senders represents a security parameter of the

system that has to be maintained throughout the entire run of the system. Sec-

ond, as the receivers’ contents are theirs and are not encrypted, plus, all peers

are considered honest-but-curious, a global adversary can easily find out what

content is being accessed independently of the sender identity. This therefore

does not achieve obliviousness as defined in our work but only a weaker version

of it. On the other hand, path non-correlation techniques conceptually cannot

prevent against global adversary as we have detailed in Section 4.2. To sum up,

it is not clear if existing techniques, even if given enough resources, can provide

similar security insurances as those in OBLIVP2P.

Does better network & computation help? As empirically demonstrated in

our evaluation section, the throughput of OBLIVP2P is around 3.19 MBps while

considering only one tracker in the network. In a plaintext version of P2P system

such as BitTorrent, the network leverages multiple trackers in order to handle

more queries, and therefore increase the overall throughput. In OBLIVP2P, if

we consider multiple copies of the entire network, we can also handle multiple

trackers, and the throughput is expected to increase linearly with the number

of trackers. However, as we delegate computation to the peers in OBLIVP2P,

increasing the number of trackers beyond a particular threshold might turn out

to be useless as the computation would represent a bottleneck of the system. As

future work, we plan to investigate the asymptotic and empirical implications

of including multiple trackers in the system. Moreover, it would be interesting

to find out the relation between the number of trackers, number of peers for an

ideal throughput of OBLIVP2P.

105

4.8 Related Work

Previous work has shown possible attacks by leveraging side channels such as

packet sizes, number of packets and timing. These side channels leak users’ pri-

vate information, e.g., illnesses/medications/surgeries, income and investment

secrets [102]. An attacker can employ machine learning techniques (e.g., Sup-

port Vector Machines) on network traffic to identify the user’s browsing web-

sites [127, 191, 224, 225]. However, our focus in this paper is to only prevent

long-term pattern traffic analysis. The aforementioned side-channels of traf-

fic analysis are out of scope. Although high-latency anonymous systems (e.g.,

mixed network) provide unlinkability between users and messages, these sys-

tems are prone to intersection or disclosure attacks if an adversary can observe

multiple request rounds in the network [63,114,116,119,159,173,175,197,219].

For P2P content sharing systems, e.g., BitTorrent, studies have shown that

monitoring BitTorrent traffic reveals users’ private information, e.g., the data

requested and sent by them [164, 200, 212]. Researchers also show that BitTor-

rent users on top of Tor still leak information related to the resources uploaded

or downloaded [8, 80, 174] to a long-term traffic analysis attacker. With all the

facts, long-term traffic analysis is still a major security concern and challeng-

ing problem for P2P content sharing systems. In this paper, we propose a new

approach to hiding data access patterns, making P2P systems oblivious, and

further to protecting against persistent, global traffic analysis in P2P content-

sharing systems.

Multi-servers and parallel ORAM. There have been works on how to opti-

mize ORAM constructions while leveraging multiple servers [171, 214, 215],

multiple CPUs [87, 101], computational servers [121, 182], or distributed under

a weaker threat model [112] . However, none of these recent constructions fit to

a P2P setting as is. This is mainly due to the inherent client / server setting that

results on a single entity bottleneck. The client has to either perform non-trivial

computation or/and transmit several amount of bits.

106

OblivStore [215], Lu and Ostrovsky [171], and Stefanov and Shi [214] demon-

strate how to decrease the communication overhead while leveraging multiple

ORAM nodes and servers. However, all these constructions are centralized and

route the block through the tracker. This leads to a single entity bottleneck.

Recently, researchers have proposed oblivious parallel RAM (OPRAM) [87,

101]. This was motivated by current multi-cpu architectures that can access

the same or multiple resources in parallel. However, OPRAM does not de-

crease the communication overhead making it as well a single-entity bottleneck.

Dachman-Soled et al. introduced oblivious network RAM (ONRAM) [112].

ONRAM can reduce the communication overhead between the client and mul-

tiple banks of memory to be constant in the number of blocks. However, it

assumes a weak threat model, and cannot achieve obliviousness in the case of a

global adversary.

4.9 Summary

We advocate hiding data access patterns as a necessary step in defenses against

long-term traffic pattern analysis in P2P content sharing systems. To this end,

we propose OBLIVP2P— an oblivious peer-to-peer protocol. Our evaluation

demonstrates that OBLIVP2P is parallelizable and linearly scalable with in-

crease in number of peers, without bottleneck on a single entity.

107

108

Chapter 5

Robust Synchronous P2P

Primitives Using SGX Enclaves

5.1 Introduction

The robustness of P2P protocols is the basis of the core utilities and security /

privacy properties provided by these protocols. In APAC and OBLIVP2P, we

consider that an adversary passively monitors the traffic in the network and fol-

lows the given protocol. However, in reality, malicious (byzantine) nodes can

easily join these P2P systems, and the presence of such adversaries is a major

security concern in P2P systems, as they can disrupt the protocol execution or

robustness. In this chapter, we propose robust P2P primitives against byzantine

adversaries in P2P systems. Peer-to-peer systems such as BitTorrent [7], Sym-

form [46], CrashPlan [12], StorJ [44], Tor [47] and Bitcoin [6] are becoming

popular among users due to ease of accessibility. In such P2P systems, online

users can simply volunteer as peers (nodes) to join the network. However, this

exact property allows adversarial or Sybil peers to be a part of the network and

exhibit a byzantine behavior. Such byzantine adversaries introduce lots of seri-

ous security issues to P2P systems. For example, researchers have demonstrated

that in Bitcoin byzantine nodes can collude to eclipse or partition the honest

109

nodes leading to double-spending and selfish mining attacks [146, 189]. Fur-

ther, byzantine nodes in anonymous P2P systems can selectively deny service

to weaken the anonymity guarantee of such systems as Tor [47, 84]. In addi-

tion, byzantine nodes in the network can selectively forge, divert, delay or drop

messages to disrupt the protocol execution. Therefore, designing robust P2P

protocols in a byzantine setting continues to be an important research problem.

Researchers have extensively worked in the byzantine model to design so-

lutions for fundamental P2P problems such as reliable broadcast and agreement

among the peers [61, 65, 76, 78, 138, 139, 162, 195]. There are well-known im-

possibility results in the standard model of byzantine setting, such as the in-

ability to achieve reliable broadcast or agreement when over 1
3

of the network

is byzantine [162, 195]. In a quest for efficient protocols that tolerate a larger

fraction of malicious nodes, several failure models have been proposed which

limit the capabilities of the byzantine adversaries. For instance, one such model

is the general-omission model where the byzantine node can only omit mes-

sages that are either sent or received by it during the execution of a proto-

col [193, 198]. In this weaker adversarial model, it is possible to tolerate N
2

adversarial nodes and design relatively simple and efficient protocols for reli-

able broadcast [99, 145, 193, 198]. However, many of these adversary models

make strong assumptions, which are not always realistic and have not had a

concrete basis for implementation.

Our approach. To this end, we study the possibility of using recent hardware-

root-of-trust mechanisms for making previous adversarial models realizable in

practical systems. We observe that emerging hardware, specifically Intel SGX,

provides stronger trusted computing capabilities, which allow running hardware-

attested user-level enclaves on commodity OSes [25,26,110]. Enclaves provide

hardware-isolated execution environment which guarantees that an application

executing in an enclave is tamper-resistant and can be attested remotely. Assum-

ing that SGX-like capabilities become commodity and widescale in end hosts,

110

we ask if it is feasible to build robust P2P protocols. Our main observation is

that by leveraging the capabilities of such a trusted hardware, one can restrict the

behavior of byzantine adversaries to the general-omission model in synchronous

networks [99, 145, 193, 198].

Specifically, we use four SGX features, i.e., enclave execution (F1), unbi-

ased randomness (F2), remote attestation (F3) and trusted elapsed time (F4)1.

Based on these hardware features, we enforce six security properties (P1 - P6).

First, we enforce execution integrity (P1), message integrity & authenticity (P2)

and blind-box computation (P3), thus the attacker cannot forge messages or

deviate from the execution of the given protocol. Thus, the adversarial node

can only delay, replay and omit messages. We further leverage lockstep exe-

cution (P5) and message freshness (P6) to reduce the adversarial model to the

general-omission model, where byzantine nodes have no additional advantage

than omitting to send / receive messages2. In such model, P3 disallows the

adversary to selectively omit messages based on the content. Lastly, the halt-

on-divergence (P4) allows us to detect and eliminate peers that selectively omit

messages based on identities of senders / receivers, thus in turn reducing round

complexity and “sanitizing” the network. Leveraging these properties we can

further achieve improvement for the efficiency of protocols. We present efficient

designs for reliably broadcasting messages called Enclaved Reliable Broadcast

(ERB) protocol and an unbiased common random generator called Enclaved

Random Number Generator (ERNG) protocol. Both ERB and ERNG primi-

tives can be used as building blocks to solve a wide range of problems in dis-

tributed systems, such as random beacons [202], voting schemes [184], random

walks [144], shared key generation [140, 141], cryptocurrency protocols [172]

and load balancing protocols [111, 203] (details in Section 5.10.2).

Results. Our work targets synchronous network where every machine is run-

1These are available in Intel SGX and are commonly provided by other trusted hardware
mechanisms [3, 55].

2A node’s crash failure is equivalent to omitting all messages for the rest of the execution for
the protocol.

111

ning an SGX-enabled CPU. As shown in Table 5.1 and Table 5.2, both of our

protocols asymptotically reduce the round and communication complexity as

compared to previous works in the byzantine model, and match with (or outper-

form) the results in general-omission model. For a network of size N , the round

and communication complexity for ERB are min{f + 2, t + 2} and O(N2),

where t and f (f ≤ t) are the number of byzantine peers and peers actually

behaving maliciously for one execution of ERB, respectively. The round and

communication complexity for basic ERNG are O(N) and O(N3), and for the

optimized ERNG are O(logN) and O(N logN), respectively. We implement a

prototype of our solution and the source code is available online [34]. We eval-

uate our implementation for both ERB and ERNG and our experimental results

match our theoretical claims.

Contributions. The main contributions of this chapter are:

• Realizable General-Omission Model - We leverage SGX features to reduce

the byzantine model to the general-omission model, where byzantine nodes

have no extra advantage than omitting messages.

• Better Synchronous P2P Protocols - By enforcing our properties, we can

improve the efficiency of P2P protocols. As the first attempt, we propose

efficient protocols for reliable broadcast (ERB) and unbiased random number

generation (ERNG) in synchronous settings.

• Security Analysis & Evaluation - We provide security analysis and proof for

our protocol constructions. Our experimental evaluation confirms the theo-

retical expectations of our solutions.

3Some of these protocols are designed for byzantine agreement, but it is proved that they can
be easily transformed to achieving reliable broadcast with only introducing additional message
complexity of O(N) [220].

4They assume that every byzantine node only sends a bounded number of messages per
round, and honest nodes can use digital signatures to sign each message.

112

Protocol3
Attacker

Model

Network

Size

Round

Complexity

Comm.

Complexity

PT [198]

Omission

t+ 1 min{f + 2, t+ 1}
O(N3)

PR [193]
2t+ 1

min{f + 2, t+ 1}

CT [99] 2t+ 1 O(N2)

PSL [195]

Byzantine

3t+ 1
t+ 1

O(exp (N))
BGP [78] min{f + 2, t+ 1}

BG [76] 4t+ 1 t+ 1

O(poly(N))GM [138, 139]
3t+ 1

min{f + 5, t+ 1}

AD15 [61] min{f + 2, t+ 1}

AD14 [65] Byzantine4 2t+ 1 3t+ 4 O(N4)

ERB Byz. + SGX 2t+ 1 min{f + 2, t+ 2} O(N2)

Table 5.1: Round complexity and communication complexity for reliable broad-
cast in synchronous network.

Protocol
Network

Size

Round

Complexity

Comm.

Complexity

AS [67] 6t+ 1 O(N) O(N3)

AD14 [65] 2t+ 1 O(N) O(N4)

Basic ERNG 2t+ 1 O(N) O(N3)

Optimized ERNG 3t+ 1 O(logN) O(N logN)

Table 5.2: Round / communication complexity for random number generation
protocols in synchronous distributed systems.

113

5.2 Problem

Designing efficient solutions for P2P protocols in the byzantine setting is a

widely-recognized problem with limited solutions [61,65,76,138,139,195]. Our

goal is to shed light on how SGX can aid to improve efficiency of synchronous

P2P protocols. In this work, we take two fundamental problems as examples:

1) reliable broadcast and 2) common unbiased random number generator.

5.2.1 Problem Definition

In light of the previous works, we recall the standard definition of reliable broad-

cast [99, 193] and common unbiased random number [67] in the synchronous

network:

Definition 5.2.1. (Reliable Broadcast). A protocol for reliable broadcast in

synchronous settings satisfies the following conditions:

• (Validity) If the sender is honest and broadcasts a message m, then all honest

nodes eventually accept m.

• (Agreement) If an honest node accepts m, then all honest nodes eventually

accept m.

• (Integrity) For any message m, every honest node accepts m at most once, if

m was previously broadcast by the sender.

• (Termination) Every honest node eventually accepts a message (m or ⊥).

In order to define a common unbiased random number generator, we define

the bias of any multi-variate function in a standard way [67].

Definition 5.2.2. (Unbiasedness). Let G : {0, 1}k×N → {0, 1}k be a determin-

istic multi-variate function that maps N elements in {0, 1}k to one element in

{0, 1}k. We define the bias of G, β(G), as follows:

β(G) = max
S⊆{0,1}k

(
max

(E[S]

EG[S]
,
EG[S]

E[S]

))
,

114

where EG[S] is the expected number of values in G(x1, · · · , xN) ∈ S, and

E[S] = |S|
2k

, which is the expected value when the output of G is distributed

uniformly at random.

Definition 5.2.3. (Common Unbiased Random Number). A protocol G gen-

erates a common unbiased random number r among N nodes if it satisfies the

following conditions with high probability (w.h.p.) 5:

• (Agreement) At the end of the protocol, all the honest nodes agree on the same

value r.

• (Unbiasedness) The bias of β(G) = 1.

For the analysis of protocols, we define the following complexities with re-

spect to a single execution of the protocol.

• The message / communication complexity is defined as the total number of

messages / bits transferred among all nodes in the worst case.

• The round complexity is defined as the number of executed rounds (or steps)

in the worst-case.

5.2.2 Attacker Model

We consider a widely-studied standard synchronous model of P2P systems [61,

65, 76, 138, 139, 195]. In this model, our only new requirement is that every

peer6 in the network uses an SGX-enabled CPU to run the P2P protocols. In a

network of N nodes, the number of byzantine nodes t is strictly bounded under

a fraction of N
2

. The number of peers that actually behave maliciously for a

particular execution of the protocol is f(≤ t). Thus, a P2P network P is com-

posed of N peers P = {p1, · · · , pN} such that N = 2t + 1. Every peer pi

in the P2P overlay has an identifier idi and can communicate with other peers

5For the rest of the chapter, unless otherwise stated, if some probability p is negligible, it
means that the event occurs with a probability of at most O(e−λ) for some security parameter
λ. Analogously, if some event occurs with high probability (w.h.p), the probability is at least
1−O(e−λ).

6We use the word peer and node interchangeably in this work.

115

using their ids. The underlying TCP/IP substrate is assumed to provide reliable

message delivery within a known bounded delay say ∆. Moreover, we con-

sider a round-based synchronous model where each round is equal to the time

an honest node requires to send a message and receive a response. Every peer

is directly connected to all other peers in the network and knows the network

size N . To summarize, we assume: the network size is N (S1); the protocol

starts synchronously (S2); the round time is 2∆ (S3); the number of byzantine

nodes is limited upto N
2

(S4); the peers are connected to each other (S5). This

is a prominently used model in the previous literature of distributed P2P sys-

tems [61, 65, 67, 144, 193, 198]. We discuss the validity of these assumptions in

Section 5.10.1.

Our Model using SGX. In our model, a byzantine peer has a compromised or

malware-ridden operating system but executes protocols using SGX enclaves [25,

26, 110]. Enclaves guarantee untampered execution in presence of malicious

underlying software or co-processes. The byzantine nodes can take arbitrary

software actions as long as it does not violate SGX guarantees.

Scope. Our focus is showing how to leverage SGX features to improve the

efficient of synchronous P2P protocols. Our model does not consider an adver-

sary that can perform hardware attacks and break SGX security guarantees. We

do not aim to prevent any information leakage through side-channels such as

pagefaults, memory accesses or timing attacks to which SGX-enabled CPUs are

known to be susceptible [165,177,227]. Indeed these problems are under inves-

tigation and recent research shows that defending against them is feasible. Ex-

isting solutions against these problems can directly apply to our work [190,211].

5.2.3 Strawman Solution & Attacks

Consider a strawman protocol for distributed random number generation using

reliable broadcast, where the initiator broadcasts a random number m using an

initialization message INIT to all the peers in a synchronous network (shown in

116

Algorithm 6). If m is generated randomly and unbiasedly as well as reaches ev-

ery honest node without being tampered, then all honest nodes will agree on the

common unbiased random number m and the goal of the protocol is achieved.

In Algorithm 6, upon receiving the INIT message, each peer further multicasts

an ECHO message to all other peers. After receiving the ECHO messages from

the majority of nodes, each peer accepts m as the final message m̂. Note that

if the initiator is honest, all honest nodes receive the message INIT during the

first round and multicast ECHO messages at the beginning of the second round.

In the second round, every honest node receives at least N − t ECHO mes-

sages from N − t honest nodes and maybe some byzantine nodes. Thus, after

two rounds, every honest node will output the same value m from the initiator,

which satisfies all the conditions of reliable broadcast in Definition 5.2.1. How-

ever, we show how a byzantine initiator and other byzantine peers can attack

this protocol to violate Definitions 5.2.1 and 5.2.3.

Attacks by Byzantine Adversary. Byzantine initiator and peers can tamper

with the execution of protocol in Algorithm 6 and forge the values of INIT and

ECHO messages to perpetrate the following attacks.

A1 (Execution Deviation): For this attack, an adversary deviates from the con-

trol flow of the running program for the given protocol. The adversary can

disregard essential conditions to jump to the desired instructions and execute

them directly. For example, the adversary can skip all the conditions like Line

7 & 13 to directly multicast its ECHO value to parts of honest nodes but not

all of them, to introduce equivocation to their final decisions. Moreover, the

adversary can also repeat particular instructions to obtain an output she wants.

For instance, if m is generated from a random source without being tampered

during the execution of the protocol, an unbiased common random number can

be agreed among all the peers in the network. A byzantine peer, however, can

repeat the step that generates m (Line 3) from the random source until it returns

a favorable random number. Hence, the output is biased as per Definition 5.2.3.

117

Algorithm 6: Strawman distributed random number generation protocol using reliable
broadcast.
Input: A P2P network P composed of N nodes, an initiator node idinit

Output: A message m̂

1 Initialization: m̂←⊥; SSm ← ∅; rnd← 1

2 upon self id is initiator:
3 get(m) // m is a random number
4 m̂← m
5 add self id to SSm
6 multicast INIT(m) to other peers
7 for rnd ≤ t+ 1 do
8 upon receiving INIT(m):
9 m̂← m

10 add self id and sender id to SSm
11 multicast ECHO(m) to other peers in round rnd + 1
12 upon receiving ECHO(m):
13 if m̂ =⊥ then
14 m̂← m
15 add self id to SSm
16 multicast ECHO(m) to other peers in round rnd + 1

17 end
18 if m = m̂ and sender id /∈ SSm then
19 add sender id to SSm
20 if |SSm| = N − t then
21 accept m̂
22 end
23 end
24 rnd← rnd + 1

25 end
26 if rnd > t+ 1 then
27 accept ⊥
28 end

A2 (Message Forgery): Suppose that the adversary does not deviate from the

execution of the given protocol, she can still alter the data flow (including input /

output and intermediate states) of the program to forge messages. As per Defini-

tion 5.2.1, a reliable broadcast protocol requires that if one honest node accepts

message m then all honest nodes accept m. The adversary can tamper with the

INIT and ECHO messages to violate this agreement property of the protocol. A

byzantine initiator colluding with other byzantine peers in the network can tam-

per with Line 6, 11 and 16 in the algorithm such that some honest nodes receive

most ECHO messages with m′ while others with m. This results in a fraction of

honest nodes assigning m̂ with m′ and accepting m′, while other honest nodes

accept m as the final output of the protocol, thereby causing inconsistency in

118

the network.

A3 (Selective Omission): Assume that the adversary does not deviate from the

control flow (i.e., the execution) of the given protocol or tamper with the data

flow to forge messages, she can still omit, delay and replay messages in this

restricted model. For an omission attack, it has two types: one is based on the

content of the transmitted message and the other is dependent on the identity of

the sender / receiver. For the first type, the adversary can observe its generated

or received random number m and selectively decide to drop or forward it to

other nodes based on its value, which introduces a bias in the final output for the

honest nodes. For example, if the adversarial peers receive or initiate a message

m, which is not the favorable one, they can omit to relay the message to the other

nodes, thus all honest nodes may finally agree on ⊥ instead of m. Further, to

violate the agreement condition in Definition 5.2.1 and 5.2.3, the adversary can

selectively decide to omit the message m depending on whether the destination

peer is honest or malicious. It can broadcast m correctly to a few honest nodes

and not send the message to the others for the last round. The honest nodes

receiving m can multicast m to the others, but the others will not accept it as the

execution ends. Thus, the honest nodes that do not receive a message will agree

on ⊥ while others will agree on m.

A4 (Message Delay): Alternatively, to generate an unbiased common random

number, every peer can broadcast its random number to all other peers using

Algorithm 6. All peers can then XOR the random numbers in the final set to

generate the output. To bias this final output, a byzantine peer can intentionally

hold its random number until it receives inputs from all other honest peers [67].

In this way, the adversary can “look ahead” in the protocol, calculate the fi-

nal output and then decide whether to participate in the protocol by sending its

random number. If the final random number already favors the adversary then

it does not participate in the protocol, otherwise it sends its message to all the

peers. Note that, for t < N
2

, all the byzantine adversaries can collude to intro-

119

duce an exponential bias in the final value.

A5 (Message Replay): In the restricted model, the adversarial node can use a

message mprev from an instance of the protocol running in parallel, or which

was run in the past to one (or more) honest node(s) and forward the correct

message m to other honest nodes [168]. This results in an inconsistency where

few honest nodes agree on mprev and others agree on m, thereby violating the

agreement condition of the protocol.

5.3 Solution Overview

In this work, our ultimate goals, with the help of SGX features, are twofold:

1) reducing the byzantine model to the general-omission model; 2) achieving

improvement for the efficiency of synchronous P2P protocols (e.g., lower com-

munication / round complexity). In this section, we put forward ideas using

SGX features to enforce six security properties to restrict the capabilities (A1 -

A5) of a byzantine adversary, as shown in Section 5.2.

5.3.1 SGX Features and Security Properties

We first start by recalling Intel SGX features which can also be provided by

other trusted hardware.

F1: Enclaved Execution - SGX supports hardware-isolated memory region called

enclaves such that a compromised underlying OS cannot tamper the execution

of the code running inside this enclave.

F2: Unbiased Randomness - SGX provides a function sgx read rand that

executes the RDRAND instruction to generate hardware-assisted unbiased ran-

dom numbers.

F3: Remote Attestation - SGX allows a remote party to verify that an applica-

tion is running in an enclave on an SGX-enabled CPU.

F4: Trusted Elapsed Time - SGX provides a function sgx get trusted time

120

Enclaves)

OSs)

Enclaver)

OSr)
Transfer Write Read

Peers Peerr

)))

Figure 5.1: Each peer consists of two entities: an Enclave and an OS. The
OS models the operating system and memory. The Enclave models the isolated
memory and the secure execution of a program. The sender Enclaves can send a
message via a secure channel to the receiver Enclaver. The grey areas are secure
against malicious OSes of byzantine nodes.

that returns a trusted elapsed time in seconds relative to a reference point.

Abstractly, a peer can be considered as the composition of two entities: an

OS and an Enclave as shown in Figure 5.1. The OS models the untrusted en-

tity including the operating system and memory. It has access to all the sys-

tem resources such as file system and network. The OS can arbitrarily invoke

an enclave program and start its execution. The Enclave models the isolated

memory space that loads the program and executes it securely. Thus, Enclave

corresponds to the trusted entity of a peer. We illustrate how to enforce P1 - P6

properties using SGX features to thwart A1 - A5 attacks.

P1 (Execution Integrity): With remote attestation (F3), an enclave in one

peer can verify the correctness of the running program for the given protocol

on the other nodes and whether it is executing on a valid SGX-enabled CPU or

not. Moreover, F1 ensures that the execution in an enclave cannot be tampered

with by the OS. F1 and F3 together enforce the execution integrity against

A1. Hence, an adversary cannot deviate from the execution of the protocol in

an enclave arbitrarily by skipping / repeating instructions to violate the control

flow of the running program.

P2 (Message Integrity & Authenticity): In designing our protocols, we first

perform a setup phase where each peer connects to every other in the network

and then performs a series of steps. Analogous to P1, every enclave first uses

F3 to verify the correctness of the protocol executing on other peers. Next,

they generate public / private key pairs inside the enclaves and exchange the

121

public keys with each other. Then all the messages transmitted between any

two enclaves can be signed to ensure the integrity and authenticity against A2.

Moreover, the internal states of the program are also protected using F1. There-

fore, the integrity of all messages including input / output / intermediate states is

guaranteed. In this case, it is clear that an adversary cannot forge valid messages

to bias the honest nodes to make inconsistent decisions.

P3 (Blind-box Computation): F1 ensures that all intermediate states of the

protocol’s computation are hidden from the OS. Leveraging F2, the provided

randomness is also hidden from the OS. This guarantees that the input state is

hidden along with the intermediate states of the protocol’s execution We say in

this case that the computation is a blind-box computation. As the adversarial

node does not know the random number and given that the output of the compu-

tation is encrypted between the Enclave and the OS, she cannot selectively omit

or drop messages based on their contents. Note that an important part of instan-

tiating such a blind-box computation is the ability to instantiate a secure channel

between two or more enclaves. In fact, enclaves can agree on a shared key to

establish a secure channel using Diffie-Hellman key exchange. Nodes can then

encrypt all the messages (including program’s intermediate input / output) trans-

mitted between each other to provide confidentiality against malicious OSes.

Note that, establishing such a shared key in the enclaved setting is slightly

weaker than the standard byzantine model, as the malicious operating system

cannot access the shared secret keys and decrypt the exchanged messages due

to F1. With P1 - P3, we can reduce the byzantine model to a restricted model,

where an adversarial node can only replay, omit and delay messages.

P4 (Halt-on-Divergence): To mitigate selective omission based on nodes’

identities (A3), we enforce a security mechanism called halt-on-divergence 7.

This property halts any malicious node deviating from the protocol under some

given condition. As an instance, if an adversarial node sends a message, but

7 Halt-on-divergence captures a general mechanism called early stopping that is often used
in securing against general-omission model [193, 198].

122

does not receive adequate responses, it will be forced to leave the current proto-

col execution. Halt-on-divergence mechanism should be incorporated through

a specific acknowledgment protocol instantiation in such a way that every ma-

licious node will be forced to leave if the acknowledgment is not verified. In

particular, we introduce an acknowledgment scheme where every receiver ac-

knowledges the sender on receiving every valid message. A message sent over a

secure channel is considered valid only if it contains the expected sequence and

round number. Naturally, an acknowledgment is not sent for a replayed, omitted

or delayed message. Since all honest receivers will reply with acknowledgment

(ACK) messages on receiving valid messages, an honest sender should at least

receive t+ 1 ACK messages. Any node receiving less than t+ 1 ACK messages

will halt its execution and leave the network.

The key idea here is to penalize any deviating adversary by churning the

node out of the network. This effectively “sanitizes” the network. Thus, to

remain a part of the network, every peer should send valid messages to the

majority of the network. This property also aids honest nodes in the protocol to

decide the final output early and finish the execution immediately.

P5 (Lockstep Execution): F4 allows us to realize a synchronized network

across all rounds of a protocol. Each peer uses F4 to decide the correct value of

the ongoing round and inserts this round number in all the sent messages. To

detect delay attacks (A4), a peer simply matches the round number present in an

incoming message with the current round number. This defense is hard in the

byzantine model with public-key infrastructure even if it supports F1, since the

OS can tamper with the relative time to either increase or decrease the rounds of

a node. Therefore, having access to a trusted elapsed time functionality allows

to perform lockstep execution and detect delay attacks in the restricted model.

P6 (Message Freshness): Similar to [168], we use sequence numbers to en-

sure message freshness and therefore defend against replay attacks (A5). The

main challenge lies in ensuring secure exchange of the initial sequence numbers

123

for each peer and ensuring that the sequence number remains untampered with

during the entire intermediate states of the protocol execution. Using the secure

channel, the peers securely exchange a nonce or a sequence number, which is in-

cremented sequentially by the peer. The nonce is generated using F2 supported

by SGX. This prevents the malicious adversary from tampering the initial nonce

value to its own advantage. Note that the keys and initial sequence numbers

exchange occur only once during the setup phase. If an adversarial node restarts

or relaunches its enclave, all the data in the enclave will be removed. Since the

enclave does not have the valid sequence number and round number, it cannot

re-join the same or any on-going execution, which is equivalent to be considered

as a new node for the protocol.

5.3.2 Overview of Our Results

In this work, we achieve the results below.

R1: By enforcing (P1 - P6), we reduce the byzantine model to the general-

omission model, where the byzantine adversary does not have any additional

advantage than omitting messages.

By enforcing P1 - P3, we first reduce byzantine model to a restricted model,

in which byzantine nodes can only delay / omit / replay messages. Due to space

constraints, we defer the formalization and proof to Section 5.7. We believe that

the formalization, while based on traditional cryptographic primitives, provides

a new conceptual framing of SGX-enabled CPUs security features, and may be

of independent interest.

By applying P5 and P6, we further confine the adversarial nodes into the general-

omission model in the synchronous setting. Previously, numerous protocols

such as reliable broadcast and byzantine agreement were proposed for general-

omission model from a theoretical standpoint, yet considered unrealistic at that

time [99,145,193,198]. By enforcing our properties, we want to emphasize that

this entire class of protocol is realizable in the current SGX-enabled machines.

124

R2: We propose an efficient reliable broadcast protocol (ERB) with early stop-

ping, which improves communication complexity from O(N3) to O(N2) (refer

to Section 5.4).

For this result, we leverage four properties. First, P1 - P3 ensure that the

adversarial nodes cannot forge messages and deviate from the execution of the

protocol. Second, we leverage P4 to show that ERB can broadcast a message

to the entire network in min{f + 2, t + 2} rounds with better performance as

shown in Table 5.1. We further illustrate that our properties are generic and

can improve the efficiency of traditional protocols of reliable broadcast. Due to

space limitations, we detail our findings in Section 5.8.

R3: We propose a new unbiased random number generation protocol (ERNG)

with communication complexity O(N3) for the basic version, or O(N logN)

for the optimized one (refer to Section 5.5).

P3 ensures that the byzantine nodes do not know the random number and

cannot selectively drop the unfavorable one. P5 disallows the adversary to look

ahead and compute the final result before the last round. With P3 and P5, our

unoptimized ERNG solution directly runs our ERB protocol as a sub-routine on

the entire network to agree on a random number generated using F2. It has round

and communication complexity of O(N) and O(N3), respectively. We present

an optimized version of ERNG by reducing the byzantine fraction from N
2

to

N
3

, and forming a cluster of peers within the network. Leveraging the trusted

randomness F2 and P3, we can sample a small set of nodes forming a represen-

tative cluster. The ERB protocol is executed within this small cluster to generate

the final unbiased random number. The round and communication complexity

of this optimized ERNG is further reduced to O(logN) and O(N logN). Note

that the optimized version of ERNG only applies when the size of the network

is large enough.

125

5.4 Enclaved Reliable Broadcast Protocol

We propose an enclaved reliable broadcast (ERB) in the synchronous model

using SGX features.

5.4.1 Preliminaries

The transmitted message, val, between any two peers has the following format:

val := 〈type, id, seq,m, rnd〉,

where type ∈ {INIT,ECHO,ACK} and rnd represents the current round of the

ERB protocol. If type = INIT, then the initiator peer idinit is initiating the

broadcast by sending the message m with sequence number seqinit at round rnd.

If type = ECHO, it means that its sender knows that idinit has sent m, as it has

already received either a value with INIT or ECHO for the first time. Finally, if

type = ACK, it means that the peer acknowledges that it has already received

either INIT or ECHO values from the sender.

We introduce three functions Halt, Multicast and Wait defined as follows:

• Halt(st): is a function that sets the state st to ⊥.8

• Multicast
(
idi, val

)
: is a functionality that multicasts the value val from the

sender pi to the receiver pj , for all j ∈ [N] \ {i}.

• Wait(τ): is a function that has as an input the current elapsed time τ in the

ongoing round, and suspends the protocol for (2∆− τ) seconds.

Note that Halt function enforces the halt-on-divergence property (P4) that

we have introduced in Section 5.3. For the sake of exposition, we write Wait(rnd)

in the code description, we say in this case that the protocol waits until the end

of the round rnd.

8Note that when the state of the node is set to ⊥ the node halts on-divergence and is ejected
from the P2P network P .

126

5.4.2 ERB details

Prior to running the very first instance of the ERB protocol, there is a setup

phase. The setup is performed whenever the program (ERB) needs to be up-

dated or changed. We detail the setup phase followed by the explanation of our

algorithm.

Setup Phase: Every pair of sender and receiver peer use remote attestation (F3)

along with enclaved execution (F1) to verify the correctness of the execution,

and therefore enforcing P1 - P3. Then they establish a secure channel using

Diffie-Hellman key exchange. This setup enforces P1 - P3, which restricts the

byzantine nodes to only omit, replay and delay messages. Next, each peer picks

at random a sequence number such that seqs, seqr
$← {0, 1}k and send it to each

other. That is, every node has to store the sequence numbers of all other nodes

in P . Finally, every node sets the variable rnd to the value 1. The overhead of

the setup is in O(N2) while the storage overhead per node is in O(N).

Initialization Phase: An initiator node first multicasts the value val = 〈INIT, idinit,

seqinit,m, rnd)〉, where seqinit is the sequence number of the initiator node, and

rnd is the round number. The round rnd is first initialized to 1, the enclave

will now increment the rnd after every 2∆ seconds—we take advantage of the

elapsed time feature of SGX to tie a round to an interval of 2∆ seconds.

Echo Phase: Until round t + 2, if a node receives an INIT or ECHO message

for the first time, it performs the following actions: (1) start the local clock

and initialize the round rnd to 1, the round will increment every 2∆ seconds,

(2) if both rnd and seq are consistent with the expected values, it will store the

message m, else it just ignores it and treats it as an omitted message. If there

is no delay or replay detected, then it multicasts an ECHO message to all nodes

at the end of the current round. If the node has already received a valid ECHO

message from a distinct node, it will only add the sender’s identifier into the set

SSecho. Recall that at the end of the setup phase, all honest nodes have the same

copy of the sequence number of all honest nodes. After every valid instance of

127

the protocol, nodes will increase all sequence numbers by 1.

Decision Phase: If the node has received at least t+ 1 correct ECHO messages

from distinct nodes, i.e., |SSecho| = t + 1, then the node accepts m̂. After

t + 2 rounds, if the node has not received adequate distinct ECHO messages, it

accepts m̂ :=⊥. Every multicast requires the node to receive at least t+ 1 ACK

messages, else the node churns out itself using the Halt function.

5.4.3 Analysis

Here we give an intuition about the security guarantees of ERB and how it

prevents attacks in the restricted model (ensured by P1 - P3), where byzantine

nodes can only delay, replay and omit messages.

Byzantine nodes can arbitrarily delay a message. With the round number

in every INIT or ECHO message, the receiver can easily determine the round

in which a particular message has been sent. A node in ERB will only accept

messages that have been sent in the beginning of the same round. This way, if

a message has been purposely delayed for over than a round, the message will

not be accepted by any node. Recall that the SGX has access to a relative time

(F4) untampered by the OS, and then it can tie any round to a particular interval

for enforcing lockstep execution (P5). The ERB protocol will not send an ACK

on encountering such a delayed message. Moreover, byzantine nodes can also

replay messages from previous ERB instances in the current ERB to introduce

inconsistent views among honest nodes, as in Attack A3. However, ERB pro-

tocol enforces that every message contains a unique sequence number seq for

message freshness (P6). Whenever an enclave instantiates the ERB protocol

it increments the sequence number. For every instance, the receiver Enclaver

validates the freshness of a received message. It checks whether the sequence

number is incremented as compared to previous instance of the protocol. This

step is bound to execute due to the enclaved execution feature (F1).

Further, if a byzantine sender decides to omit a message, then according

128

Algorithm 7: ERB: Enclaved reliable broadcast protocol (for a node idi with the
initiator idinit sending a message m and a sequence number seqinit).
Input: A P2P network P composed N nodes, a message m and a sequence number

seqinit for the initiator idinit

Output: A message m̂

• initialization: m̂←⊥;SSecho ← ∅; rnd← 1
• upon idi = idinit and sti 6= ⊥:
m̂← m;
SSecho ← SSecho ∪ {idinit};
Multicast

(
idinit, 〈INIT, idinit, seqinit,m, rnd〉

)
;

• for rnd ≤ t+ 2 do
• upon receiving 〈INIT, idinit, seq,m, rnd′〉 from idinit:

if rnd′ = rnd and seq = seqinit then
send 〈ACK, idinit, seq, H(m), rnd〉 to idinit;
m̂← m;
SSecho ← SSecho ∪ {idinit} ∪ {idi};
Wait

(
rnd
)

then Multicast
(
idi, 〈ECHO, idinit, seq,m, rnd + 1〉

)
;

end
• upon receiving 〈ECHO, idinit, seq,m, rnd′〉 from peer idj :

if rnd′ = rnd and seq = seqinit then
send 〈ACK, idinit, seq, H(val), rnd〉, where val = 〈ECHO, idinit, seq,m, rnd〉
to peer idj ;
if m̂ =⊥ then

m̂← m;
SSecho ← SSecho ∪ {idi};
Wait

(
rnd
)

then Multicast
(
idi, 〈ECHO, idinit, seq,m, rnd + 1〉

)
;

end
if idj /∈ SSecho then

SSecho ← SSecho ∪ {idj}
if |SSecho| = N − t then

accept m̂;
end

end
end

• upon Multicast(idi, val):
send val to idk, for all k ∈ [N] \ {i};
receive Nack acknowledgements 〈ACK, idinit, seq, H(val), rnd′〉, where
rnd′ = rnd and seq = seqinit;
if Nack < t then

Halt(sti) ;
end

• rnd← rnd + 1;
end

• if |SSecho| < N − t then
m̂←⊥;
accept m̂;

end
• seqinit ← seq + 1;

to Algorithm 7, it will not receive a corresponding ACK message as the sent

messages never reach the receiver peer. The sender Enclaves detects that the un-

derlying OSs is byzantine if it does not receive at least t+ 1 ACK messages. On

failing to receive majority ACK messages, Enclaves executes the Halt function

129

as per our algorithm and churns itself out of the network based on our halt-

on-divergence property (P4). We state our main theorem below and defer the

detailed proof to Section 5.9.1.

Theorem 5.4.1. If N ≥ 2t+ 1, ERB is a reliable broadcast protocol as defined

in Definition 5.2.1.

Proof Outline. We prove that ERB meets all the requirements of reliable broad-

cast, according to Lemma 5.9.2 - 5.9.7 in Section 5.9.1.

ERB Performance Analysis. Algorithm 7 has a worst-case round complexity

equal to t + 2 with message complexity in O(N2) and t < N/2 byzantine

nodes. This only occurs if the byzantine peers delay the instance for t rounds

before sending the message to at least one honest node. However, in this case,

the round complexity is equal to f + 2 rather than t + 2 as the delay is only

in function of the number of byzantine nodes f . On the other hand, byzantine

nodes can also decide to not send the message to any honest node, and then the

round complexity is t+ 2 with message complexity equal to O(t). Additionally,

we study how to use our sanitization technique to further optimize the round

complexity in Section 5.9.2.

5.5 Enclaved Random Number Generation

We present our algorithm that generates an unbiased common random number

called enclaved random number generation (ERNG).

5.5.1 Unoptimized ERNG

We detail our unoptimized ERNG in Algorithm 8. At a higher level, every

node generates a random number from the enclave, and then performs ERB

protocol to broadcast to every node. According to Theorem 5.9.1, all honest

nodes in this case will receive the random numbers from all honest nodes after

130

Algorithm 8: Unoptimized-ERNG: Unoptimized enclaved unbiased random number
generation protocol executed by peer pi.
Input: A P2P network P composed of N nodes
Output: A unbiased random number r

• initialization: SSfinal ← ∅; rnd← 1
for rnd ≤ t+ 2 do
• if rnd = 1 then

initiate ERB with inputs mi
$← {0, 1}k and seqi;

end
if 2 ≤ rnd ≤ t+ 2 then

execute ERB instances and wait for the output (Mi = {m̂1, · · · , m̂li});
end
rnd← rnd + 1;

end
• SSfinal ← Mi;

seqj ← seqj + 1, for all j ∈ [N]
accept r =

⊕
v∈SSfinal

v.

t + 2 rounds, and may eventually receive several random numbers from other

byzantine nodes. According to Lemma 5.9.2, for each ERB instance, every

honest node will accept a random number from its initiator or ⊥ so that all

honest nodes have the same final set SSfinal of random numbers. By performing

exclusive disjunction (or XOR) of all received random numbers, every honest

node obtains an unbiased common random number eventually.

Unbiasedness and Randomness Analysis. We describe the main intuition be-

hind the common unbiasedness and randomness of our ERNG’s output and

defer formal details to Section 5.9.3. To bias the random value, the adversary

may perform several attacks. It can first try to directly forge the random number,

however, this is restricted as per execution integrity (P1) and message integrity

(P2) enforced by F1 and F3. An adversary can force the program to gener-

ate a local random number of its choice. However, each enclave generates an

unbiased random number from SGX-enabled CPU instruction RDRAND using

F2. It is not possible to bias the source of randomness based on the hardware

guarantees of SGX.

Our blind-box computation (P3) together with the secure channel guarantee

that an adversary cannot selectively omit its random number based on its value

with the goal to bias the output. Therefore, the adversary cannot infer the ran-

131

dom numbers submitted by other honest peers during the execution. Note that,

the defense against replay attacks is already provided by the ERB protocol.

One adversarial strategy is to learn the final output and then decide whether

to participate or not in the protocol, as in Attack A4. From Algorithm 8, all hon-

est nodes output the final value after round t+ 2. In order to bias the final value,

the adversary should perform the following steps within round number t + 2:

(1) learn the XOR of random numbers from honest nodes, (2) decide whether to

participate or not based on the final value, (3) and multicast its number to honest

nodes. In Algorithm 8, the final XOR operation executes only when rnd > t+2.

The execution integrity (P1) ensures sequential execution of our protocol. This

property restricts the adversary from directly jumping to the step that computes

the XOR operation and learn the result before other honest nodes generate the

final output. Next, the lockstep execution (P5) enforced by the elapsed time fea-

ture (F4) allows us to bound the time for each round, even on a byzantine peer.

Therefore, the adversary cannot look ahead and compute the final output before

the last round. If the adversary decides to delay its own random number based

on the computed final value, the adversarial random number will be neglected

by all honest peers as it will reach after t + 2 round. Combining P1, P5 and

P3, it is not possible for the byzantine adversary to achieve steps (1) and (3)

simultaneously.

For clarity and without any loss of generality, we model Algorithm 8 as a

multi-variate functionG : {0, 1}k×N → {0, 1}k that mapsN elements in {0, 1}k

to one element in {0, 1}k such that G(x1, · · · , xN) =
⊕N

i=1 xi.

Theorem 5.5.1. The bias of G β(G) = 1.

We defer the proof to Section 5.9.3.

5.5.2 Optimized ERNG

Next, we illustrate the main steps for ERNG with optimizations. In this section,

we consider that at most t ≤ N
3

nodes of the network can be byzantine. ERNG

132

Algorithm 9: ERNG: Enclaved unbiased random number generation protocol exe-
cuted by peer pi.
Input: A P2P network P composed of N nodes
Output: A unbiased random number r

• initialization: SSM ← ∅;SSfinal ← ∅;SSchosen ← ∅; rnd← 1
for rnd ≤ γ + 4 do

if rnd = 1 then
• every peer pi compute ri

$← {0, · · · , N2γ − 1};
if ri = 0 then

Multicast(idi, val), where val = 〈CHOSEN, idi, seqi,⊥, 1〉;
SSchosen ← {idi};

end
• upon receiving val = 〈CHOSEN, idj , seqj ,mj , rndj〉

if type = CHOSEN and rndj = 1 and seqj = seqi then
SSchosen ← SSchosen ∪ {idj};

end
end

• if ri = 0 and rnd = 2 then
compute r′i

$← {0, · · · , γ′ − 1};
if r′i = 0 then

initiate ERB with inputs mi
$← {0, 1}k, seqi and peers in SSchosen;

end
seq′j ← seqj , for all idj ∈ SSchosen;

end
if ri = 0 and 3 ≤ rnd ≤ γ + 2 then

execute ERB instances and wait for the output;
end
if ri = 0 and rnd = γ + 3 then

Wait
(
rnd
)

then obtain Mi = {m̂1, · · · , m̂li};
seqj ← seq′j , for all idj ∈ SSchosen;

end
if rnd = γ + 4 then
• if ri = 0 then

SSM ← SSM ∪ {Mi};
Multicast

(
idi, 〈FINAL, idi,Mi, seqi, γ + 4〉

)
;

end
• upon receiving val = 〈FINAL,Mj , seq′j , rndj〉:

if rndj = γ + 4 and seq′j = seqj then
SSM ← SSM ∪ {Mj};
if # of Mκ ≥ γ + 1 where Mκ ∈ SSM then

SSfinal ← Mκ;
accept r =

⊕
v∈SSfinal

v.
end

end
end
rnd← rnd + 1;

end
• seqj ← seqj + 1, for all j ∈ [N];

terminates after γ + 4 rounds, where γ is a statistical parameter. The intuition

behind our optimization can be formulated as follows: we notice that if we

select uniformly at random nodes to constitute a representative cluster in P ,

133

we note that we can still guarantee w.h.p. an honest majority within this smaller

representative cluster. By leveraging F2 to generate a random number and blind-

box computation (P3), we can sample a set of peers forming the representative

cluster. The main remaining question, therefore, is how big this cluster should

be. As a starting point, note that if the cluster size is equal to 2N
3

, the probability

of having an honest majority is equal to one. Therefore, this remark already

suggests that the cluster size can be smaller. Conceptually, the optimized ERNG

can be decomposed into three main steps:

Cluster Selection: The purpose of this step is to construct a representative clus-

ter of the entire P2P network. The cluster will consist of nodes selected uni-

formly at random from P . At round 1, every node picks uniformly at random

a number from {0, · · · , N
2γ
− 1}9 using SGX (F2). This operation is protected

leveraging property P3 in such a way that the computation is hidden from the

OS. If the random number equals 0, then the node is chosen to be part of the

cluster, and then it multicasts a CHOSEN message to all nodes in P . Upon

receiving the CHOSEN message, every chosen node adds the identifier of the

sender to its own set SSchosen. The size of the set SSchosen represents the size of

the cluster.

ERB Instances: We first detail a pseudo-solution and then detail our main con-

struction in Algorithm 9. In round 2, the nodes constituting the cluster will each

generate a random number and broadcast it only to the nodes constituting the

cluster (i.e., peers’ identifiers in SSchosen). That is, every node in the cluster will

run an independent ERB instance. The intuition behind these multiple instances

is the following: for the broadcast to be effective, at least one broadcast instance

has to succeed in that the accepted message is different from ⊥. However, the

complexity of such solution is cubic in O(|SSchosen|3) which can be a handicap

in term of efficiency. As a solution, we incorporate a two-phases clustering. The

idea behind this choice is the following: in order to generate a random number

9 N is much larger than γ, and we assume N
2γ − 1 is b N2γ − 1}c.

134

we only require one honest node to output a random number r (otherwise the

ERNG protocol may output ⊥). We can then proceed to select just a few num-

ber of nodes to perform the ERB protocol. As long as at least one of these nodes

is honest, the correctness of our ERNG holds. Concretely, to generate the sec-

ond representative cluster, we perform the following: from nodes in SSchosen,

we uniformly pick at random a value from {0, · · · , γ′−1}, where γ′ is a param-

eter in function of γ that verifies γ′ ≤ γ. The peers that output a random number

equal to zero will be the only peers able to initiate the ERB protocol. We will

show that this strategy will greatly decrease the communication complexity and

defer its analysis to Section 5.9.4. Note that this phase lasts for γ + 2 rounds

when all ERB instances terminate.

Selection Decision: At the end of the broadcast phase, the node of the clusters

will have each a set containing eventually several random numbers. Note that,

as ERB is a reliable broadcast primitive, we know that all honest peers in the

cluster will have the same set of random numbers. Once a node in P receives

at least γ + 1 sets of random numbers, Mκ, originating from the nodes in the

cluster, it will output the set Mκ as SSfinal. All honest nodes will output the same

set under the assumption that there is a majority of honest nodes in the cluster.

Finally, the random number equals the XOR value of all random numbers in

SSfinal.

5.5.3 Analysis

We present the proofs for the Lemma and Theorems below in Section 5.9.4.

Lemma 5.5.1. If up to t = N
3

nodes are byzantine, then with at least 1−negl(γ)

probability, the representative cluster has more than γ honest nodes, and less

than γ byzantine nodes.

Theorem 5.5.2. Agreement: All honest nodes eventually agree on the same

common set SSfinal in ERNG.

135

Theorem 5.5.3. Unbiasedness: The output of the ERNG protocol is an unbi-

ased random number.

ERNG Performance Analysis. Note that in ERNG,O(γ) nodes will be chosen

to form the first representative cluster and therefore run O(γ) Multicast func-

tions. The communication complexity of this first step is O(γ2). Then, among

this first representative cluster, a second cluster will be composed such that all

nodes of this cluster will run each an ERB instance. If the size of the second rep-

resentative cluster is O(
√
γ) (as shown in Corollary 5.9.1 in Section 5.9.4), then

the communication complexity of this step is O(γ2 · √γ). Finally, the member

of the first representative cluster will multicast the output of the ERB instances

to all peers in P . The communication complexity of this final step is O(N · γ).

That is, overall, the communication complexity of ERNG equalsO(N ·γ+γ
5
2).

Based on Lemmas 5.9.1 and 5.9.2, if N is large such that it verifies γ ∈ o(N),

then we can set γ ∈ O(logN). In this case, the communication complexity and

round complexity of ERNG are equal to O(N logN) and O(logN).

5.6 Evaluation

Implementation. We have implemented a prototype of ERB, unoptimized-

ERNG and ERNG in C/C++ using Intel SGX’s Linux SDK [26]. The imple-

mentation contains 4030 lines of code (LOC) measured using CLOC tool [10].

Our prototype implementation is open source and available online [34]. We re-

use the ported OpenSSL library including cryptographic utilities (libcrypto

available with Intel SDK), to perform Diffie-Hellman key exchange and AES

encryption/decryption. We use boost [9] library to implement the communi-

cations between any two nodes and use Google protobuf libraries [39] and

rapidjson [17] to serialize transferred data.

Experimental Setup. We use the DeterLab network testbed for our experi-

ments [16]. It consists of 40 servers running Ubuntu 14.04 with dual Intel(R)

136

Xeon(R) hexacore processors running at 2.2 GHZ with 24 cores and 24 GB

of RAM. All machines are connected and share the same link with the band-

width of 128MBps. Every node in our protocol takes up to 1 - 800 MB memory

which limits the maximum number of nodes to 210 in our experiments. Since

the trusted elapsed time (F4) is not supported by all platforms yet and we need

to run multiple nodes on each machine, we use SGX simulation mode10 for our

program and use a simulated Intel attestation service (IAS).

Evaluation Methodology. To evaluate the correctness of our protocols, we

measure the round complexity (time to terminate) and communication complex-

ity (network traffic) for ERB, unoptimized-ERNG and ERNG, by varying the

number of nodes from 22 to 210. We have highly optimized our system to han-

dle dynamic ports allocations to handle a larger number of nodes within one

machine (order of 25 nodes per machine). Part of our results reported in this

section are for the optimistic case where all nodes behave honestly. We evaluate

the round complexity of ERB while varying the number of byzantine nodes in

the network up to 1
4

of the entire network composed of 512 nodes. We also com-

pare our experiment results for the traffic size with theoretical ones to verify if

they match our asymptotic analysis.

5.6.1 ERB Evaluation

Honest Termination: Constant Scalability. Determining the termination of

ERB is essential to validate our reliable broadcast primitive. Fig. (5.2) shows

that the termination time, in the case of an honest initiator, is nearly equal to

twice the value of one round. This validates our theoretical results where we

show that ERB finishes in 2 rounds when the initiator is honest. The small

increase at 28 is purely due to the bandwidth bottleneck of our testbed, as the

nodes share the same link.

Traffic Size: Quadratic Scalability. Fig. (5.3) demonstrates that the commu-

10 F4 is supported by the simulation mode in seconds.

137

 1

 10

 100

2 2
3

2
5

2
7

2
9

2
11

T
im

e
 (

s
)

Number of peers

One Round
ERB termination

Figure 5.2: Termination time in seconds for ERB slightly increase with the
number of peers.

 0

 50

 100

 150

 200

 250

 300

2 2
3

2
5

2
7

2
9

2
11

S
iz

e
 (

M
B

y
te

s
)

Number of peers

Ex
Th

Figure 5.3: (Th) theoretical and (Ex) experimental comparisons of network
overall communication bandwidth in MB for ERB in function of the number
of nodes in P .

nication complexity quadratically increases in function of the number of peers

in P (note that the x-axis is logarithmic). The message size of INIT and ACK is

around 100 Bytes and 80 Bytes, respectively. For 1024 nodes in P , the traffic

size equals 277 MB. We show that this result matches our theoretical expecta-

tion.

138

 1

 10

 100

2 2
3

2
5

2
7

2
9

T
im

e
 (

s
)

Number of peers

One Round
ERNG termination

Figure 5.4: Termination time of ERNG in function of the number of nodes in
P .

5.6.2 ERNG Evaluation

Honest Termination: Limited Scalability. We show in Fig (5.4) that ERNG

termination remains slightly constant from 22 to 27 and then increases after-

wards. Unfortunately, this does not reflect our theoretical findings and this is

mainly due to the limitation of our testbed, namely, the upper bound on the

communication link of 128MBps that all nodes have to share11. For small val-

ues of peers N , the communication complexity of the unoptimized ERNG is

cubic in N , while the optimized version is also (nearly) cubic for smaller values

of N . Given a fixed bandwidth, this explains why the termination increases for

larger values of N to reach 103 s for one instance of ERNG.

Traffic Size: Cubic Scalability. Fig. (5.5) demonstrates that the communica-

tion complexity cubically increases in function of the number of peers in P for

the unoptimized ERNG. Our theoretical results back up our experimental result.

For ERNG as the bandwidth links get overflowed much faster, we limited our

experiments to 512 nodes. In this case, the traffic size was equal to ∼ 30 GB.

For the optimized ERNG, small values of the number of peers in the network

11Note that we had to increase the ∆ as a message takes in this case more time to reach its
destination.

139

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 2
3

2
5

2
7

2
9

S
iz

e
 (

M
B

y
te

s
)

Number of peers

Ex-ERNG-0
Ex-ERNG-1
Th-ERNG-0
Th-ERNG-1

Figure 5.5: Communication overhead of ERNG in function of the number of
nodes in P .

did not allow us to optimally select a cluster size that can guarantee w.h.p. the

agreement. In this case, we fix the cluster to be 2
3

of the network and we show

that the traffic size decreases to be equal to 12 GB for 512 nodes, a 60% im-

provement over the unoptimized one. Note that this result can get much better

for a larger number of peers in realistic settings. Here, we draw our theoretical

curve for the ideal evaluation which can be guaranteed only for larger N .

5.6.3 Byzantine case

In Fig (5.6), we show that the termination time of ERB linearly increases with

the number of byzantine nodes behaving maliciously in the current instance. We

gradually increase the fraction of byzantine nodes from 1
512

to 1
4
. As a strategy of

byzantine nodes, we have taken into consideration the worst-case where byzan-

tine nodes create a chain (a byzantine sends its message to only one byzantine

node each round and then gets eliminated) in order to delay the termination as

much as possible. In the case of 1
4

byzantine fraction, the ERB termination

takes 389 seconds while it only takes 4 seconds in the honest case. For traffic

size, if the number of byzantine nodes increases in the network, the communi-

cation complexity of ERB decreases as shown in Fig. (5.7). This is mainly due

140

 10

 100

1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4

T
im

e
 (

s
)

Byzantine peers (fraction)

N=512

Figure 5.6: Time termination of ERB linearly increase with the number of
byzantine nodes in P .

 10

 100

1/256 1/128 1/64 1/32 1/16 1/8 1/4

S
iz

e
 (

M
B

y
te

s
)

Byzantine peers (fraction)

Ex
Th

Figure 5.7: Communication overhead of ERB in function of different byzantine
peers in P .

to the halt-on-divergence property that will eject the nodes whenever it behaves

maliciously. That is when an honest node multicasts a message, the eliminated

byzantine node will not acknowledge this message which greatly reduces the

communication complexity. For example, for 1
4

byzantine fraction in a 512-

node network, the traffic size equals 35 MB, while in an honest node instance,

it was equal to 69 MB, a 50% decrease.

141

5.7 Primitives and Formal Definitions

In this section, we first start by formally defining the syntax of the communi-

cation protocol between two peers, that we denote by Peer channel. Using this

definition, we next define various failure modes and primitives. Using SGX, we

assume that execution integrity (P1) is enforced. We then show that the follow-

ing properties: message integrity & authenticity (P2), blind-box computation

property (P3) can be emulated based on the Blinded channel, executing on a par-

ticular program. Then we go ahead and formally define the halt-on-divergence

(P4) property for any program running between two peers. Finally, we show

how to reduce the byzantine model to a model where a peer can only replay,

omit and delay, dubbed ROD for short, given that a Blinded channel exists.

5.7.1 Peer Channel

Abstractly, a peer can be considered as the composition of two entities: an

Enclave and an OS. The OS models the untrusted entity including the oper-

ating system and memory. It has access to all the system resources such as file

system, network and others. The OS can arbitrarily invoke an enclave program

and start its execution. The Enclave models the isolated memory space that

loads the program and executes it securely. Thus, Enclave corresponds to the

trusted entity of a peer. A concurrent work provides a formal study to show that

SGX enclaves can be considered as a trusted entity [194]. The Enclave of the

two Peers can interact with each other via their OSs. We formally define a Peer

channel as a protocol, Peerch, between a sender Peers = (Enclaves,OSs) and a

receiver Peerr = (Enclaver,OSr). A Peer channel can be seen as a generaliza-

tion of the traditional secure communication channel between two parties. The

main difference is that the definition of Peerch protocol is augmented with the

program π running within the trusted Enclave. Before defining the Peer channel,

we first provide a definition of a program π.

142

Definition 5.7.1. (Program.) A program π is a sequence of instructions i.e.,

π = (π1, · · · , πn) such that the ith instruction πi takes as an input the state

sti and a message mi and outputs a message mi+1 along with an updated state

sti+1. By convention, we write for all mi ∈ {0, 1}∗, (sti+1,mi+1)← πi(sti,mi).

The initial state is st1.

Based on the above definition, for a program π with n instructions the output

out of π is (stout, out) ← πn(stn,mn) where stout is the final state of the pro-

gram. We denote the set of all such programs by Π. Note that, in a program π,

an instruction with ⊥ state as input always outputs ⊥ i.e., (⊥,⊥)← πi(⊥,mi).

Hence, if ∃i such that (⊥,⊥)← πi(sti,mi), then the output of the program π is

always ⊥.

Definition 5.7.2. (Program Transcript.) Let π ∈ Π and messagesm1, · · · ,mn ∈

{0, 1}∗ such that m = (mi)i∈[n], for all initial states st1 ∈ {0, 1}∗ and for all

i ≥ 1 such that (sti+1,mi+1)← πi(sti,mi), a transcript of π with inputs st1 and

m denoted by transmπ equals:

transmπ =
(
π1(st1,m1), · · · , πi(sti,mi), · · · , πn(stn,mn)

)
.

Definition 5.7.3. (Transcript Types.) Let π ∈ Π and transmπ its transcript for

a fixed message m = (mi)i∈[n]. We say that the transcript is:

• valid, if ∀i ∈ [n], sti 6= ⊥,

• invalid, if ∃i ∈ [n], sti = ⊥,

where (sti,mi)← πi−1(sti−1,mi−1).

We denote by Vπ and Iπ, the set of all n-messages for which the transcript

is valid and invalid, respectively.

Definition 5.7.4. (Peer Channel.) Given πs, πr ∈ Π are programs executing

in Enclaves and Enclaver with sts and str as respective initial states. A Peer

143

channel between Enclaves and Enclaver is tuple of four possibly interactive al-

gorithms Peerch = (Init,Write,Transfer,Read) such that:

• (Ks, Kr) ← Init
(
(1k, sts, πs), (1

k, str, πr)
)
: is a probabilistic interactive

algorithm between Enclaves and Enclaver. Enclaves and Enclaver take

as inputs a security parameter k, a program πs and πr and the initial

state sts and str, and outputs keys Ks and Kr for the sender and receiver,

respectively.

• (st′s, data
′

s) ← Write
(
(sts, Ks,m, πs), datas

)
: is a probabilistic interac-

tive algorithm between Enclaves and OSs. Enclaves has as inputs a state

sts, a key Ks, a message m and a program πs; the OSs has as the input a

data block datas; the algorithm outputs an updated state st′s for Enclaves

and the updated data block data
′

s for OSs.

• (null, data
′

r)← Transfer
(
data

′

s, datar
)
: is a probabilistic interactive al-

gorithm between OSs and OSr that takes as input the data block data
′

s

and datar respectively, and outputs null for OSs and an updated data

block data
′

r for OSr

•
(
(st′r, r), null

)
← Read

(
(str, Kr, πr), data

′

r

)
: is a probabilistic interac-

tive algorithm between Enclaver and OSr. Enclaver has as inputs a state

str, a key Kr and the program πr; the OSr has as the input a data block

data
′

r; the algorithm outputs an updated state st′r and a response r for

Enclaver and null for OSr.

When πs = πr = π, we can write Peerch
π to denote that Peerch is parametrized

with the program π.

5.7.2 Failure Modes

We define four progressively stronger failure modes: honest, general omission,

ROD and byzantine modes of Peerch. Here we introduce a ROD model as an

144

intermediate model, wherein the adversary can only a) Replay b) Omit c) or

Delay messages during a protocol, or follow it as prescribed. We particularly

focus on the sender behavior for simplicity, but our definition extends to both

sender and receiver. Note that to capture delay, we super-script the Transfer

algorithm with ∆ such that Transfer∆, to denote that the Transfer can take time

∆ to complete. We denote by Replayπ, the set containing all values generated by

Write in polynomial number of executions of program π running concurrently

or earlier in time [168].

Definition 5.7.5. (Failure Modes.) Given a Peer channel Peerch = (Init,Write,

Transfer,Read) between two Peers, Peerr and Peers , for all security parameters

k ∈ N and for all programs π, πs, πr, π′ ∈ Π such that

• (Ks, Kr)← Init
(
(1k, sts, πs), (1

k, str, πr)
)
.

For all messages m ∈ {0, 1}∗, for all state sts ∈ {0, 1}∗, for all data block

datas, datar ∈ {0, 1}∗ such that |m| ≤ |datas| and |datas| = |datar|,

• (st′s, data
′

s)← Write
(
(sts, Ks,m, πs), datas

)
;

• (⊥, data
′

r)← Transfer∆
(
data

′

s, datar
)
;

•
(
(st′r, r),⊥

)
← Read

(
(str, Kr, πr), data

′

r

)
.

We say that

• Peerch is in an honest mode, if we have

– data
′

s = data
′

r and,

– πs = π,

– ∆ is bounded.

• Peerch is in a general omission mode , if we have

– data
′

s =

 ⊥ or,

data
′

r ;

145

– πs = π,

– ∆ is bounded.

• Peerch is in a ROD mode, if we have

– data
′

s =

⊥ or,

data← Replayπ or,

data
′

r ;

– πs = π,

– ∆ <∞.

• Peerch is in a byzantine mode, if we have

– data
′

s =

φ(data
′

r) where

φ ∈ {{0, 1}∗ → {0, 1}∗} or,

data← Replayπ or,

⊥;

– πs =

 π or,

π′ where π′ 6= π;

– ∆ <∞

5.7.3 Core Primitives

We define two primitives: a) Blinded channels and b) halt-on-divergence. The-

orem 5.7.2, below, uses the Blinded channel primitive to demonstrate that byzan-

tine mode reduces to the ROD mode. As shown in Section 5.4, we can further

leverage additional SGX features, namely properties (P5) and (P6), to reduce

the ROD model to the general-omission model. Informally, a Blinded chan-

nel guarantees confidentiality and integrity of a message over a Peer channel

Peerch = (Init,Write,Transfer,Read).

146

Definition 5.7.6. (Blinded Channels.) We say that Peerch is Blinded if for all

p.p.t adversaries A we have:

Pr[ExpEX
A,Peerch(λ) = 1] ≤ 1

2
+ negl(λ), and,

Pr[ExpPriv
A,Peerch(λ) = 1] ≤ 1

2
+ negl(λ), and,

Pr[ExpAuth
A,Peerch(λ) = 1] ≤ negl(λ),

where ExpEX
A,Peerch(λ), ExpPriv

A,Peerch(λ), ExpAuth
A,Peerch(λ) are:

ExpEX
A,Peerch(λ):

• two parties generate keys Ks and Kr such that (Ks, Kr) ← Init
(
1k, π

)
.

The entire interaction between both of the parties is saved in a transcript

T ;

• compute b $← {0, 1}, if b = 0, then output K = (Ks, Kr)
$← {0, 1}k,

otherwise output K = (Ks, Kr)← Init
(
1k, π

)
.

• Given K and T , A outputs b′ and wins if b′ = b.

ExpPriv
A,Peerch(λ):

• generate keys Ks and Kr such that (Ks, Ks)← Init
(
1k, π

)
;

• A has access to Øwrite(Ks,.)(.) and Øread(Kr,.)(.);

• A chooses two equal-length messages m0 and m1;

• compute Write
(
(sts, Ks,mb, π), datas

)
where b

$← {0, 1}, and output

data;

• A has again access to Øwrite(Ks,.)(.) and Øread(Kr,.)(.);

• A outputs b′, if b′ = b, the experiment outputs 1, and 0 otherwise.

147

ExpAuth
A,Peerch(λ):

• generate keys Ks and Kr such that (Ks, Kr)← Init
(
1k, π

)
;

• A has access to Øwrite(Ks, .). A queries a polynomial number of messages

m and eventually outputs ct, we denote by Q the set of all queries that A

sent to the oracle;

• Given ct, Øwrite(Ks, .) outputs r. If m /∈ Q and r 6= ⊥. A outputs 1.

Attaching a program π while defining a Peerch enables us to introduce the

halt-on-divergence primitive as follows.

Definition 5.7.7. (Halt-on-divergence.) Let π ∈ Π be a program and transmπ

its transcript for a fixed n-messages m, we say that Peerch
π halts on-divergence

if transmπ is invalid, i.e., m ∈ Iπ

5.7.4 Implementing Blinded Channel using SGX

We show how we build a Peerch channel using SGX where Enclaves and Enclaver

are trusted entities. Theorem 5.7.1 shows that such a PeerCh
sgx channel is a Blinded

channel, and therefore enforces both (P2) and (P3) propertie. In particular, we

consider that there is a KeyExπ protocol between Enclaves and Enclaver that

is used to generate a session key for a program π. Whenever there is a new

program the key has to be re-generated. The key exchange protocol can be in-

stantiated using Diffie-Hellman key exchange, referring to [158] Chapter 9. We

use SGX remote attestation to verify that both parties run their code inside an

Enclave. While this step is neither required nor captured in the Peerch definition,

it is mandatory to guarantee our execution integrity (P1). We detail our instan-

tiation in Figure 5.8, in our case, we consider that πr = πs = π. We denote

by parse and compute the actions of decoding a string and running a particular

algorithm, respectively.

148

Let SKE = (Gen,Enc,Dec) be a private encryption scheme, MAC = (Gen,Auth,Vrfy)
be a message authentication code, KeyEx a key exchange algorithm, and H be a hash
function. We define PeerCh

sgx = (Init,Write,Transfer,Read) as follows:

• Init
(
(1k, sts, π), (1k, str, π)

)
:

1. Enclaves and Enclaver fetch the hardware-embedded private keys sks, skr
from sts, str, respectively;

2. compute (key1, key2)← KeyExπ
(
sks, skr

)
;

3. Enclaves outputs Ks =
(
key1, key2

)
and Enclaver outputs Kr =(

key1, key2
)
.

• Write
(
(sts,Ks,m, π), datas

)
:

1. parse Ks =
(
key1, key2, sks

)
;

2. set (st′s, val)← π(sts,m)

3. compute ct1 = SKE.Enc(key1, 〈val, H(π)〉) and ct2 =
MAC.Auth

(
key2, ct1

)
;

4. set datas = (ct1, ct2)

5. Enclaves outputs st′s and OSs outputs data′s = datas.

• Transfer
(
data

′

s, datar
)
:

1. OSr sets datar = data
′

s;

2. OSs outputs ⊥ and OSr outputs data
′

r = datar.

• Read
(
(str,Kr, π), data

′

r

)
:

1. parse Kr =
(
key1, key2, skr

)
and data

′

r = (ct1, ct2);

2. if MAC.Vrfy
(
key2, ct1

)
:= ct2 and str 6= ⊥, Enclaver computes

– 〈r1, r2〉 = SKE.Dec(key1, ct1);
– if r2 = H(π), then compute (st′r, r) ← π(str, r1), output (str,⊥)

otherwise.

3. if MAC.Vrfy
(
key2, ct1

)
6= ct2 or str = ⊥, Enclaver outputs r = ⊥ and

st′r = str

Figure 5.8: PeerCh
sgx: SGX-based Peer channel.

149

Theorem 5.7.1. If KeyEx is a secure key exchange protocol, SKE is CPA secure

encryption schemes, MAC a secure message authentication code, then PeerCh
sgx is

a Blinded Peer channel.

Proof Sketch. First, we want to show that the Init algorithm is a secure key

exchange. Note that both parties run two instances of a KeyEx protocol to

generate two session keys. That is, if KeyEx is a secure key exchange then

Pr[ExpEX
A,Peerch(k) = 1] ≤ 1

2
+ negl(k).

Second, we need to show that PeerCh
sgx is a secure communication channel.

Note that, we use the variant encrypt-then-mac which is shown in [158] Chapter

9 to provide a secure communication channel if SKE is CPA secure and MAC a

secure message authentication. This ends our proof sketch.

Theorem 5.7.2. Assuming that PeerCh
sgx is a Blinded channel, then Peerch in

byzantine is equivalent to Peerch in ROD mode.

Proof Sketch. For clarity, we assume that the sender is byzantine while the re-

ceiver is not. We can apply an analogous proof for the remaining combinations

as well. To prove the theorem, we need to show that the view of the honest node

in the ROD and byzantine modes are the same w.h.p. under the assumption that

PeerCh
sgx is a Blinded Peer channel. For this, it is sufficient to show the following

two steps: first, that any forged message for any φ ∈ {{0, 1}∗ → {0, 1}∗} \ {C}

will not change the state of the receiver str, i.e., that the forged message is equiv-

alent to receiving nothing, ⊥, where C is the set composed of all functions that

maps data
′

r to one of the messages in Replayπ
⋃
{data

′

r}. Second, we need to

show that, for any valid data data
′

s output by Write, the receiver state will not

change if πs 6= πr (recall that we are assuming the receiver honest and in this

case means that πr = π). We detail below the two steps of the reduction:

Step 1. If data
′

s = φ(data
′

r) where φ ∈ {{0, 1}∗ → {0, 1}∗} \ {C} such

that 〈ct1, ct2〉 = data
′

s. Then, we have that Pr[MAC.Vrfy(key2, ct1) 6= ct2] ≥

1−negl(k) under the assumption that PeerCh
sgx is a Blinded channel. Based on the

150

PeerCh
sgx in Figure 5.8, if MAC.Vrfy(key2, ct1) 6= ct2, then st′r = str w.h.p. Note

that this is valid for any program πs. The view of the receiver is now equal:

• data
′

s =

data

′

r ∀πs

data← Replayπs ∀πs

⊥

Step 2. Now, if the node is running a new program πs 6= π such that (st′s, data
′

s)←

Write
(
(sts, Ks,m, πs), datas

)
. In this case, data

′

r = data
′

s = 〈ct1, ct2〉. How-

ever, based on collision-resistance assumption of the hash function H , the mali-

cious node cannot find any program πs such that H(πs) = H(π).12 In this case,

if H(πs) 6= H(π), then based on the PeerCh
sgx protocol, st′r = str, i.e., the state of

the receiver does not change, which is therefore equivalent to receiving nothing,

⊥. the view of the receiver is then equal:

• data
′

s =

data

′

r for πs = π

data← Replayπs for πs = π

⊥

Finally, we emphasize that the delay constraint (∆ < ∞) remains valid for

both byzantine and ROD modes. Note that this final view is exactly the same

of the ROD model. Note that the same holds when we consider the receiver

byzantine, or both sender and receiver byzantine. This concludes our proof.

5.8 Rethinking Reliable Broadcast Protocols

In this section, we explain the shortcomings of classic protocols for reliable

broadcast. Reliable broadcast or byzantine generals problem is formally defined

in Definition 5.2.1. The crux of such protocol is that all honest nodes eventually

agree on the same value, which is the one proposed by the sender (or initiator)

if the initiator is honest. Reliable broadcast was first proposed by Lamport et al.

12This can also be done by signing the program for every message output by the SGX-enabled
program.

151

in 1982, which hasO(N t) message complexity and t+1 round complexity. The

proposed protocol was also resilient upto N
3

byzantine nodes [162]. Since 1980s,

reliable broadcast has been extensively studied and various protocols have been

developed, which are well summarized in several excellent survey papers [160,

220]. As byzantine nodes can behave arbitrarily, these protocols have to use

different techniques to prevent the impact of the proposed biased values by the

byzantine nodes, which generally leads to high (like exponential or polynomial)

message complexity. Moreover, it has been shown that the optimal resilience

cannot exceed third the size of the network [195]. To reduce communication

complexity and increase resilience, several ways have been proposed, and using

digital signatures is the primary one.

5.8.1 Digital Signature Schemes

Using digital signatures denotes that a node appends its signature (signed with

its private key) to every message it sends. This guarantees the integrity and au-

thenticity of the message, which can be easily verified by the other nodes using

the sender’s public key. It is well known that no nodes can forge the signature of

another node w.h.p. This results in restricting the behavior of byzantine nodes,

which can in this case only omit to relay messages, or construct different values

as an initiator. We present a reliable broadcast protocol using digital signatures

in Algorithm 10 adapted from Lamport et al.’s work [162].

In RBsig, each node signs every message it multicasts. In the first round, the

initiator sends a signed message to the other nodes. Then for any round rnd, a

node that receives a valid message will sign and forward it in the next round. A

message received by a node idi in round rnd is valid if it contains signatures from

rnd different nodes except idi. In Algorithm 10, we use [m : id1 : id2 : ... : idj] to

denote a message, in whichm is the value signed by the initiator id1 and [m : id1]

is signed by id2, and so on. This means that id1 sent the signed message [m : id1]

to a node id2 in the first round, and id2 sent [m : id1 : id2] in the second round,

152

Algorithm 10: RBsig: Reliable broadcast protocol using digital signatures (for a node
idi with the initiator idinit sending a message m).
Input: A P2P network P composed N nodes, a message m for the initiator idinit

Output: A message m̂

• initialization: m̂←⊥;SSm ← ∅; rnd← 1
• for rnd ≤ t+ 1 do

if rnd = 1 and idi = idinit then
m̂← m
Multicast [m : idinit] to all the other nodes

end
• upon receiving [m′ : idinit] from idinit:
SSm ← {m′}
Multicast [m′ : idinit : idi] to all nodes except idinit, idi in round rnd + 1

• upon receiving [m′ : idinit : id1 : ... : idj] from peer idj :
if m′ /∈ SSm then

SSm ← SSm ∪ {m′}
if j < t+ 1 then

Multicast [m′ : idinit : id1 : ... : idj : idi] to all nodes except idinit, ..., idi
in round rnd + 1

end
end

• rnd← rnd + 1;
end
if rnd > t+ 1 then

if |SSm| = 1 then
m̂← m where SSm = {m}

end
return m̂

end

until idj sent the signed message [m : id1 : id2 : ...idj] in the rndth round.

In RBsig, the initiator idinit signs and sends its value to every node in the

first round. If any node receives the message, it stores the value in SSm, signs

and sends it to the other nodes for the second round. For round rnd < t + 1,

every node receives a valid message from other node. In the case where the

received value does not belong to SSm, then the node adds the value to SSm

and multicasts the signed message to the other nodes. After t+ 1 rounds, every

node verifies whether SSm consists of a unique value m̂, if that holds then the

node outputs m̂, otherwise he output is the default value ⊥.

Based on digital signatures property, the byzantine nodes cannot forge a

honest-like message. Therefore, every honest node only requires one valid mes-

sage sent from either one byzantine or one honest node to determine the value

from the initiator. If the initiator is honest, every honest node will receive the

153

correct value from the initiator during the first round, and will discard invalid

messages forged by byzantine nodes for the remaining rounds. If the initiator is

byzantine, it can send different values to different honest nodes to bias the result.

To ensure the validity of the message, after t + 1 rounds, at least one signature

in the message is from an honest node, and the honest node will broadcast the

signed message to the other honest nodes, thus all honest nodes will receive the

same message. Eventually, all honest nodes received the same set of values.

If multiple values are received, all honest nodes will agree on a default value,

otherwise they agree on the only received value.

Using digital signatures improves network’s resilience from N
3

to N − 1,

but communication complexity remains the same O(N t). Later, an optimized

algorithm using digital signatures was proposed to reduce communication com-

plexity to O(N3) [125]. At a higher level, this improvement is achieved through

a new strategy that only retransmits values which have not been previously sent.

Even in this case, every node has to relay O(N) messages and a message can

contain O(N) signatures, which results in O(N3) communication complexity

for the protocol. Meanwhile, the verification of O(N2) signatures may lead

to a non-negligible performance cost for the honest nodes, especially when the

byzantine nodes construct and send enormous number of invalid messages to

the honest nodes.

Efficiency Improvement. In the following, we discuss how our properties

can lead to better asymptotics. First, by enforcing P1 - P3 and P5 - P6, we

confine the byzantine nodes into the general-omission model only allowing to

omit messages. We can further use P3, and secure channels in particular, to

guarantee the confidentiality of the transmitted messages. In this way, when

a node relays a message to the others in this model, it can append its identity

instead of signing the message with its private key, which achieves the same

effect of using signatures. Therefore, we circumvent the transmission of multi-

signature messages and the process of verifying signatures, which reduces the

154

Algorithm 11: RBearly: Reliable broadcast protocol with early stopping (for a node
idi with the initiator idinit sending a message m).
Input: A P2P network P composed N nodes, a message m for the initiator idinit

Output: A message m̂

• initialization: m̂←?; QUIETrnd
i ← ∅,Mrnd

i (j)← ∅; rnd← 1
• upon idi = idinit:
m̂← m;
Multicast m to all the other nodes
return m̂

• for rnd ≤ t+ 1 do
• upon receiving 〈m′〉 from peer idj :

Mrnd
i (j)← Mrnd

i (j) ∪ {m′}
• QUIETrnd

i ← QUIETrnd−1
i ∪ {idj |Mrnd

i (j) = ∅}
if m̂ =? and ∃idj where Mrnd

i (j) 6= ∅ then
m̂← Mrnd

i (j)
if rnd < t+ 1 then

Multicast m̂ to all the other nodes in round rnd + 1
end

else if m̂ =? and 6 ∃idj where Mrnd
i (j) 6= ∅ then

if rnd < t+ 1 then
if rnd > |QUIETrnd

i | then
m̂←⊥

end
Multicast m̂ to all the other nodes in round rnd + 1

else
m̂←⊥

end
else if m̂ 6=? then

return m̂
• rnd← rnd + 1

end

communication complexity from O(N3) to O(N2) and avoids the significant

computation cost (as the symmetric decryption is much cheaper than signature

verification).

5.8.2 Early Stopping Schemes

Apart from reducing communication complexity, SGX can also aid to decrease

round complexity. In the general-omission model, several protocols have been

proposed to reduce the round complexity. We recall a classic example of re-

liable broadcast protocol with early stopping in min{f + 2, t + 1} rounds in

Algorithm 11 adapted from Perry et al.’s work [198]. When f < t omission

faults take place, then all honest nodes will stop by the end of round f + 2.

In Algorithm 11, Mrnd
i (j) represents the message received by idi from idj in

155

round rnd. QUIETrnd
i denotes the set of nodes from which idi has not received a

message from round 1 through round rnd. In the first round, the initiator sends

a message to the other nodes and halts. For any round, if a node receives a

message from another node, it stores the value in Mrnd
i (j). If a node idi does not

receive any message from another node idj for round rnd, idj will be added into

QUIETrnd
i . When a node has not decided the value and it receives a value, it will

set the decision as the new value and broadcasts the value to all nodes in the next

round (rnd + 1 ≤ t + 1). If it does not receive any value and rnd = t + 1, the

node will decide the default value ⊥. If the round number rnd < t + 1 is larger

than the size of QUIETrnd
i , the node will send ⊥ to all nodes in round rnd + 1,

otherwise it will send ⊥. Finally, once the node decides its value, it halts.

The early-stopping protocol requires every node to broadcast its decision

for every round, to inform the other nodes about its liveness. In this way, honest

nodes can detect abnormal behaviors of malicious nodes for each round. Based

on the detection, all honest nodes can halt and agree on the same value by the

end of round f + 2, where f nodes behave maliciously (e.g., omit to replay

messages). The detailed proof can be found in the work [198]. Based on the

proposed broadcast detection mechanism, the protocol can early-stop. How-

ever, the communication complexity increases to be in O(N3), as every node

broadcasts its value every round.

Efficiency Improvement. By leveraging the halt-on-divergence property (P4),

we can actively stop nodes behaving maliciously, which eliminates the t-round

broadcasting and reduces the communication complexity to O(N2) as well as

sanitizes the network by removing the malicious nodes. For instance, if a ma-

licious node sends a message to other nodes but omit to receive messages from

over half of the nodes in the network, the node will be forced to leave the net-

work. Therefore, any node can actively detect its own anomalous behavior

instead of relying on other nodes to send messages every round to passively

identify the anomaly. This can lead to reduce communication complexity for

156

anomaly detection from O(N2) to O(N).

5.9 Security Analysis

5.9.1 ERB Analysis

In this section, we use the same terminology used in Section 5.7, namely, we

assume that between any two nodes of the network, an PeerCh
sgx instantiation of

the Blinded Peer channel is enabled. In particular, it provides us with both mes-

sage Integrity & authenticity (P2) and blind-box computation (P3) properties.

Throughout this section, we implicitly consider that the program is publicly

available, and therefore its execution integrity (P1) is enforced.

Theorem 5.9.1. If N ≥ 2t + 1 where t is the upper bound on the number of

byzantine peers, and PeerCh
sgx is a Blinded Peer channel, then ERB is a reliable

broadcast protocol as defined in Definition 5.2.1 with worst-case round com-

plexity equal to t+ 2 and communication complexity equal to O(N2).

Proof. We are going to gradually prove the five requirements of terminating re-

liable broadcast. Note that the assumption that the peers communicates using

PeerCh
sgx implies that a byzantine node can only delay, omit or replay messages,

as we have shown in Theorem 5.7.2. As long as the network is synchronous

with a fixed time interval for a round to complete, delaying is then equivalent

to omitting a message, as the message will not be considered by honest nodes

past the round, enforcing therefore the lockstep execution (P5) property. Re-

playing a message is also ineffective as every peer is identified by a sequence

number as well, that is generated by the trusted enclave in the Peer channel, and

therefore enforcing the message freshness (P6) property. Under the assumption

that PeerCh
sgx is a Blinded channel, we can replace all occurrences of Multicast

by communication between two trusted parties. To sum up, and throughout the

proof, it is valid to consider that if there is a delay, omission or replay, this will

be equivalent to considering that the first party does not send any message.

157

Lemma 5.9.2. Validity: In ERB, if the sender is honest and accepts messagem,

then all honest nodes eventually accept m, otherwise if the sender is byzantine,

after round t+ 2, all honest nodes either accept the same message m or ⊥.

Proof. In the following, we consider two different types of initiators: an honest

and a byzantine peer.

(1) Let the sender be the peer pinit with identifier idinit. If pinit is honest,

according to ERB, the sender multicasts its message m in an INIT message for

the first round. All honest nodes will receive m in the first round and multicast

ECHO to all nodes in the second round, as every node at this stage is going

to receive m for the first time. At the end of these two rounds, every honest

node will receive at least t + 1 ECHO messages for m from all honest nodes.

According to ERB, each honest node will accept m.

(2) If the initiator is byzantine, we proceed to show the validity by contradic-

tion. Suppose that the lemma does not hold in the byzantine case, which means

that at the end of round t+ 2, not all honest nodes agree on the same value, i.e.,

only a strict subset of honest nodes agree on m, but the remaining peers agree

on ⊥. According to the protocol, any node accepting m must have received at

least t+ 1 ECHO messages from different nodes. The upper bound of byzantine

nodes is t, thus at least one honest node should have multicasted an ECHO mes-

sage to nodes accepting m during t+ 2 rounds. For the proof to go through, we

introduce the following claims and then proceed with the contradiction case.

Claim 5.9.1. There is at least one honest node that does not receive any ECHO

message after t+ 1 rounds.

Proof. We prove this claim by contradiction. Suppose that all honest nodes

receive an ECHO message during t+ 1 rounds, then they multicast ECHO after

receiving it. Therefore, all honest nodes will receive t + 1 ECHO before the

end of round t + 2, which means that all of them accept m. This contradicts

our assumption that only a strict subset of honest nodes agree on the same value

158

m.

Claim 5.9.2. No honest nodes receives ECHO messages after round t.

Proof. This claim can be also shown by contradiction. Suppose one honest

node receives an ECHO message before round t, it must multicast ECHO to all

nodes, and all honest nodes receive it before the end of round t. However, this

contradicts our Claim 5.9.1.

We can now proceed by induction where the two claims holds for any i ∈

[t− 1]. That is, we can show:

• There is at least one honest node that does not receive any ECHO message

after t+ 1− i rounds.

• All honest nodes do not receive ECHO messages after round t− i.

In this case, for any i ∈ [t], we can show that all honest nodes do not receive

ECHO messages after round i. That is the only way an honest node can receive a

message m is in round t+ 1 transmitted by a byzantine node. However, this is a

contradiction as this event cannot occur. A byzantine node holding a message at

round t+ 1 means that through all rounds the message was transmitted between

byzantine nodes, only. Knowing that if a node does not receive t + 1 ACK it

will halt, this means that the best strategy is to transfer the message to only one

byzantine node at a time. This means that there is a need to t + 1 byzantine

nodes in the network which contradicts our assumption.

Lemma 5.9.3. Agreement: If an honest node accepts m, then all honest nodes

eventually accept m.

Proof. If the sender of m is honest, then all honest nodes accept m according

to Lemma 5.9.2. If the sender is byzantine, then all honest nodes either accept

m or ⊥ according to Lemma 5.9.2. Therefore, if an honest node accepts m, all

honest nodes accept m, no matter the sender is honest or byzantine.

159

Lemma 5.9.4. Integrity: For any message m, every honest node accepts m at

most once, if m was broadcast by the sender.

Proof. According to Algorithm 7, every honest node only acceptsm once, while

receiving t + 1 ECHO messages. If m 6=⊥, all honest nodes accept the mes-

sage broadcasted by the sender, no matter if the sender is honest or byzantine,

Lemma 5.9.2.

Lemma 5.9.5. Early Stopping: Every honest node will terminate at round

min{f + 2, t+ 2}.

Proof. According to Algorithm 7, if the initiator is honest, then all honest nodes

accept m from idsint after two rounds. If it is a byzantine intiatior and f nodes

violate the protocol (e.g., receiving less than t+ 1 acknowledgement responses

after sending a message), any of these f nodes can exist in the network for at

most f rounds. After f rounds, if the messagem is sent from any of the f nodes

to the other nodes, then the other nodes will follow the protocol and multicastm

to all honest nodes. After two rounds, all honest nodes will agree on the same

value m. Otherwise, all honest nodes will wait until the end of round t + 2 and

accept the default value ⊥. Therefore, all honest nodes will terminate at round

min f + 2, t + 2. Lemma 5.9.2, 5.9.3 and 5.9.4 also hold in the early-stopping

case.

Lemma 5.9.6. Termination: Every honest node eventually accepts m or ⊥.

Proof. According to Algorithm 7, if an honest node receives t + 1 ECHO or

INIT messages during min{f + 2, t + 2} rounds, it will accept m immediately;

otherwise, it will accept ⊥ at the end of round t+ 2.

Lemma 5.9.7. Efficiency: For any sender, the communication complexity is

O(N2) for one instance of ERB.

Proof. For ERB, every node only broadcasts to all nodes once when receiving

INIT or ECHO for the first time, thus every node sends N messages. To reply

160

requests from other nodes with ACK messages, every node sends at most an-

other N messages. There are N nodes in the network, so the communication

complexity for one run of ERB is at most 2N2 or O(N2) in total.

This concludes our proof.

5.9.2 P2P Sanitization & Analysis

In ERB, we introduce the concept of network sanitization or faulty node elimi-

nation captured by the halt-on divergence (P4) property, or the Halt function for

short. This process has an important impact on the P2P topology as whenever a

byzantine node misbehaves, the enclave of the node will deterministically stop

the node. Thus, the byzantine node gets ejected from the network. This byzan-

tine node cannot generate any new message as its enclave halts. We say that this

sanitizes the P2P topology.

A byzantine OS gets churned out if it deviates from the sequential execution

of ERB. Since it cannot infer the content of each message due to our blinded

channel, one of the possible strategy is to behave maliciously uniformly at ran-

dom. We present in the following our analysis that details the sanitization impact

on ERB in this particular scenario, and shows that after a polynomial number

of instances, the expected round complexity of the protocol becomes constant13.

First, we give a characterization of the pace of sanitization considering that for

every instance, a byzantine node can behave malicious with a probability that

can be independently tuned. We also consider the effect of a new node joining

the network before the start of every instance of the protocol to replace eventu-

ally an eliminated node.

Theorem 5.9.8. Let Fr denotes the random variable counting the number of

byzantine nodes after r instances of Algorithm 7, then

Pr[Fr ≥ 1] ≤ e−λ,
13We believe that the network sanitization asymptotic improvement can apply independently

of the malicious nodes’ strategy

161

where λ = rp
2
− ln(t), t the upper bound of byzantine nodes in the P2P network

and p the fraction of activated byzantine nodes at any instance.

Proof. It is easy to see that the number of byzantine nodes in the P2P net-

work at the (i + 1)th instance of Algorithm 7 equals: Fi+1 = Fi − Ri + Ai,

where Ri represents the number of byzantine nodes that have arbitrarily mis-

behaved and therefore are eliminated from the network, and Ai represents the

number of new peers that have joined the P2P network. We can then write:

Ri =
∑Fi

j=1X
(1)
j , and Ai =

∑Fi
j=1X

(2)
j , where X(1)

j ∼ Bp and X(2)
j ∼ Bp1

2

is

a conditional Bernoulli random variables such that , X(2)
j = 1 if X(1)

j = 1 for

j ∈ [Fi].

X
(1)
j is a Bernoulli random variable with parameter p that captures the fact

that a node can misbehave in a particular instance of Algorithm 7 with proba-

bility p, while the second random variable X(2)
j captures the fact that whenever

a node is eliminated from the network, it can be replaced with either a honest

or malicious node. This is in phase with our assumption that we can handle a

honest majority at the beginning.

Note that bothRi andAi are both a random sum of random variables. As the

number of failures at some iteration can be considered independent of the sum

of failures occurred throughout all iterations of Algorithm 7, we can consider

that both X(1)
j and X(2)

j are independent of Fi.

Based on Wald’s equation, we have E[Fi+1] = (1− p
2
) ·E[Fi]. By induction

we can show that E[Fi+1] = (1 − p
2
)i+1 · E[F0], where E[F0] = E[t] = t, the

initial number of byzantine nodes in the network.

Based on Markov inequality, we show that

Pr[Fr ≥ 1] ≤ t(1− p

2
)r ≤ e−

rp
2

+ln(t).

Setting rp
2
− ln(t) = λ concludes the proof.

162

For example, for λ = 30 and t = N
2
−1 for N = 210 p = 2−5, the number of

rounds before the P2P gets sanitized with high probability equals to r ≈ 2500.

We are now interested in computing the expected number of rounds in av-

erage of Algorithm 7 while taking into consideration our sanitization protocol.

Theorem 5.9.8 shows that the P2P can get sanitized w.h.p. after a particular

number of rounds, however, throughout the different instances, the number of

byzantine nodes decreases as well, which suggests that the round complexity

can get better. We will show in the following theorem that Algorithm 7 has a

constant round complexity in average after a polynomial number of instances.

Theorem 5.9.9. Algorithm 7 has a constant round complexity in average for a

number of instances r = poly(N) w.h.p.

In this theorem, we consider the same setting of Theorem 5.9.8 where the

number of byzantine nodes at the (i+1)th instance equals Fi+1 = Fi−Ri+Ai,

where Ri =
∑Fi

j=1X
(1)
j , and Ai =

∑Fi
j=1X

(2)
j , X(1)

j ∼ Bp and X(2)
j ∼ Bp1

2

is

a conditional Bernoulli random variables such that , X(2)
j = 1 if X(1)

j = 1 for

j ∈ [Fi].

We have shown that in this case the expected value of E[Fi] = (1− p
2
)i · t.

To compute the expected number of rounds per instance, we need to count

first the total number of possible byzantine nodes to ever occur after r instances,

Tr. This equals Tr =
∑r

i=1

∑Fi
j=1(X

(1)
i + X

(2)
i), Moreover, we also define

the average number of rounds per instance as a random variable , R, equal to

R = 2 · (r−Tr)
r

+ t · Tr
r
, where during r − Tr rounds the protocol is optimal and

equals 2, and in Tr rounds the protocol has a worst-case round complexity and

equals to f .

We then have that, leveraging Wald’s equation, E[Tr] = 3t
2
·(1−(1− p

2
)r+1).

Then, E[R]− 2 ∼ 3t2

2r
· (1− e−pr2). By Markov, we have Pr(R ≥ 3) ≤ 3t2

2r
· (1−

e
−pr
2).

That is, if r = poly(N) and p = O(1
t
), then Pr(R ≥ 3) ∈ O(1

poly(N)
).

163

5.9.3 Unoptimized ERNG Analysis

In this section, similar to Section 5.7, we denote by the ROD mode, a mode

where peers in a network P can only replay, omit and delay messages.

Theorem 5.9.10. If P operates in the ROD mode, then the bias of G β(G) = 1.

Proof. Note that while G can be modeled as a multi-variate function, it does

not capture the sequencing of inputs. For our proof to go through, we need

to first show that the sequencing of ERNG is guaranteed and a node can only

participate with its input if it starts synchronously with all nodes. For this, we

have the following two cases:

• early start: if a byzantine node transmits its INIT at rnd = 1, then based

on Lemma 5.9.2, the node outputs (either m or ⊥) will be considered as

an input for G,

• late start: if a byzantine holds the INIT message until seeing the output,

then its input will not be added to SSfinal as the message will be considered

delayed. The output of G in this case equals ⊥

Note that for both cases, the nodes have to start the protocol at rnd = 1 if

they want to participate with their inputs in the final output. Moreover, based

on the Blinded channel, we know that nodes can only obtain the final output

of G while not viewing any internal state of G, which enforce the blind-box

computation (P3) property. That is, it is valid to consider G as a multi-variate

function that is fed all inputs at once. Let us denote by X the random variable

that captures the output ofG such thatX = X1⊕· · ·XN , whereXi’s are random

variables that capture the input provided by every node in P , for all i ∈ [N]. As

P operates in the ROD mode, Lemma 5.9.2 demonstrates that all honest nodes

receive the same set SSfinal at the end of the protocol. We then can rewrite X

such that X =
⊕κ

i=1Xi ⊕
⊕N

i=κ+1 Xi, where κ = |SSfinal|. In the following,

we need to show that EG[S] = E[S] = |S|
2k

, for all S ⊆ {0, 1}k. Note that

EG[S] = Pr[X ∈ S], and therefore it is sufficient to compute Pr[X ∈ S].

164

Pr[X ∈ S] = Pr[
⋃
x∈S

(
X = x

)
] =

∑
x∈S

Pr[X = x]

The second equality follows from the fact that all events are disjoint. Now for
a given x ∈ S, Pr[X = x] equals:

= Pr[

κ⊕
i=1

Xi ⊕
N⊕

i=κ+1

Xi = x]

=
∑

xN∈{0,1}k

(
Pr[

κ⊕
i=1

Xi ⊕
N−1⊕
i=κ+1

Xi = x⊕ xN |XN = xN]

· Pr[Xn = xN]
)

=
∑

xN∈{0,1}k\{0}

(
Pr[

κ⊕
i=1

Xi ⊕
N−1⊕
i=κ+1

Xi = x⊕ xN |XN = xN]

· Pr[Xn = xN]
)

+ Pr[
κ⊕
i=1

Xi ⊕
N−1⊕
i=κ+1

Xi = x|XN = 0] · Pr[Xn = 0]

= Pr[
κ⊕
i=1

Xi ⊕
N−1⊕
i=κ+1

Xi = x|XN = 0]

= Pr[

κ⊕
i=1

Xi = x|Xκ+1 = 0, · · · , XN = 0]

=
∑

xκ∈{0,1}k
Pr[

κ⊕
i=1

Xi = x⊕ xκ|Xκ = xκ, Xκ+1 = 0, · · · , XN = 0]

· Pr[Xκ = xκ]

=
1

2s

∑
xκ∈{0,1}k

Pr[

κ⊕
i=1

Xi = x⊕ xκ|Xκ = xκ, Xκ+1 = 0, · · · , XN = 0]

=
1

2s·(k−1)

∑
x2,··· ,xκ∈{0,1}k

Pr[X1 = x⊕
κ⊕
i=2

xi|

X2 = x2, · · · , Xκ = xκ, Xκ+1 = 0, · · · , XN = 0]

=
1

2s·k
|{x2, · · · , xκ ∈ {0, 1}k}| =

1

2s

Thus, Pr[X ∈ S] = |S|
2s

. This concludes our proof.

5.9.4 Optimized ERNG

Lemma 5.9.1. If up to t = N
3

nodes are byzantine, then with at least 1−negl(γ)

probability, the representative cluster has more than γ honest nodes, and less

than γ byzantine nodes.

Proof. In ERNG at round 1, every node picks uniformly at random a value

165

from {0, · · · , N
2γ
− 1}. That is, every node has a probability equal to q = 2γ

N

to be chosen as a representative. Let Hi and Bi be two random variable that

equal 1 if the ith honest and byzantine node is chosen respectively, otherwise

they equal zero. Let us denote by H =
∑2t

i=1Hi and B =
∑t

i=1Bi the number

of selected honest and byzantine nodes in the cluster. Then both H and B are

distributed following a binomial distribution with a number of trials equal to 2t

and t, respectively. We have E[H] =
∑2t

i=1E[Hi] = 2t · 2γ
N

= 4t·γ
N

. Similarly,

E[Y] = 2t·γ
N

. Based on two variations of Chernoff bound, considering t = N
3

,

we obtain that

Pr[H > (1− δ1)
4γ

3
] ≥ 1− e−

2δ21 ·γ
3 ,

similarly, Pr[B < (1 + δ2)2γ
3

] ≥ 1 − e−
2δ22 ·γ

9 , where δ1, δ2 < 1. For a choice of

δ1 = 1
4

and δ2 = 1
3
, we obtain,

Pr[H > γ] ≥ 1− e−
γ
24 ,

and,

Pr[B < γ] ≥ 1− e−
γ
41 .

Lemma 5.9.2. If γ′ =
√
γ, then the probability that Ω(

√
γ) honest nodes are

selected to be in the second representative cluster is at least 1− negl(γ).

Proof. Based on Algorithm 9, every node in the cluster has a probability of 1
γ′

to be chosen. Let us denote by Xi the random variable equal to one if the node

is selected. We then denote by, H′ =
∑H

i=1Xi, the random variable that counts

the number of honest node in the second cluster. Based on Wald’s equation,

we obtain E[H′] = E[H]
γ′

= 4γ
3γ′

. Then, based on Chernoff bound, we obtain for

δ < 1,

Pr[H′ > (1− δ) · 4γ

3γ′
] ≥ 1− e−

4δ2·γ
3γ′

166

if we set δ = 1− 1
γ′

and γ′ =
√
γ, then we obtain

Pr[H′ >
4
√
γ

3
] ≥ 1− e−

√
γ.

This ends out proof.

Note that we can obtain better bounds if we consider computing the pmf of

H′ as it follows a binomial distribution with a binomial number of trials

Corollary 5.9.1. If γ′ =
√
γ, then the size of the first and second representative

clusters is in O(γ) and O(
√
γ) w.h.p

The proof of the corollary directly follows from Lemma 5.9.2.

Theorem 5.9.11. Agreement: All honest nodes eventually agree on the same

common set SSfinal in ERNG.

Proof. In round 1, |SSchosen| nodes are uniformly at random selected to be part

of the representative cluster. Based on Lemma 5.9.1, we have shown that the

cluster contains strictly more than γ honest nodes, and strictly less than γ byzan-

tine nodes w.h.p. when t < N
3

That is, we have created a new smaller P2P

network SSchosen in which the honest nodes represent the majority. In the clus-

ter, all honest nodes know each other, but byzantine nodes may deliberately not

contact honest nodes on purpose. In this case, the cluster will be more robust

with less byzantine nodes. Thus, all the results introduced for ERB will hold

for this cluster of nodes.

From round 2 to round γ + 3, the second cluster has more than
√
γ honest

nodes w.h.p. according to Lemma 5.9.2. For each instance of ERB— whether

initiated by an honest or byzantine node, the honest representative nodes will

agree on a same message according to Lemma 5.9.3. Since there is at least

one honest sender, all honest nodes will accept the honest sender’s message for

its run of ERB based on Lemma 5.9.2. After around O(
√
γ) runs, all honest

nodes will agree on the same set of random numbers. Since the number of

167

honest representative nodes is larger than γ and all of them will multicast FINAL

messages for the same set of messages in round γ+4, then all honest nodes will

receive adequate FINAL messages to accept the common set SSfinal.

In ERNG, since the message mi is a random number generated by the SGX

and proposed by the peer pi, then eventually every honest node accepts the same

set SSfinal of random numbers according to Theorem 5.9.11. By performing ex-

clusive disjunction (or XOR) of all the random numbers in SSfinal, every honest

node can obtain a common random number r. We demonstrate next that the

random number r is unbiased against byzantine nodes.

Theorem 5.9.12. Unbiasedness: The output of the ERNG protocol is an unbi-

ased random number.

sketch. Given Theorem 5.9.11, we know that all honest nodes agree on the same

set SSM. On the other hand, leveraging PeerCh
sgx Peer channel, we know that all

random numbers in the ERNG protocol are generated within the SGX enclave

and never tempered with as the network is in the ROD model, based on Corol-

lary 5.7.2. Finally, it is sufficient to show that if all random numbers gener-

ated in SGX are truly random then the output of ERNG is an unbiased random

number, which holds given SGX primitive generates unbiased random number

against the operating system according to Theorem 5.9.10.

5.10 Discussions

5.10.1 Are Assumptions Reasonable?

S1: Network Size. We start with a fixed size network P with N peers. We

assume that there exists information that publicly identifies every node in P ,

this can be for example a node IP address. This assumption is reasonable under

some common conditions. For example, for banking systems, all involved ma-

chines should be registered and publicly available. Fortunately, we can weaken

168

such as assumption and we can extend our setting to work within a variable

size network based on the following technique: whenever a node wants to join

P , the joining node contacts another neighbor node and communicates both its

sequence number and identifier. The contacted node will use ERB to reliably

broadcast the pair to all peers in P and then send the joining peer a message

containing all existing identifiers of P . We can leverage the same technique in

a recursive way to even start with a one node network P . Note that in this case

the identifier need not to be publicly known.

S2: Synchronous Start. Before initiating the ERB primitive, we assume that

any honest node inP can be triggered at the same reference time. This reference

time can be provided in different ways such as periodic execution from a fixed

reference date, or simply by starting at a time posted in public servers. Once

synchronized, every node uses the trusted elapsed time from SGX to maintain

a relative time from the reference time. This therefore will maintain an internal

clock within every node’s enclave. As the enclaves in all honest nodes will have

the (nearly) same internal clock, all nodes will start the next instance of the pro-

tocol at the same time. If any byzantine node deviates by omitting or delaying

the oracle message, its elapsed time will be different from the one honest nodes

have. Consequently, all the byzantine node messages will be delayed as they are

going to have a different round number.

S3: Round time 2∆ seconds. The round time (2∆ seconds) is adequately

determined to allow any honest round trip message to complete within 2∆ sec-

onds. The round increments are managed using the trusted elapsed time, which

implies that even if the OS is byzantine, the round number will be always incre-

mented inside the enclave every 2∆ seconds. We also emphasize that the time

interval between any two internal clocks for honest nodes is negligible compared

to 2∆ seconds. As ERB does not use any underlying heavy cryptographic prim-

itive, we assert that any sent message will be received in the same round. The

2∆ seconds is mostly dedicated for network latency reasons.

169

S4: Number of byzantine nodes less than N
2

. To join a network P , an ad-

versary is required to control machines with SGX-enabled CPUs, in which the

number of possible launched enclaves is bounded [110]. To control N
2

, the ad-

versary needs to control a number of SGX machines. Meanwhile, we can also

employ existing sybil defenses in our network to control the number of byzan-

tine nodes, e.g., defenses using computation puzzles or proof of work [83,167].

The details of deploying these sybil defenses are beyond the scope of this chap-

ter.

S5: Connected Peers. For simplicity of design and to follow the standard model

used in previous works, we assume that all the peers in the network are con-

nected to each other. However this assumption can be relaxed such that the

network is a sparse but expander or random graph. This will guarantee that

there is a path in between any two honest nodes. Thus, the direct point-to-point

broadcast in our protocol can be replaced with a flooding algorithm to broadcast

messages.

5.10.2 Applications

Both ERB and ERNG primitives can be used as building blocks to solve a wide

range of problems in distributed systems. In the following, we review some of

the most prominent applications.

Random Beacons. A random beacon protocol [202] offers a way to generate

uniformly random strings that are unknown to the nodes before their generation.

Random beacons have been extensively studied as they have numerous applica-

tions in cryptography and information security, such as secure contract signing

protocols [131,202], voting schemes [184], zero-knowledge protocols [68,143],

and cryptocurrency protocols [172]. Building random beacons is a difficult task.

Practical solutions usually leverage a trusted third party [31, 54], or utilize pub-

lic data available on the Internet such as financial data [106]. However, the data

from these services has to be trusted and certified, which unfortunately repre-

170

sents a strong assumption in practice. Recently, researchers have also proposed

several protocols to generate random beacons by using Bitcoin as a source of

publicly-verifiable randomness [75, 82]. However, the adversary can bias the

beacon by introducing a new monetary cost. With ERNG, the underlying sys-

tem can easily generate a common unbiased random number in the network.

Random Walks. In order to build a more robust P2P topology, random walk is

an essential primitive to distribute nodes uniformly in the network to maintain

an expander topology. Guerraoui et al. [144] build a virtual overlay on top

of the physical nodes, in order to maintain a robust P2P topology. Each virtual

node represents a cluster that consists of a set of physical nodes such that at least

2
3

of the nodes are honest. This guarantees that decisions or agreements of the

cluster hold on the behalf of the entire physical nodes of the network. Ensuring

that the virtual nodes are honest will guarantee the correctness of the random

walks against byzantine nodes. However, this is not sufficient and in order to

determine the next hop in the random walk, an unbiased random number is

required. With ERNG, we present an efficient solution for this issue in such a

way that physical nodes in the cluster can generate a common unbiased random

number to designate the next hop, and therefore maintain a robust topology.

Shared Key Generation. By performing ERNG, every honest node will share

a common unbiased random number that can be used as a key, salt or initializa-

tion vector for symmetric cryptography. ERNG can also be used as a building

block for distributed key generation (DKG) where the peers want to compute

a shared public and private key. DKG has several applications and in particu-

lar in threshold cryptography, we refer the reader to the works by Gennaro et

al. [140, 141].

Random Load Balancing. Random load balancing is generally performed by

a centralized server to distribute tasks to slave servers [111, 203]. A centralized

server is often considered as a single point of failure, which is usually the pri-

mary target of attackers. Once the centralized server is compromised, the whole

171

load balancing system fail as well. With ERNG, we distribute the decision gen-

eration process to a cluster of nodes instead of a centralized server. When a new

request or a task comes to any node, the cluster of nodes evaluate ERNG to gen-

erate an unbiased common random number and send the decision to the target

slave server. Once the slave server receives adequate confirmations from (say)

half of the nodes, it can take upon the task and evaluate it. This way, even if

half of the nodes are either compromised/failed, the load balancing system can

still work correctly. Note that the nodes can a-priori pre-process many random

numbers to speed-up the process. The random numbers can be generated and

stored in the hard drive using sealing technique enabled by the SGX.

5.11 Related Work

Reliable broadcast has been extensively investigated in various adversarial mod-

els. In our work, we show how Intel SGX improves the efficiency of existing

protocols in these adversarial models, renewing interest in studying these proto-

cols with SGX-based implementations.

Reliable Broadcast: Reliable broadcast has been extensively studied since the

1980s, and is closely related to the problem of byzantine agreement (BA). Sev-

eral excellent surveys on the problem are available [160,220]. Byzantine agree-

ment can also achieve reliable broadcast [88,92,94,155,176,185,201,220]. We

have discussed the related approaches in Chapter 2.

Researchers have proposed byzantine fault-tolerant algorithms using trusted

services, such as by using trusted computing primitives, primarily focusing on

making PBFT more efficient [73, 98, 105, 107, 108, 166, 170, 221]. These works

have observed similar relation to crash-fault-tolerant protocols, as we have. For

example, Chun et al. introduce an attested append-only memory (A2M) to re-

move the ability of adversarial replicas to equivocate without detection, which

helps to increase the resilience from N
3

to N
2

[105]. Liu et al. further pro-

172

pose FastBFT using message aggregation to reduce message complexity from

O(N2) to O(N) [170]. However, these works have concentrated on handling

asynchronous protocols with weak time assumptions like PBFT. In this paper,

in contrast to previous approaches, we work on the round-based synchronous

model. Our work extends these ideas to detecting and remediating failures of

synchronous network assumptions (e.g. our lockstep execution and halt-on-

divergence). Additionally, we investigate the use of our blind-box execution

primitive in our new distributed RNG protocol which is bias-resistant, and more

efficient using secure sampling for cluster creation. We leave the extension

of applying our properties and primitives to asynchronous protocols for future

work.

As it is difficult to tolerateN/2 byzantine nodes withO(N2) communication

complexity, researchers studied a weaker model, dubbed omission model. We

study one of these models called general-omission. Perry et al. and Parvedy

et al. propose protocols that can achieve O(N3) communication complexity,

tolerate N
2

faulty nodes, and terminate in min{f + 2, t + 1} rounds [193, 198].

Chandra et al. present a protocol achieving O(N2) communication complexity,

but terminating with 2t+ 1 rounds if optimizations apply [99]. In this work, we

use SGX features to reduce the byzantine model to the general omission model,

and further propose ERB to achieve min{f + 2, t + 2} round complexity and

O(N2) communication complexity.

Distributed RNG: Generating common coins in a distributed manner for ran-

domized BA in asynchronous networks can also be used for generating unbiased

random numbers [77,93,201]. However, these protocols either require a trusted

dealer to set up the initial states of different nodes or pre-distribute data to the

nodes in the network. Other works employing asynchronous verifiable secret

sharing (AVSS) protocols do not have the trusted dealer, but can probabilisti-

cally execute with errors [74, 88, 96, 217]. Most of these works employ some

cryptographic primitives that, in most case, can be considered heavy-weight and

173

performance unfriendly. Awerbuch et al. propose a solution that tolerates up

to N
6

byzantine nodes, with O(N) round complexity and O(N3) communica-

tion complexity [67] to generate a random number with a constant bias. Other

works, such as Andrychowicz et al.’s one, generate a common random num-

ber based on proof of work [65] with O(N4) communication complexity, but

the output can eventually be biased. Moreover, the large communication cost

for most of these approaches prevents scalability to a large number of nodes.

We present more efficient (with O(N logN) communication complexity) and

unbiased RNG generation for the synchronous network case.

5.12 Summary

The recent availability of Intel SGX in commodity laptops and servers provides

a promising research direction for advancing the area of P2P systems. Our main

observation is that leveraging SGX features can restrict a byzantine model to a

general-omission model in synchronous systems. We highlight that using SGX

we can improve the efficiency of P2P protocols such as reliable broadcast and

unbiased random number generator in synchronous settings.

174

Chapter 6

Conclusion

While peer-to-peer techniques are introduced to the web infrastructure, the pri-

vacy issues in P2P systems are also brought to this new P2P web. In this the-

sis, we first investigate the inference attacks in peer-assisted CDNs on top of

web overlays, which can infer users’ online activities such as browsing history.

Moreover, we propose an anonymous peer-assisted CDN (APAC), which em-

ploys onion-routing techniques enabling users to be unidentifiable within a large

set of other users. We also design a region-based circuit selection algorithm

for APAC to reduce performance overhead and provide options for developers

to balance the tradeoff between privacy and performance. Second, to thwart

attacks via long-term global traffic analysis, we propose an oblivious peer-to-

peer content sharing system (OBLIVP2P) using distributed oblivious RAM and

other cryptographic primitives to hide users’ online activities (or access pat-

terns). Lastly, the core utilities and security / privacy guarantees of P2P pro-

tocols are based on the robustness of these protocols. With the new hardware

primitive called Intel SGX, we ensure the robustness of fundamental P2P pro-

tocols in the malicious (or byzantine) setting, which is not considered in APAC

and OBLIVP2P. By using SGX features, we further improve the efficiency of

P2P protocols, which can be widely used for other P2P operations such as ran-

dom walks, shared key generation and load balancer algorithms. We release

175

the source code of our implementations for the three works, which are available

online [4, 32, 34].

Future Work. OBLIVP2P is the first attempt to adapt ORAM technique to

P2P systems to conceal data access patterns. However, OBLIVP2P has several

shortcomings, e.g., having a centralized trusted tracker and low throughput as

well as only working in the honest-but-curious setting. We have demonstrated

that SGX can be employed to propose robust P2P primitives. For future work,

we are planning to leverage SGX features to re-design OBLIVP2P to achieve

decentralization of the trusted tracker and better throughput with low latency

against byzantine adversaries. In the meantime, the majority of current privacy-

preserving P2P systems do not have proper incentive mechanisms to engage

users to join these system. To address this challenge, we can use secure execu-

tion and remote attestation provided by SGX-enabled CPUs to fairly quantify

the transferred data to reward the nodes involved in the fetch / eviction pro-

cesses of OBLIVP2P. Furthermore, we can integrate our SGX-based solutions

into WebRTC-enabled web browsers like Chromium as generic primitives for

new proposed protocols.

176

Bibliography

[1] Akamai. http://www.akamai.com/.

[2] Akamai netsession interface. http://www.akamai.com/client.

[3] AMD secure technology. http://www.amd.com/en-

us/innovations/software-technologies/security.

[4] An Anonymous Peer-assisted CDN (APAC). https://github.

com/jiayaoqijia/APAC-Code.

[5] BemTV. http://bem.tv/.

[6] Bitcoin. https://bitcoin.org/en/.

[7] Bittorrent. http://www.bittorrent.com/.

[8] BitTorrent over Tor isn’t a good idea. https://blog.

torproject.org/blog/bittorrent-over-tor-isnt-

good-idea.

[9] Boost c++ library. http://www.boost.org/.

[10] CLOC. http://cloc.sourceforge.net/.

[11] CloudFlare. https://www.cloudflare.com/.

[12] CrashPlan. http://www.code42.com/crashplan/.

177

http://www.akamai.com/
http://www.akamai.com/client
http://www.amd.com/en-us/innovations/software-technologies/security
http://www.amd.com/en-us/innovations/software-technologies/security
https://github.com/jiayaoqijia/APAC-Code
https://github.com/jiayaoqijia/APAC-Code
http://bem.tv/
https://bitcoin.org/en/
http://www.bittorrent.com/
https://blog.torproject.org/blog/bittorrent-over-tor-isnt-good-idea
https://blog.torproject.org/blog/bittorrent-over-tor-isnt-good-idea
https://blog.torproject.org/blog/bittorrent-over-tor-isnt-good-idea
http://www.boost.org/
http://cloc.sourceforge.net/
https://www.cloudflare.com/
http://www.code42.com/crashplan/

[13] Crypto-js: JavaScript implementations of standard and secure cryp-

tographic algorithms. https://code.google.com/p/crypto-

js/.

[14] The “data” URL scheme. http://tools.ietf.org/html/

rfc2397.

[15] Datagram transport layer security. https://tools.ietf.org/

html/rfc4347.

[16] Deterlab. https://www.isi.deterlab.net/index.php3.

[17] A fast json parser/generator for c++ with both sax/dom style api. http:

//rapidjson.org/.

[18] Freenet: The free network. https://freenetproject.org.

[19] Geolocation api specification. http://www.w3.org/TR/

geolocation-API/.

[20] Gnutella. https://web.archive.org/web/

20080525005017/http://www.gnutella.com/.

[21] Htop - an interactive process viewer for unix. http://hisham.hm/

htop/. Accessed: 2016.

[22] I2P: The invisible Internet project. https://geti2p.net/en/.

[23] Iftop: display bandwidth usage on an interface. http://www.ex-

parrot.com/pdw/iftop/. Accessed: 2016.

[24] Indexed database api. http://www.w3.org/TR/IndexedDB/.

[25] Intel software guard extensions. https://software.intel.com/

en-us/sgx.

[26] Intel software guard extensions for linux* os. https://01.org/

intel-softwareguard-extensions.

178

https://code.google.com/p/crypto-js/
https://code.google.com/p/crypto-js/
http://tools.ietf.org/html/rfc2397
http://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc4347
https://tools.ietf.org/html/rfc4347
https://www.isi.deterlab.net/index.php3
http://rapidjson.org/
http://rapidjson.org/
https://freenetproject.org
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/geolocation-API/
https://web.archive.org/web/20080525005017/http://www.gnutella.com/
https://web.archive.org/web/20080525005017/http://www.gnutella.com/
http://hisham.hm/htop/
http://hisham.hm/htop/
https://geti2p.net/en/
http://www.ex-parrot.com/pdw/iftop/
http://www.ex-parrot.com/pdw/iftop/
http://www.w3.org/TR/IndexedDB/
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://01.org/intel-softwareguard-extensions
https://01.org/intel-softwareguard-extensions

[27] Is WebRTC ready yet? http://iswebrtcreadyyet.com.

[28] Maelstrom. http://blog.bittorrent.com/tag/maelstrom.

[29] Mist browser. https://github.com/ethereum/mist.

[30] Network address translation. http://en.wikipedia.org/wiki/

Network_address_translation.

[31] NIST randomness beacon. https://www.nist.gov/programs-

projects/nist-randomness-beacon.

[32] Oblivious Peer-to-Peer Protocol. https://github.com/

jiayaoqijia/OblivP2P-Code.

[33] Octoshape. http://www.octoshape.com/.

[34] P2P using SGX. https://bitbucket.org/P2PUsingSGX/

p2pusingsgx.

[35] P2PSP. http://www.p2psp.org/webrtc-streaming/.

[36] Palo Alto networks application usage & threat report. http:

//researchcenter.paloaltonetworks.com/app-usage-

risk-report-visualization/.

[37] PeerCDN. https://peercdn.com/.

[38] The peerjs library. http://peerjs.com/.

[39] Protocol buffers - google’s data interchange format. https://

github.com/google/protobuf.

[40] Python cryptography toolkit. https://pypi.python.org/pypi/

pycrypto.

[41] Python ECC. https://github.com/johndoe31415/joeecc.

179

http://iswebrtcreadyyet.com
http://blog.bittorrent.com/tag/maelstrom
https://github.com/ethereum/mist
http://en.wikipedia.org/wiki/Network_address_translation
http://en.wikipedia.org/wiki/Network_address_translation
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://github.com/jiayaoqijia/OblivP2P-Code
https://github.com/jiayaoqijia/OblivP2P-Code
http://www.octoshape.com/
https://bitbucket.org/P2PUsingSGX/p2pusingsgx
https://bitbucket.org/P2PUsingSGX/p2pusingsgx
http://www.p2psp.org/webrtc-streaming/
http://researchcenter.paloaltonetworks.com/app-usage-risk-report-visualization/
http://researchcenter.paloaltonetworks.com/app-usage-risk-report-visualization/
http://researchcenter.paloaltonetworks.com/app-usage-risk-report-visualization/
https://peercdn.com/
http://peerjs.com/
https://github.com/google/protobuf
https://github.com/google/protobuf
https://pypi.python.org/pypi/pycrypto
https://pypi.python.org/pypi/pycrypto
https://github.com/johndoe31415/joeecc

[42] Scaneye’s global bittorrent monitor. http://www.cogipas.com/

anonymous-torrenting/torrent-monitoring/.

[43] Session traversal utilities for nat (stun). https://tools.ietf.

org/html/rfc5389.

[44] Storj.io. http://storj.io/.

[45] Swarmify. http://www.swarmify.com/.

[46] Symform. http://www.symform.com/.

[47] Tor. https://www.torproject.org/.

[48] Tor: Hidden service protocol. https://www.torproject.org/

docs/hidden-services.html.en.

[49] Tor suffers traffic confirmation attack. http://www.techtimes.

com/articles/11711/20140802/tor-suffers-traffic-

confirmation\-attacks-say-goodbye-to-anonymity-

on-the-web.htm.

[50] Total transfer size & total requests. http://httparchive.org/

trends.php.

[51] Traffic confirmation attack. https://blog.torproject.org/

blog/tor-security-advisory-relay-early-traffic-

confirmation-attack.

[52] The transport layer security (TLS) protocol. https://tools.ietf.

org/html/rfc5246.

[53] Tribler. http://www.tribler.org/.

[54] True random number service. https://www.random.org/.

180

http://www.cogipas.com/anonymous-torrenting/torrent-monitoring/
http://www.cogipas.com/anonymous-torrenting/torrent-monitoring/
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5389
http://storj.io/
http://www.swarmify.com/
http://www.symform.com/
https://www.torproject.org/
https://www.torproject.org/docs/hidden-services.html.en
https://www.torproject.org/docs/hidden-services.html.en
http://www.techtimes.com/articles/11711/20140802/tor-suffers-traffic-confirmation \-attacks-say-goodbye-to-anonymity-on-the-web.htm
http://www.techtimes.com/articles/11711/20140802/tor-suffers-traffic-confirmation \-attacks-say-goodbye-to-anonymity-on-the-web.htm
http://www.techtimes.com/articles/11711/20140802/tor-suffers-traffic-confirmation \-attacks-say-goodbye-to-anonymity-on-the-web.htm
http://www.techtimes.com/articles/11711/20140802/tor-suffers-traffic-confirmation \-attacks-say-goodbye-to-anonymity-on-the-web.htm
http://httparchive.org/trends.php
http://httparchive.org/trends.php
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
http://www.tribler.org/
https://www.random.org/

[55] Trusted platfrom module (TPM). http://www.

trustedcomputinggroup.org/work-groups/trusted-

platform-module/.

[56] UTorrent & BitTorrent surge to 150 million monthly users.

https://torrentfreak.com/bittorrent-surges-to-

150-million-monthly-users-120109/.

[57] Velocix. http://www.velocix.com/.

[58] Wbittorrentireshark. https://www.wireshark.org/.

[59] WebRTC. http://www.webrtc.org/.

[60] The Weibull distribution. http://reliawiki.org/index.php/

The_Weibull_Distribution.

[61] Ittai Abraham and Danny Dolev. Byzantine agreement with optimal early

stopping, optimal resilience and polynomial complexity. In Proceedings

of the 47th Annual ACM on Symposium on Theory of Computing, 2015.

[62] Paarijaat Aditya, Mingchen Zhao, Yin Lin, Andreas Haeberlen, Peter Dr-

uschel, Bruce M Maggs, and Bill Wishon. Reliable client accounting for

P2P-infrastructure hybrids. In Proceedings of the 9th USENIX Sympo-

sium on Networked Systems Design and Implementation, 2012.

[63] Dakshi Agrawal and Dogan Kesdogan. Measuring anonymity: The dis-

closure attack. IEEE Security & privacy, 2003.

[64] Masoud Akhoondi, Curtis Yu, and Harsha V Madhyastha. LASTor: A

low-latency AS-aware Tor client. In Proceedings of the 33rd IEEE Sym-

posium on Security and Privacy, 2012.

[65] Marcin Andrychowicz and Stefan Dziembowski. Distributed cryptogra-

phy based on the proofs of work. IACR Cryptology ePrint Archive, 2014.

181

http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://torrentfreak.com/bittorrent-surges-to-150-million-monthly-users-120109/
https://torrentfreak.com/bittorrent-surges-to-150-million-monthly-users-120109/
http://www.velocix.com/
https://www.wireshark.org/
http://www.webrtc.org/
http://reliawiki.org/index.php/The_Weibull_Distribution
http://reliawiki.org/index.php/The_Weibull_Distribution

[66] Robert Annessi and Martin Schmiedecker. NavigaTor: Finding faster

paths to anonymity. In Proceedings of the 1st IEEE European Symposium

on Security and Privacy, 2016.

[67] Baruch Awerbuch and Christian Scheideler. Robust random number gen-

eration for peer-to-peer systems. In Proceedings of the 20th International

Conference on Principles of Distributed Systems, 2006.

[68] László Babai. Trading group theory for randomness. In Proceedings of

the 17th Annual ACM Symposium on Theory of Computing, 1985.

[69] Michael Backes, Aniket Kate, Sebastian Meiser, and Esfandiar Moham-

madi. (nothing else) mator(s): Monitoring the anonymity of tor’s path

selection. In Proceedings of the 21st ACM SIGSAC Conference on Com-

puter and Communications Security, 2014.

[70] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and

Douglas Sicker. Low-resource routing attacks against tor. In Proceedings

of the 6th ACM Workshop on Privacy in the Electronic Society, 2007.

[71] Kevin Bauer, Damon McCoy, Dirk Grunwald, and Douglas Sicker. Bit-

blender: Light-weight anonymity for bittorrent. In Proceedings of the

2008 Workshop on Applications of Private and Anonymous Communica-

tions, 2008.

[72] Kevin Bauer, Damon McCoy, Dirk Grunwald, and Douglas Sicker. Bit-

stalker: Accurately and efficiently monitoring bittorrent traffic. In Pro-

ceedings of the 1st IEEE International Workshop on Information Foren-

sics and Security, 2009.

[73] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. Hybrids on steroids:

Sgx-based high performance bft. In Proceedings of the 20th European

Conference on Computer Systems, 2017.

182

[74] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure

computations with optimal resilience. In Proceedings of the 13th Annual

ACM Symposium on Principles of Distributed Computing, 1994.

[75] Iddo Bentov, Ariel Gabizon, and David Zuckerman. Bitcoin beacon.

arXiv preprint arXiv:1605.04559, 2016.

[76] Piotr Berman and Juan A Garay. Cloture votes: n/4-resilient distributed

consensus int+ 1 rounds. Theory of Computing Systems, 1993.

[77] Piotr Berman and Juan A Garay. Randomized distributed agreement re-

visited. In Proceedings of the 23rd International Symposium on Fault-

Tolerant Computing, 1993.

[78] Piotr Berman, Juan A Garay, and Kenneth J Perry. Optimal early stop-

ping in distributed consensus. In Proceedings of the 6th International

Workshop on Distributed Algorithms, 1992.

[79] Ashwin R Bharambe, Cormac Herley, and Venkata N Padmanabhan. An-

alyzing and improving bittorrent performance. Technical report, Techni-

cal Report MSR-TR-2005-03, Microsoft Research, 2005.

[80] Stevens Le Blond, Pere Manils, Chaabane Abdelberi, Mohamed Ali Dali

Kaafar, Claude Castelluccia, Arnaud Legout, and Walid Dabbous. One

bad apple spoils the bunch: exploiting P2P applications to trace and pro-

file tor users. arXiv preprint arXiv:1103.1518, 2011.

[81] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-

nathan. Key homomorphic PRFs and their applications. In Proceedings

of the 33rd Annual International Cryptology Conference, 2013.

[82] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On Bitcoin as a

public randomness source. IACR Cryptology ePrint Archive, 2015.

183

[83] Nikita Borisov. Computational puzzles as sybil defenses. In Proceedings

of the 6th IEEE International Conference on Peer-to-Peer Computing,

2006.

[84] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. Denial

of service or denial of security? In Proceedings of the 14th ACM SIGSAC

Conference on Computer and Communications Security, 2007.

[85] Philippe Boucher, Adam Shostack, and Ian Goldberg. Freedom systems

2.0 architecture. Zero Knowledge Systems, Inc, 2000.

[86] Justin Boyan. The anonymizer: Protecting user privacy on the web.

Computer-Mediated Communication Magazine, 1997.

[87] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel RAM

and applications. In Proceedings of the 13th Theory of Cryptography

Conference, 2016.

[88] Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol.

In Proceedings of the 3rd Annual ACM Symposium on Principles of Dis-

tributed Computing, 1984.

[89] Gabriel Bracha. Asynchronous byzantine agreement protocols. Informa-

tion and Computation, 1987.

[90] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast

protocols. Journal of the ACM, 1985.

[91] Florian Burgstaller, Andreas Derler, Stefan Kern, Gabriel Schanner, and

Andreas Reiter. Anonymous communication in the browser via onion-

routing. In Proceedings of the 10th International Conference on P2P,

Parallel, Grid, Cloud and Internet Computing, 2015.

184

[92] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Se-

cure and efficient asynchronous broadcast protocols. In Proceedings of

the 21st Annual International Cryptology Conference, 2001.

[93] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in

constantinople: Practical asynchronous byzantine agreement using cryp-

tography. Journal of Cryptology, 2005.

[94] Christian Cachin and Jonathan A Poritz. Secure intrusion-tolerant repli-

cation on the internet. In Proceedings of 32nd Annual IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks, 2002.

[95] Christian Cachin and Stefano Tessaro. Asynchronous verifiable informa-

tion dispersal. In Proceedings of the 24th IEEE Symposium on Reliable

Distributed Systems, 2005.

[96] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with

optimal resilience. In Proceedings of the 25th Annual ACM Symposium

on Theory of Computing, 1993.

[97] Frank Cangialosi, Dave Levin, and Neil Spring. Ting: Measuring and

exploiting latencies between all tor nodes. In Proceedings of the 15th

ACM SIGCOMM Conference on Internet Measurement, 2015.

[98] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance.

In Proceedings of the 3rd Symposium on Operating Systems Design and

Implementation, 1999.

[99] Tushar Deepak Chandra and Sam Toueg. Time and message efficient

reliable broadcasts. In Proceedings of the 4th International Workshop on

Distributed Algorithms, 1990.

[100] David L Chaum. Untraceable electronic mail, return addresses, and digi-

tal pseudonyms. Communications of the ACM, 1981.

185

[101] Binyi Chen, Huijia Lin, and Stefano Tessaro. Oblivious parallel RAM:

improved efficiency and generic constructions. In Proceedings of the 13th

Theory of Cryptography Conference, 2016.

[102] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-

channel leaks in web applications: A reality today, a challenge tomorrow.

In Proceedings of the 31st IEEE Symposium on Security and Privacy,

2010.

[103] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Pri-

vate information retrieval. In Proceedings of the 36th Annual Symposium

on Foundations of Computer Science, 1995.

[104] Tom Chothia, Marco Cova, Chris Novakovic, and Camilo González Toro.

The unbearable lightness of monitoring: Direct monitoring in bittorrent.

In Proceedings of the 8th International Conference on Security and Pri-

vacy in Communication Networks, 2013.

[105] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatow-

icz. Attested append-only memory: Making adversaries stick to their

word. In ACM SIGOPS Operating Systems Review, 2007.

[106] Jeremy Clark and Urs Hengartner. On the use of financial data as a ran-

dom beacon. In Proceedings of the 2010 Electronic Voting Technology

Workshop/Workshop on Trustworthy Elections, 2010.

[107] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. How to tol-

erate half less one byzantine nodes in practical distributed systems. In

Proceedings of the 23rd International Symposium on Reliable Distributed

Systems, 2004.

[108] Miguel Correia, Paulo Verı́ssimo, and Nuno Ferreira Neves. The design

of a COTS real-time distributed security kernel. In Proceedings of the 4th

European Dependable Computing Conference, 2002.

186

[109] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An

anonymous messaging system handling millions of users. In Proceedings

of the 36th IEEE Symposium on Security and Privacy, 2015.

[110] Victor Costan and Srinivas Devadas. Intel sgx explained. In IACR Cryp-

tology ePrint Archive, 2016.

[111] George Cybenko. Dynamic load balancing for distributed memory mul-

tiprocessors. Journal of Parallel and Distributed Computing, 1989.

[112] Dana Dachman-Soled, Chang Liu, Charalampos Papamanthou, Elaine

Shi, and Uzi Vishkin. Oblivious network RAM and leveraging paral-

lelism to achieve obliviousness. In Proceedings of the 21st Annual In-

ternational Conference on the Theory and Application of Cryptology and

Information Security, 2015.

[113] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the ad-

vanced encryption standard. 2002.

[114] George Danezis. Statistical disclosure attacks. In Security and Privacy

in the Age of Uncertainty. 2003.

[115] George Danezis and Claudia Diaz. A survey of anonymous communi-

cation channels. Technical report, Technical Report MSR-TR-2008-35,

Microsoft Research, 2008.

[116] George Danezis, Claudia Diaz, and Carmela Troncoso. Two-sided statis-

tical disclosure attack. In Proceedings of the 7th International Symposium

on Privacy Enhancing Technologies, 2007.

[117] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion:

Design of a type iii anonymous remailer protocol. In Proceedings of the

24th IEEE Symposium on Security and Privacy, 2003.

187

[118] George Danezis, Chris Lesniewski-Laas, M Frans Kaashoek, and Ross

Anderson. Sybil-resistant DHT routing. In Proceedings of the 10th Eu-

ropean Symposium on Research in Computer Security, 2005.

[119] George Danezis and Andrei Serjantov. Statistical disclosure or intersec-

tion attacks on anonymity systems. In Proceedings of the 7th Interna-

tional Conference on Information Hiding, 2005.

[120] George Danezis and Carmela Troncoso. Vida: How to use bayesian infer-

ence to de-anonymize persistent communications. In Proceedings of the

9th International Symposium on Privacy Enhancing Technologies, 2009.

[121] Srinivas Devadas, Marten van Dijk, Christopher W Fletcher, Ling Ren,

Elaine Shi, and Daniel Wichs. Onion oram: A constant bandwidth

blowup oblivious ram. In Proceedings of the 13th Theory of Cryptog-

raphy Conference, 2016.

[122] Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards

measuring anonymity. In Proceedings of the 3rd International Sympo-

sium on Privacy Enhancing Technologies, 2003.

[123] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The

second-generation onion router. In USENIX Securitedings of the 13th

USENIX Security Symposium, 2004.

[124] Danny Dolev, Ruediger Reischuk, and H Raymond Strong. Early stop-

ping in byzantine agreement. Journal of the ACM, 1990.

[125] Danny Dolev and H. Raymond Strong. Authenticated algorithms for

byzantine agreement. SIAM Journal on Computing, 1983.

[126] John R Douceur. The sybil attack. In Proceedings of the 2nd International

Workshop on Peer-to-Peer Systems, 2002.

188

[127] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas Shrimpton.

Peek-a-boo, i still see you: Why efficient traffic analysis countermeasures

fail. In Proceedings of the 33rd IEEE Symposium on Security and Pri-

vacy, 2012.

[128] Matthew Edman and Paul Syverson. AS-awareness in Tor path selection.

In Proceedings of the 16th ACM SIGSAC Conference on Computer and

Communications Security, 2009.

[129] Karim El Defrawy, Minas Gjoka, and Athina Markopoulou. BotTorrent:

Misusing BitTorrent to launch DDoS attacks. Proceedings of the 3rd

Workshop on Steps to Reducing Unwanted Traffic on the Internet, 2007.

[130] Manal El Dick, Esther Pacitti, and Bettina Kemme. Flower-cdn: a hy-

brid p2p overlay for efficient query processing in cdn. In Proceedings of

the 12th International Conference on Extending Database Technology:

Advances in Database Technology, 2009.

[131] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized

protocol for signing contracts. Communications of the ACM, 1985.

[132] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for

synchronous byzantine agreement. SIAM Journal on Computing, 1997.

[133] Matthias Fitzi and Juan A Garay. Efficient player-optimal protocols for

strong and differential consensus. In Proceedings of the 22nd Annual

Symposium on Principles of Distributed Computing, 2003.

[134] Michael J Freedman. Experiences with CoralCDN: A five-year opera-

tional view. In Proceedings of the 7th USENIX Symposium on Networked

Systems Design and Implementation, 2010.

[135] Michael J. Freedman, Eric Freudenthal, and David Mazières. Democra-

tizing content publication with coral. In Proceedings of the 1st USENIX

Symposium on Networked Systems Design and Implementation, 2004.

189

[136] Michael J Freedman and Robert Morris. Tarzan: A peer-to-peer

anonymizing network layer. In Proceedings of the 9th ACM SIGSAC

Conference on Computer and Communications Security, 2002.

[137] Yan Gao, Leiwen Deng, Aleksandar Kuzmanovic, and Yan Chen. Internet

cache pollution attacks and countermeasures. In Proceedings of the 14th

IEEE International Conference on Network Protocols, 2006.

[138] Juan A Garay and Yoram Moses. Fully polynomial byzantine agreement

in t+ 1 rounds. In Proceedings of the 25th Annual ACM Symposium on

Theory of Computing, 1993.

[139] Juan A Garay and Yoram Moses. Fully polynomial byzantine agreement

for processors in rounds. SIAM Journal on Computing, 1998.

[140] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Se-

cure distributed key generation for discrete-log based cryptosystems. In

Proceedings of the 17th International Conference on Theory and Appli-

cation of Cryptographic Techniques, 1999.

[141] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.

Secure distributed key generation for discrete-log based cryptosystems.

Journal of Cryptology, 2007.

[142] O. Goldreich and R. Ostrovsky. Software protection and simulation on

oblivious rams. Journal of the ACM, 1996.

[143] Shafi Goldwasser and Michael Sipser. Private coins versus public coins

in interactive proof systems. In Proceedings of the 18th Annual ACM

Symposium on Theory of Computing, 1986.

[144] Rachid Guerraoui, Florian Huc, and Anne-Marie Kermarrec. Highly dy-

namic distributed computing with byzantine failures. In Proceedings of

the 32nd ACM symposium on Principles of Distributed Computing, 2013.

190

[145] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related

problems. In Distributed systems (2nd Ed.), 1993.

[146] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.

Eclipse attacks on bitcoin’s peer-to-peer network. In Proceedings of the

24th USENIX Security Symposium, 2015.

[147] Cheng Huang, Angela Wang, Jin Li, and Keith W Ross. Understanding

hybrid cdn-p2p: why limelight needs its own red swoosh. In Proceedings

of the 18th International Workshop on Network and Operating Systems

Support for Digital Audio and Video, 2008.

[148] Tomas Isdal, Michael Piatek, Arvind Krishnamurthy, and Thomas Ander-

son. Privacy-preserving p2p data sharing with oneswarm. In Proceedings

of the 2010 ACM SIGCOMM Computer Communication Review, 2010.

[149] Sitaram Iyer, Antony Rowstron, and Peter Druschel. Squirrel: A decen-

tralized peer-to-peer web cache. In Proceedings of the 21st ACM Sympo-

sium on Principles of Distributed Computing, 2002.

[150] Yaoqi Jia, Guangdong Bai, Prateek Saxena, and Zhenkai Liang.

Anonymity in peer-assisted CDNs: Inference attacks and mitigation. In

Proceedings of the 16th International Symposium on Privacy Enhancing

Technologies, 2016.

[151] Yaoqi Jia, Yue Chen, Xinshu Dong, Prateek Saxena, Jian Mao, and

Zhenkai Liang. Man-in-the-browser-cache: Persisting HTTPS attacks

via browser cache poisoning. Computers & Security, 2015.

[152] Yaoqi Jia, Xinshu Dong, Zhenkai Liang, and Prateek Saxena. I know

where you’ve been: Geo-inference attacks via the browser cache. IEEE

Internet Computing, 2014.

[153] Yaoqi Jia, Tarik Moataz, Shruti Tople, and Prateek Saxena. OblivP2P:

An oblivious peer-to-peer content sharing system. 2016.

191

[154] Yaoqi Jia, Shruti Tople, Tarik Moataz, Deli Gong, Prateek Saxena, and

Zhenkai Liang. Robust synchronous P2P primitives using SGX enclaves.

In IACR Cryptology ePrint Archive, 2017.

[155] Bruce M Kapron, David Kempe, Valerie King, Jared Saia, and Vishal

Sanwalani. Fast asynchronous byzantine agreement and leader election

with full information. ACM Transactions on Algorithms, 2010.

[156] Thomas Karagiannis, Pablo Rodriguez, and Konstantina Papagiannaki.

Should internet service providers fear peer-assisted content distribution?

In Proceedings of the 5th ACM SIGCOMM conference on Internet Mea-

surement, 2005.

[157] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round proto-

cols for byzantine agreement. In Proceedings of the 26th Annual Inter-

national Cryptology Conference, 2006.

[158] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.

2014.

[159] Dogan Kesdogan and Lexi Pimenidis. The hitting set attack on anonymity

protocols. In Proceedings of the 6th International Conference on Infor-

mation Hiding, 2004.

[160] Valerie King and Jared Saia. Scalable byzantine computation. ACM

SIGACT News, 2010.

[161] Jie Kong, Wandong Cai, and Lei Wang. The evaluation of index poison-

ing in bittorrent. In Proceedings of the 2nd International Conference on

Communication Software and Networks, 2010.

[162] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gen-

erals problem. ACM Transactions on Programming Languages and Sys-

tems, 1982.

192

[163] Stevens Le Blond, Adina Uritesc, Cédric Gilbert, Zheng Leong Chua,

Prateek Saxena, and Engin Kirda. A look at targeted attacks through the

lense of an ngo. In Proceedings of the 23rd USENIX Security Symposium,

2014.

[164] Stevens Le Blond, Chao Zhang, Arnaud Legout, Keith Ross, and Walid

Dabbous. I know where you are and what you are sharing: exploiting

p2p communications to invade users’ privacy. In Proceedings of the 11th

ACM SIGCOMM Conference on Internet Measurement, 2011.

[165] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,

and Marcus Peinado. Inferring fine-grained control flow inside SGX en-

claves with branch shadowing. arXiv preprint arXiv:1611.06952, 2016.

[166] Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Moscibroda.

TrInc: Small trusted hardware for large distributed systems. In Proceed-

ings of the 6th USENIX Symposium on Networked Systems Design and

Implementation, 2009.

[167] Frank Li, Prateek Mittal, Matthew Caesar, and Nikita Borisov. Sybilcon-

trol: practical sybil defense with computational puzzles. In Proceedings

of the 7th ACM Workshop on Scalable Trusted Computing, 2012.

[168] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition

of authenticated byzantine agreement. Journal of the ACM, 2006.

[169] Chao Liu, Ryen W White, and Susan Dumais. Understanding web brows-

ing behaviors through weibull analysis of dwell time. In Proceedings of

the 33rd International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, 2010.

[170] Jian Liu, Wenting Li, Ghassan O Karame, and N Asokan. Scalable

byzantine consensus via hardware-assisted secret sharing. arXiv preprint

arXiv:1612.04997, 2016.

193

[171] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure

two-party computation. In Proceedings of the 10th Theory of Cryptogra-

phy Conference, 2013.

[172] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth

Gilbert, and Prateek Saxena. A secure sharding protocol for open

blockchains. In Proceedings of the 23rd ACM SIGSAC Conference on

Computer and Communications Security, 2016.

[173] Nayantara Mallesh and Matthew Wright. The reverse statistical disclo-

sure attack. In Proceedings of the 12th International Conference on In-

formation Hiding, 2010.

[174] Pere Manils, Chaabane Abdelberri, Stevens Le Blond, Mohamed Ali

Kaafar, Claude Castelluccia, Arnaud Legout, and Walid Dabbous. Com-

promising tor anonymity exploiting p2p information leakage. arXiv

preprint arXiv:1004.1461, 2010.

[175] Nick Mathewson and Roger Dingledine. Practical traffic analysis: Ex-

tending and resisting statistical disclosure. In Proceedings of the 5th In-

ternational Symposium on Privacy Enhancing Technologies, 2005.

[176] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The

honey badger of bft protocols. In Proceedings of the 23rd ACM SIGSAC

Conference on Computer and Communications Security, 2016.

[177] Ming-Wei-Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX:

Eradicating controlled-channel attacks against enclave programs. In Pro-

ceedings of the 24th Annual Network and Distributed System Security

Symposium, 2017.

[178] Alan Mislove, Gaurav Oberoi, Ansley Post, Charles Reis, Peter Druschel,

and Dan S Wallach. AP3: Cooperative, decentralized anonymous com-

194

munication. In Proceedings of the 11th ACM SIGOPS European Work-

shop, 2004.

[179] Prateek Mittal and Nikita Borisov. Shadowwalker: peer-to-peer anony-

mous communication using redundant structured topologies. In Proceed-

ings of the 16th ACM SIGSAC Conference on Computer and Communi-

cations Security, 2009.

[180] Prateek Mittal, Femi Olumofin, Carmela Troncoso, Nikita Borisov, and

Ian Goldberg. PIR-Tor: scalable anonymous communication using pri-

vate information retrieval. In Proceedings of the 20th USENIX Security

Symposium, 2011.

[181] Prateek Mittal, Matthew Wright, and Nikita Borisov. Pisces: Anonymous

communication using social networks. In Proceedings of the 19th Annual

Network and Distributed System Security Symposium, 2012.

[182] T. Moataz, T. Mayberry, and E.-O. Blass. Constant communication

ORAM with small blocksize. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, 2015.

[183] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmas-

ter protocol-version 2. 2003.

[184] Tal Moran and Moni Naor. Split-ballot voting: everlasting privacy with

distributed trust. ACM Transactions on Information and System Security,

2010.

[185] Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. Signature-

free asynchronous byzantine consensus with t < n
3

and o(n2) messages.

In Proceedings of the 33rd ACM Symposium on Principles of Distributed

Computing, 2014.

195

[186] Gabi Nakibly, Jaime Schcolnik, and Yossi Rubin. Website-

targeted false content injection by network operators. arXiv preprint

arXiv:1602.07128, 2016.

[187] Arjun Nambiar and Matthew Wright. Salsa: a structured approach to

large-scale anonymity. In Proceedings of the 13th ACM SIGSAC Confer-

ence on Computer and Communications Security, 2006.

[188] Moni Naor and Omer Reingold. Number-theoretic constructions of effi-

cient pseudo-random functions. In Proceedings of the 38th Annual Sym-

posium on Foundations of Computer Science, 1997.

[189] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn

mining: Generalizing selfish mining and combining with an eclipse at-

tack. In Proceedings of the 1st IEEE European Symposium on Security

and Privacy, 2016.

[190] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Se-

bastian Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious multi-

party machine learning on trusted processors. In Proceedings of the 25th

USENIX Security Symposium, 2016.

[191] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.

Website fingerprinting in onion routing based anonymization networks.

In Proceedings of the 10th ACM Workshop on Privacy in the Electronic

Society, 2011.

[192] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-

chio: Nearly practical verifiable computation. In Proceedings of the 34th

IEEE Symposium on Security and Privacy, 2013.

[193] Philippe Raı̈pin Parvédy and Michel Raynal. Optimal early stopping uni-

form consensus in synchronous systems with process omission failures.

196

In Proceedings of the 16th ACM Symposium on Parallelism in Algorithms

and Architectures, 2004.

[194] Rafael Pass, Elaine Shi, and Florian Tramer. Formal abstractions for

attested execution secure processors. IACR Cryptology ePrint Archive,

2016.

[195] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agree-

ment in the presence of faults. Journal of the ACM, 1980.

[196] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Survey of

network-based defense mechanisms countering the dos and ddos prob-

lems. ACM Computing Surveys, 2007.

[197] Fernando Pérez-González and Carmela Troncoso. Understanding statis-

tical disclosure: A least squares approach. In Proceedings of the 12th

International Symposium on Privacy Enhancing Technologies, 2012.

[198] Kenneth J Perry and Sam Toueg. Distributed agreement in the presence

of processor and communication faults. IEEE Transactions on Software

Engineering, 1986.

[199] Andreas Pfitzmann and Marit Hansen. Anonymity, unlinkability, un-

detectability, unobservability, pseudonymity, and identity management-a

consolidated proposal for terminology. Version v0, 2008.

[200] Michael Piatek, Tadayoshi Kohno, and Arvind Krishnamurthy. Chal-

lenges and directions for monitoring P2P file sharing networks, or, why

my printer received a DMCA takedown notice. In Proceedings of the 3rd

Conference on Hot Topics in Security, 2008.

[201] Michael O Rabin. Randomized byzantine generals. In Proceedings of the

24th Annual Symposium on Foundations of Computer Science, 1983.

197

[202] Michael O Rabin. Transaction protection by beacons. Journal of Com-

puter and System Sciences, 1983.

[203] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp,

and Ion Stoica. Load balancing in structured p2p systems. In Proceedings

of the 2nd International Workshop on Peer-to-Peer Systems, 2003.

[204] Michael G Reed, Paul F Syverson, and David M Goldschlag. Anony-

mous connections and onion routing. IEEE Journal on Selected Areas in

Communications, 1998.

[205] Michael K Reiter and Aviel D Rubin. Crowds: Anonymity for web trans-

actions. ACM Transactions on Information and System Security, 1998.

[206] L. Ren, C.W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and

S. Devadas. Constants Count: Practical Improvements to Oblivious RAM

. In Proceedings of the 24th USENIX Security Symposium, 2015.

[207] Marc Rennhard and Bernhard Plattner. Introducing MorphMix: peer-to-

peer based anonymous Internet usage with collusion detection. In Pro-

ceedings of the 1st ACM Workshop on Privacy in the Electronic Society,

2002.

[208] Daniel S. Roche, Adam J. Aviv, and Seung Geol Choi. A practical obliv-

ious map data structure with secure deletion and history independence.

IACR Cryptology ePrint Archive, 2015.

[209] Vincent Scarlata, Brian Neil Levine, and Clay Shields. Responder

anonymity and anonymous peer-to-peer file sharing. In Proceedings of

the 9th International Conference on Network Protocols, 2001.

[210] E. Shi, T.-H.H. Chan, E. Stefanov, and M. Li. Oblivious RAM with

O(log3(N)) Worst-Case Cost. In Proceedings of the 17th International

Conference on the Theory and Application of Cryptology and Information

Security, 2011.

198

[211] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek

Saxena. Preventing page faults from telling your secrets. In Proceedings

of the 11th ACM on Asia Conference on Computer and Communications

Security, 2016.

[212] Georgos Siganos, Josep M Pujol, and Pablo Rodriguez. Monitoring the

bittorrent monitors: A bird’s eye view. In Proceedings of the 10th Inter-

national Conference on Passive and Active Measurement, 2009.

[213] E. Stefanov, M. van Dijk, E. Shi, C.W. Fletcher, L. Ren, X. Yu, and

S. Devadas. Path ORAM: an extremely simple oblivious RAM proto-

col. In Proceedings of the 20th ACM SIGSAC Conference on Computer

and Communications Security, 2013.

[214] Emil Stefanov and Elaine Shi. Multi-cloud oblivious storage. In Pro-

ceedings of the 20th ACM SIGSAC Conference on Computer and Com-

munications Security, 2013.

[215] Emil Stefanov and Elaine Shi. ObliviStore: High Performance Oblivious

Distributed Cloud Data Store. In Proceedings of the 20th Annual Network

and Distributed System Security Symposium, 2013.

[216] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer

networks. In Proceedings of the 6th ACM SIGCOMM Conference on

Internet Measurement, 2006.

[217] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly,

Linus Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scalable

bias-resistant distributed randomness. IACR Cryptology ePrint Archive,

2016.

[218] Jeff Terrace, Harold Laidlaw, Hao Eric Liu, Sean Stern, and Michael J

Freedman. Bringing P2P to the Web: Security and Privacy in the Fireco-

199

ral Network. In Proceedings of the 8th International Workshop on Peer-

to-Peer Systems, 2009.

[219] Carmela Troncoso, Benedikt Gierlichs, Bart Preneel, and Ingrid Ver-

bauwhede. Perfect matching disclosure attacks. Lecture Notes in Com-

puter Science, 2008.

[220] Vinod Vaikuntanathan. Randomized algorithms for reliable broadcast.

PhD thesis, 2009.

[221] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani,

Lau Cheuk Lung, and Paulo Verissimo. Efficient byzantine fault-

tolerance. IEEE Transactions on Computers, 2013.

[222] Long Vu, Indranil Gupta, Klara Nahrstedt, and Jin Liang. Understanding

overlay characteristics of a large-scale peer-to-peer IPTV system. ACM

Transactions on Multimedia Computing, Communications, and Applica-

tions, 2010.

[223] Tao Wang, Kevin Bauer, Clara Forero, and Ian Goldberg. Congestion-

aware path selection for tor. In Proceedings of the 16th International

Conference on Financial Cryptography and Data Security. 2012.

[224] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Gold-

berg. Effective attacks and provable defenses for website fingerprinting.

In Proceedings of the 23rd USENIX Security Symposium, 2014.

[225] Tao Wang and Ian Goldberg. Improved website fingerprinting on tor.

In Proceedings of the 12th ACM Workshop on Privacy in the Electronic

Society, 2013.

[226] Gilbert Wondracek, Thorsten Holz, Engin Kirda, and Christopher

Kruegel. A practical attack to de-anonymize social network users. In

Proceedings of the 31st IEEE Symposium on Security and Privacy, 2010.

200

[227] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel

attacks: Deterministic side channels for untrusted operating systems. In

Proceedings of the 36th IEEE Symposium on Security and Privacy, 2015.

[228] Hao Yin, Xuening Liu, Tongyu Zhan, Vyas Sekar, Feng Qiu, Chuang Lin,

Hui Zhang, and Bo Li. Design and deployment of a hybrid CDN-P2P sys-

tem for live video streaming: experiences with LiveSky. In Proceedings

of the 17th ACM International Conference on Multimedia, 2009.

[229] Haifeng Yu, Chenwei Shi, Michael Kaminsky, Phillip B Gibbons, and

Feng Xiao. Dsybil: Optimal sybil-resistance for recommendation sys-

tems. In Proceedings of the 30th IEEE Symposium on Security and Pri-

vacy, 2009.

[230] Jia Zhang, Haixin Duan, Wu Liu, and Jianping Wu. Anonymity analysis

of P2P anonymous communication systems. Computer Communications,

2011.

[231] Liang Zhang, Fangfei Zhou, Alan Mislove, and Ravi Sundaram. Maygh:

Building a CDN from client web browsers. In Proceedings of the 8th

ACM European Conference on Computer Systems, 2013.

[232] Mingchen Zhao, Paarijaat Aditya, Ang Chen, Yin Lin, Andreas Hae-

berlen, Peter Druschel, Bruce Maggs, Bill Wishon, and Miroslav Ponec.

Peer-assisted content distribution in Akamai netsession. In Proceedings

of the 13th ACM SIGCOMM Conference on Internet Measurement, 2013.

201

	SUMMARY
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Thesis Overview
	1.1.1 APAC: An Anonymous Peer-assisted CDN
	1.1.2 OblivP2P: An Oblivious P2P Content Sharing System
	1.1.3 Robust Synchronous P2P Primitives Using SGX Enclaves

	2 Background
	2.1 Web Overlays
	2.2 Related Work
	2.2.1 Anonymous Communication Systems Against Partial Adversaries
	2.2.2 Long-term Traffic Analysis of Global Adversaries
	2.2.3 Robust P2P Primitives Against Byzantine Adversaries

	3 Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation
	3.1 Introduction
	3.2 Motivation & Problem Statement
	3.2.1 Inference Attacks & Real-world Examples
	3.2.2 Problem Statement

	3.3 Anonymous Peer-assisted CDN
	3.3.1 Design of APAC
	3.3.2 Circuit Construction
	3.3.3 Parameters Selection
	3.3.4 Anonymity Analysis
	3.3.4.1 Analysis of Initiator Anonymity
	3.3.4.2 Analysis of Responder Anonymity

	3.4 Implementation of APAC
	3.4.1 Components in APAC
	3.4.2 Content Delivery in APAC

	3.5 Performance Evaluation
	3.5.1 Measurement Setup
	3.5.2 Bandwidth Saving
	3.5.3 Network Latency
	3.5.4 Performance under Churn
	3.5.5 Load on Peers

	3.6 Security Analysis
	3.6.1 Degree of Initiator/Responder Anonymity in APAC
	3.6.2 Degree of Anonymity in Current Peer-assisted CDNs
	3.6.3 Analysis of Churn in APAC

	3.7 Related Work
	3.7.1 Security & Privacy in Peer-assisted CDNs
	3.7.2 Anonymous Communication Systems

	3.8 Summary

	4 OblivP2P: An Oblivious Peer-to-Peer Content Sharing System
	4.1 Introduction
	4.1.1 Approach
	4.1.2 System and Results

	4.2 Problem
	4.2.1 BitTorrent: A P2P Protocol
	4.2.2 Threat Model
	4.2.3 Insufficiency of Existing Approaches
	4.2.4 Problem Statement

	4.3 Our Approach
	4.3.1 Background: Tree-Based ORAM
	4.3.2 Mapping an ORAM to a P2P setting
	4.3.3 OblivP2P-0 : Centralized Protocol
	4.3.4 OblivP2P-0 Analysis

	4.4 OblivP2P-1: Distributed Protocol
	4.4.1 Challenges
	4.4.2 Oblivious Selection
	4.4.2.1 Definitions
	4.4.2.2 OblivSel Overview
	4.4.2.3 Base Primitives
	4.4.2.4 OblivSel Instantiation

	4.4.3 OblivP2P-1: Complete Design
	4.4.4 Optimization: Handling Bursts

	4.5 Implementation and Evaluation
	4.5.1 Linear Scalability with Peers
	4.5.2 Latency Overhead and Breakdown
	4.5.3 Optimization Measurements

	4.6 OblivP2P-1 Analysis
	4.6.1 Performance
	4.6.2 Security Analysis

	4.7 Discussion
	4.8 Related Work
	4.9 Summary

	5 Robust Synchronous P2P Primitives Using SGX Enclaves
	5.1 Introduction
	5.2 Problem
	5.2.1 Problem Definition
	5.2.2 Attacker Model
	5.2.3 Strawman Solution & Attacks

	5.3 Solution Overview
	5.3.1 SGX Features and Security Properties
	5.3.2 Overview of Our Results

	5.4 Enclaved Reliable Broadcast Protocol
	5.4.1 Preliminaries
	5.4.2 ERB details
	5.4.3 Analysis

	5.5 Enclaved Random Number Generation
	5.5.1 Unoptimized ERNG
	5.5.2 Optimized ERNG
	5.5.3 Analysis

	5.6 Evaluation
	5.6.1 ERB Evaluation
	5.6.2 ERNG Evaluation
	5.6.3 Byzantine case

	5.7 Primitives and Formal Definitions
	5.7.1 Peer Channel
	5.7.2 Failure Modes
	5.7.3 Core Primitives
	5.7.4 Implementing Blinded Channel using SGX

	5.8 Rethinking Reliable Broadcast Protocols
	5.8.1 Digital Signature Schemes
	5.8.2 Early Stopping Schemes

	5.9 Security Analysis
	5.9.1 ERB Analysis
	5.9.2 P2P Sanitization & Analysis
	5.9.3 Unoptimized ERNG Analysis
	5.9.4 Optimized ERNG

	5.10 Discussions
	5.10.1 Are Assumptions Reasonable?
	5.10.2 Applications

	5.11 Related Work
	5.12 Summary

	6 Conclusion

