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Abstract

This thesis focuses on gauge fields and geometric phases in periodic systems.

The simulation of Aharonov-Bohm effect is discussed in real space with op-

tical lattice. The artificial gauge fields provide convenience in simulating the

dynamics of charged particles in magnetic field with neutral atoms. In con-

densed matter physics, the topological invariants can characterize topological

properties of the systems, e.g., Chern number in quantum Hall effect. The

geometric phase in one-dimensional optical lattices is employed to study topo-

logical phase transitions. In addition, the geometric phase in spin-1/2 chains

is quite interesting not only in the gapped phase, but also in the regime close

to phase transition. We use geometric phases to characterize the critical and

noncritical properties in generalized spin-1/2 chain with multispin interac-

tions. Moreover, the topological phases are explored via edge states.
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Chapter 1

Introduction

Quantum computation and quantum information processing are two strong drivers that

have pushed for the explorations into quantum physics for the last 20 years. This is

enhanced and supported by the concomitant rapid development in material processing

and electronic circuits. We start with a simple two-level system, i.e., the qubit and explore

the properties by coupling it different quantum devices. Luckily, theories in quantum

optics have provided many practical solutions and means to bridge our understanding and

foray into quantum computing. The fast developments in coherent control of quantum

systems has also led to quantum simulating, or simulation of quantum systems. Quantum

simulation has since received considerable attention from people working not only in

physics, but also in chemistry and biology.

Ultracold atoms in optical lattice have provided a wonderful platform for testing the

possibilities of quantum simulation. Many effects, such as lattice gauge theories [1], rela-

tivistic quantum field theories [2, 3], classical magnetism [4], and so on, can be simulated

in cold atom experiments. In atomic physics, there exist well-established fabrication

techniques for trapping atoms in optical lattice and these optical lattices offer a number

of promising properties. The fast development in ultracold atoms benefits tremendously

from this controllability. For example, the interaction strength in atom gases can be

tuned through Feshbach resonances. The collision properties of atom gases can also be

controlled from the preparation of Bose-Einstein condensate (BEC) and degenerate Fermi

gases in experiments. Moreover, it is possible to engineer different geometries and dimen-

sions in optical lattice. Such engineering feat can also help to facilitate the exploration

of many-body phenomena in higher dimensions. The measurement of quantum effects in

atom gases can also be probed optically.

A lot of studies has concentrated on the quantum phase transition between Mott-
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insulator and superfluid regimes [5]. The introduction of artificial gauge fields in optical

lattices has also provided a fruitful ground for studying novel quantum phases with broken

time-reversal symmetry [6, 7] in condensed matter systems. Indeed, the studying of

artificial gauge field has attracted much attention with novel and modern applications in

quantum simulation, especially those effects related to topological models. In fact, using

the interactions between lights and atoms, there have been many theoretical proposals

and experiments to realize spin-orbit couplings as well as the observation of quantum

anomalous spin Hall effects [8, 9, 10]. Very recently, some progresses have been made

towards the implementation of Thouless pumping with both bosons and fermions in

optical lattices [11, 12, 13, 14].

Laser-atom coupling are well-suited for generating artificial gauge fields in an optical

lattice. For example, a two-level atom moves on a 1D state-dependent optical lattice with

the energy minima for g and e in the odd and even sites [6]. The laser beams can drive

the transitions between g and e via laser-atom coupling. Because of the state-dependent

potential, atoms with different states move to different sites and induce laser-assisted

hopping between the odd and even sub-sites. To select the hopping direction, one shifts

the optical lattice by applying an electric field. In addition to the laser-assisted tunneling,

the adiabatic evolution can also be utilized to generate artificial gauge fields. A first step is

to introduce the position dependent parameters to the Hamiltonian. This can be achieved

by considering the phase and the intensity of the laser beam. In the experiments, the

phase and intensity can be easily tuned by the lasers. Thus, the interaction between

laser and atom is spatially dependent. The eigenstates of the interaction which is a

linear combinations of g and e are also position-dependent. Without any degeneracy in

the system, and assuming adiabatical condition, the geometric phase of spatially varying

Hamiltonian is created.

Quantum spin Hall(QSH) effect was proposed theoretically and realized experimen-

tally in HgTe/CdTe quantum wells [15, 16, 17]. The discovery of the QSH effect as well

as the development in topological insulators and topological superconductors changes our

knowledge to condensed matter physics. Although great success in exploring topological

states in electronic gases, there are still some challenges, e.g., observation of Hofstadter

buttery. The simulation of magnetic fields provides another way to perform such exper-

iments in other quantum systems. In fact, inspired by the discovery of quantum Hall

physics and topological insulators, experimentalists have already succeeded in realizing

topological phases in optical lattice and spin-orbit coupling. Some aspects of topological

phases with cold atoms have been discussed in the recent reviews [18].

2



The topological models in 1D are quite interesting. Zak made a pioneering contri-

bution in this field. He has shown that one can realize Berry’s phase by varying the

crystal momentum through the entire Brillouin zone [19]. This topological invariant in

1D has similar role of Chern number in 2D periodic lattices. Both of them are related to

physical observables in the systems. In 1D lattice, Zak phase is connected to the charge

center or polarization [20, 21, 22]. The direct measurement of the Zak phase in optical

lattices is easy to achieve, combining coherent Bloch oscillations with Ramsey interfer-

ometry. The topological charge pumping in optical lattice [12, 14] and quasicrystals [23]

has been performed. This opens the door to novel applications in quantum transport by

analogy to electron systems. There are developments, both theoretical and experimen-

tal, towards realizing the Zak phase and topological charge pumping in optical lattice

starting from simple superlattice to lattice with complex internal structure in the unit

cell. Other periodic systems with inversion symmetry, including waveguide array [24], 1D

photonic crystals [25, 26] and acoustic system [27], have been realized experimentally. It

is also found that the Zak phase can be related to the mean displacement of a particle

which initially localizes on one of the nondecaying sites in the lattice with inversion sym-

metry [28]. This reveals the relation between topological invariant and quantum walk

[29, 30, 31, 32, 33].

A second route to physics beyond topological phase transition is to explore phases

with temperature and dissipations. A mixed-state version of geometric phase, related to

Uhlmann’s phase, built with parallel transport principle, is also a very interesting field

[34, 35]. Recent work by some groups has highlighted the interesting implications of

temperature and dissipations [36, 37, 38, 39]. These investigations promote the topo-

logical quantum phase transition to a mixed states topological phase transition. Indeed,

the realization of topological models in the systems with dissipation gives a chance to

explore the dissipation induced topological phase transition [40]. However, there are sev-

eral definitions on mixed-state geometric phase [41, 42, 43]. For example, the expression

in Ref. [41] bases on interferometry with proper parallel transport condition. In simple

quantum systems, the geometric phase of mixed state is observed in spin half nucleus

through NMR interferometry [44]. And the geometric phase of the system coupled to an

environments near a quantum phase transition is also measured [45]. Recently, the pro-

posal to observe topological Uhlmann phase in superconducting circuits is suggested [46].

Another question is the physical meaning of mixed-state geometric phase. The Berry’s

phase in periodic systems is found to be related to palorization in crystalline solids [21].

In addition to topological models(such as Rice-Mele and SSH models) for free parti-

3



cles, one can find topological invariants in 1/2-spin chains [47]. Spin-1/2 Ising and XY

models in a transverse field are usually used for investigating quantum phase transitions.

Such spin chain can also be simulated, e.g., with optical lattice [48, 49], circuit QED [50].

The spin chain is exactly solvable by mapping the spin operators to free fermionic oper-

ators [51]. Due to this property, the spin chain is helpful to investigate nonequilibrium

dynamics [52, 53, 54]. In the periodic systems, the crystal momentum space is usually

the parameter space and the geometric phase is defined there. However, Carollo and

Pachos introduced a rotation of spins around the z direction [55]. This spin rotation can

construct a circle in the Bloch sphere for the ground state. In 1/2-spin chain, the ground

states are degenerated. For systems with degenerate states, the geometric phase can not

be defined (for Abelian case). Luckily, one of the degenerated ground states is trivial and

no geometric phase acquired when the system varies. The geometric phase by means of

spin rotations is related to average polarization along z direction.

This thesis mainly discusses the implications of geometric phase in producing artificial

gauge fields and characterizing quantum phase transitions. Depending on the parameter

spaces, geometric phase can be quantized or continuously varied between different phases.

Some studies on the edge modes and nonequilibrium dynamics are also included.

1.1 Organization of the Thesis

Starting with a brief introduction of gauge fields in Chapter 2, we discuss how gauge

fields can be generated in simple quantum systems [56, 57] and how it is feasible experi-

mentally by means of atom-laser interaction [58]. Geometric phase is intrinsically related

to Aharonov-Bohm effect [59]. Artificial gauge field in cold atom system is a concept

that bridges between them. Depending the proposals, one can create phase factors via

adiabatically or non-adiabatically manipulating the systems. In the first chapter, the

adiabatic case is illustrated, based on a nice review in Ref. [60].

In addition to the adiabatic approach, there are many dynamical ways to generate

artificial gauge fields. Jaksch and Zoller [6, 7] studied the possibility of realizing such

artificial gauge fields in optical lattice in one dimensional lattice through laser-induced

hopping. For discrete sites, the hopping is complex because of the laser-assisted hopping.

To control the hopping directions of cold atoms in the lattice, they propose to use different

potentials for ground and excited states. Moreover, shifting of the lattice in spatial

positions is performed through the application of an acceleration of the optical or electric

field. In Chapter 2, we consider the generation of artificial gauge fields in ring and square
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optical lattices [61]. By using the angular momentum of Laguerre-Gauss laser modes, the

artificial gauge field can be generated at cold atoms circulating the lattice. We also show

that Abelian and non-Abelian gauge fields can be obtained and distinguished from the

interference patterns.

It is also found that Berry’s phase naturally appears in periodic lattice. The reciprocal

space is the parameter space where Berry’s phase can be calculated. It is noted by Zak

that Berry’s phase in one dimensional lattice with inversion symmetry is quantized [19].

Such quantized Berry’s phase is also known for Zak phase. In Chapter 3, we discuss

Zak phase in one-dimensional optical lattice with many subsites. We concentrate on the

three-band and four-band models.

For a 1/2-spin chain, it is proposed that rotation operations of spins in a closed loop

result in a geometric phase [55]. Zhu subsequently gives a finite-size scaling analysis

of the critical regime in XY model and shows universal behaviors [62]. In Chapter 4,

we investigate the generalized spin chain with multispin interactions. The finite-size

scaling is used to study the quantum criticality. We also consider a topological way to

characterize the system by using winding number [47, 63]. The competing effect between

the interactions leads to complex phases which can be labelled with winding numbers.

In topological systems, there are edge modes when the system has open boundaries.

These edge modes are localized at the ends of lattice. A famous example of edge modes

is the Majorana fermions in the Kitaev model [64]. In the Chapter 5, we consider a

quenched proposal to study the long-time steady state of the system. The steady state

can be captured by diagonal ensemble [65, 54]. We study the probability distribution and

the fidelity of the quenched Aubry-André-Harper model.

With the development of topological materials, many systems can be constructed to

observe topological effects. In Chapter 6, we consider the circuit-QED system to simulate

Chern insulators by manipulating the couplings between neighboring resonators. The

topological invariant can be inferred from the scattering coefficient.
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Chapter 2

Artificial Gauge Fields with Cold

Atoms

2.1 Vector Potential

The nineteenth century is a critical era for the development of physics. Faraday’s elec-

tromagnetic induction opens the door for physicists to explore fundamental properties

of electronic and magnetic fields. Maxwell’s mathematical formulation provides a the-

oretical foundation for the experimental phenomena. As Einstein noted, “The escape

from this unsatisfactory situation by the electric field theory of Faraday and Maxwell

represents probably the most profound transformation of the foundations of physics since

Newton’s time.” Even with the great success of Maxwell’s formulae, there are still debates

on some of the subtle aspects of the electromagnetic field theory. The most intriguing one

is the vector potential [66]. For the first half of twentieth century, most of the textbooks

regard the vector potential as mathematical gimmick for the calculation of the magnetic

field without any physical meaning whatsoever. The physics behind the magnetic vector

potential was only given a firm foundation by Aharonov and Bohm in 1959.

After Einstein’s formulation of special and general relativity, there was an attempt

to extend the electromagnetic field to gravitational theory. The first development in

this direction was proposed by Hermann Weyl, who was intrigued by the idea of parallel

transport of a vector in Riemannian geometry. He posed the question that if the parallel

transport of a vector after going around a closed loop in space-time does not return

to its original direction, the same could happen for its length. His ultimate purpose

was to incorporate electromagnetic field to gravitation field. However, this idea was not

successful. If it was true, as Einstein said, “the length of a common ruler would depend
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on its history”. After the birth of quantum mechanics, Weyl reconsidered the problem

by including square root of -1. As a result, the gauge transformation gives rise a phase.

Therefore, the gauge invariance is actually “phase invariance” and the gauge field should

be called “phase field” [67]. In other words, Weyl’s theory is a theory of electromagnetism

in quantum mechanics. The gauge theory gives a structure that captures both gravitation

and electromagnetic field. If one reconsider Einstein’s question, a further curiosity may

arise: is the phase measurable? The answer is affirmative [68]. This is nowadays known

as the Aharonov-Bohm (AB) effect.

Charged particles in a magnetic field can produce interesting physics. For example,

in 2D electronic gases, quantum Hall effect is realized by applying magnetic field. The

Lagrangian for a charged particle of mass m charge q moving in an eletromagnetic field

is

L =
1

2
m(

dr

dt
)2 + q(A

dr

dt
−W ), (2.1)

where dr/dt is velocity. A and W are vector potential (gauge field) and scalar potential,

respectively. Using the standard result of electromagnetic theory, one can always find a

scalar potential W and gauge field A, functions of r and t such that

B = ∇×A ,

E = −W − ∂A

∂t
. (2.2)

The equation of motion becomes

mr̈ = q(E + v ×B). (2.3)

The fields E and B are invariant under gauge tranformations

W → W ′ = W − ∂χ

∂t
, (2.4)

A→ A′ = A+ ∇χ . (2.5)

The equation of motion Eq. (2.3) is gauge invariant. The Hamiltonian is

H = pv − L, (2.6)

with canonical momentum

p =
∂L
∂ṙ

= mṙ + qA . (2.7)
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So

H =
(p− qA)2

2m
+ qW. (2.8)

In quantum mechanics, the Schrödinger equation describing charged particle in elec-

tromagnetic field is

i~
∂ψ(r, t)

∂t
=

1

2m
(−i~∇− qA(r))2ψ(r, t). (2.9)

One can make a gauge transformation to the wavefunction, i.e., ψ → ψ′

ψ′ = Uψ = eiqχ(r,t)/~ψ, (2.10)

and the vector potential A(r) → A′(r) = A(r) + ∇χ(r). These two wavefunctions are

both eigenfunctions of the system under the gauge transformation.

To see the topological properties of the system, one can solve the Schrödinger equation,

which is
(p− qA)2

2m
ψ = Eψ. (2.11)

The solution of above equation is ψ = e
iq
~
∫
A·dlψ0. ψ0 is the wavefunction for free particle.

Now, ψ′ and ψ is not related by gauge transformation, because the phase factor is path

integral dependent. This phase factor is sometimes called the Dirac nonintegrable phase

factor. It is however the reason for AB effect.

2.2 Aharonov-Bohm Effect

The study of many electromagnetic effects involves the interplay of electric and magnetic

fields (Fµν). The vector potential A and the scalar potential W = A0 were not given

much attention prior to the discovery of AB effect. In quantum mechanics, Fµν alone

are not enough to describe the physics and Aµ = (A, A0) are often needed to invoke the

main physics. One such example is the Aharonov-Bohm effect.

In 1959, Aharonov and Bohm proposed an experimental setup to verify the existence

of gauge field [59]. For simplicity, we assume that the solenoid is infinitesimally small

and the flux in the solenoid is Φ. We can choose

A(r) = (− yΦ

2πr2
,
xΦ

2πr2
, 0), A0 = 0, (2.12)

such that ∇×A = 0 and
∫

(∇×A) · dS = Φ. Even though the flux is zero outside the
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electrons

screen

B

Figure 2.1: Aharonov-Bohm effect for electrons.

solenoid, the vector potential is not zero. In classical mechanics, the dynamics of charged

particles does not make difference in the region of vanishing B field.

The electrons going through the region accumulate phases depending on their paths.

As shown in Fig. 2.1 there are two paths P1 and P2 for electrons to reach the screen.

Their wavefunctions are ψ1(r1) and ψ2(r2), respectively. Therefore, the wavefunction at

the screen is

ψ ∼ ψ1(r1) + ψ2(r2) = e
iq
~
∫
P1

A·dl
ψ0

1 + e
iq
~
∫
P2

A·dl
ψ0

2

= e
iq
~
∫
P1

A·dl
(ψ0

1 + ei2παψ0
2), (2.13)

where ψ0
1 and ψ0

2 represent the wavefunctions of electrons free from the flux in the solenoid.

2πα is the phase difference between the two paths which is related to the flux in the

solenoid. We can calculate the probability for electrons arriving at the screen

|ψ|2 = |ψ0
1|2 + |ψ0

2|2 + (ψ0
1)∗ψ0

2e
i2πα + ψ0

1(ψ0
2)∗e−i2πα. (2.14)

The intensity of the electrons is affected by the relative phase between electrons from two

paths. And the interference pattern can reveal the phase difference.

2.3 Artificial Gauge Fields

There are numerous effects and phenomena in other fields of physics which are related

to magnetic field. In condensed matter physics, the famous examples are quantum Hall

9



effects, topological insulators, superconductors and semimetal [69, 70]. However, these

effects can only be achieved with charged particles, like electrons. Recent developments

in quantum computation and quantum optics have led to some advancement in the study

of neutral particles such as neutral atoms, photons. As a toolbox for quantum simula-

tion, cold atoms are required to possess effective magnetic fields to simulate dynamics

of charged particles. In the seminal paper by Wilczek and Zee [57], they point out that

“gauge fields appear in a very natural way in ordinary quantum mechanical problems,

whose initial formulation has no apparent relationship to gauge fields”. In their paper,

even simple atomic systems can exhibit gauge structure.

One of the main purposes of generating artificial gauge fields is to investigate the

quantum Hall effects in neutral particles. Due to the charge neutrality, an external

magnetic field cannot be used to achieve breaking of time reversal symmetry. The effective

magnetic field has to be synthesized. In 1996, inspired by Berry’s phase which is produced

from parameter-dependent adiabatic evolution, R. Dum and M. Olshanii suggested a

method using atom-laser interaction to create the gauge field [58]. The internal states

of atoms make it possible to realize artificial gauge field. The close analogy with the

AB effect implies that appropriate controlled position-dependent Hamiltonian for neutral

particle can simulate gauge field and magnetic field. Since then a lot of proposals have

been suggested [6, 7, 71]. The simplest setup is a two-level atom. For two-electron atoms,

such as ytterbium and alkaline-earth atoms, the long-lived two-level state exists and the

spontaneous emission processes can be ignored. The position-dependent Hamiltonian can

be created from the spatial variation of the Raman coupling and a position-dependent

laser-atom detuning. In the following, we are going to show how the artificial gauge field

can be yielded. For detailed illustration, several review articles are suggested [60, 72, 73].

2.3.1 Adiabatic Evolution Approach

In 1984, Michael Berry found that if a quantum state evolves adiabatically along a path,

then a phase can develop [56]. This phase is robust and does not rely on local property

but on the global structure of evolution path. Later, people realize that this geometric

robustness could be applied to the quantum logic gates. Such quantum gates can be

protected from quantum errors coming from unknown environment noises. Therefore,

it is a promising scheme to realize quantum computation [74, 75, 76]. In addition to

the overall phase factor of an evolution process, one can find the instantaneous “gauge

field” in the dynamics of the adiabatically evolved quantum system. Indeed, in some
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textbooks, Berry’s phase is interpreted as the “flux” of “magnetic field” and is connected

to the vector potential in the Schrödinger equation [77].

2.3.1.1 Abelian Artificial Gauge Fields

We first discuss the generic way to produce Abelian gauge fields. The laser-driven atom

can be a setup to generate artificial gauge field [58]. We confine ourself to the single par-

ticle case in order to understand the basic idea without bothering about the interactions

between atoms. There are two types of degree-of-freedom in the laser-driven atom. One

is the motion of atom which can be characterized by position operator r̂ and momentum

operator p̂ = −i~∇r. The second one is the internal state space. The internal quantum

states can be coupled to electromagnetic fields via dipole interaction. For simplicity,

we consider a two-level system as shown in Fig. 3.19(a). The atom is illuminated by

a single frequency laser with detuning ∆ between their frequencies. The corresponding

Hamiltonian describing the laser-atom interaction can be expressed as

H2l =
~
2

(
∆ Ω∗

Ω −∆

)
, (2.15)

where Ω is the Rabi frequency and ∆ is the detuning between atom and laser frequencies.

After defining the parameters ε =
√

∆2 + |Ω|2, cosϑ = ∆/ε, sinϑ = |Ω|/ε, Ω = |Ω|e−iτ ,
we get the Hamiltonian

H2l =
~ε
2

(
cosϑ eiτ sinϑ

e−iτ sinϑ − cosϑ

)
. (2.16)

The total Hamiltonian is

Htot =

(
p̂2

2m
+ V

)
Î +H2l, (2.17)

where V is the potential for atom. Î is the identity operator in the internal state space.

We assume that the potential V acts on the particle in such a way that it is independent

of its internal state. In Fig. 3.19(b) the state evolution is represented by the path on the

Bloch sphere. The dynamics of the system can be mapped to points on the sphere. The

eigenstates of internal Hamiltonian Eq. (2.16) is written as |χ1〉 and |χ2〉, which are

|χ1〉 =

(
−eiτ sin ϑ

2

cos ϑ
2

)
, (2.18)
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Figure 2.2: Energy level with atom-laser interaction (a) and Bloch sphere (b) for the two
level system.

|χ2〉 =

(
cos ϑ

2

e−iτ sin ϑ
2

)
, (2.19)

corresponding to ground and excited states with eigenenergies −~ε
2

and ~ε
2

, respectively.

One can have the wavefunction of the system in terms of this adiabatic basis

|Ψ(r, t)〉 =
∑
j=1,2

ψj(r, t)|χj(r)〉, (2.20)

where ψj(r, t) is the wave function for the center-of-mass motion of the atom in the

internal state |χj(r)〉. We assume that the internal states are robust to the velocity

of the particle, which means that the system remains in the eigenstates. Acting the

momentum operator on the state Eq. (2.20) leads to

p̂|Ψ〉 =
2∑

j,l=1

[(δj,lp̂−Ajl)ψl] |χj〉, (2.21)

with the artificial gauge field Ajl(r) = i~〈χj|∇|χl〉. So A12(r) is actually the connection

between |χ1〉 and |χ2〉. To see how the artificial gauge field can be produced from the

laser driving, we assume that the internal state is in the ground state, i.e., ψ2 = 0.

p̂|Ψ〉 = (p̂−A11)ψ1|χ1〉 −A21ψ1|χ2〉. (2.22)
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By projecting to the |χ1〉, we arrive at an effective Hamiltonian

Heff =
(p̂−A11)2

2m
+W + V − ~ε

2
, (2.23)

with A11 = i~〈χ1|∇|χ1〉 = ~
2
(1 − cosϑ)∇τ and scalar potential W = ~2

2m
|〈χ2|∇|χ1〉|2.

The scalar potential can be regarded as the kinetic energy with atomic micro-motion

created by quantum fluctuations of the radiative force [78]. The state-dependent scalar

potential is not very interesting because one can use other ways, such as Stark shift, to

create such potential. However, the artificial gauge field is quite nontrivial because it

simulates the effective magnetic field for neutral atoms. The effective magnetic field for

the ground state |χ1〉 is

B = ∇×A11 = −~
2
∇(cosϑ)×∇τ. (2.24)

ϑ is related to both magnitude of Rabi frequency and detuning. τ is the phase of Rabi

frequency. They are usually space-dependent quantities. By manipulating ϑ and τ , it is

possible to obtain the effective magnetic field. This is the illustration for artificial gauge

field with two-level atom. It requires the atom in the adiabatic eigenstate. For the Λ-type

atom, as shown in Fig. 2.3(a), one can realize the effective two-level system with large

detuning. Such three-level system can be described as

HΛ = ~(ω1−ω2)|g2〉〈g2|+~ω1|e〉〈e|+(
~
2

Ω1e
−iωL1t|e〉〈g1|+

~
2

Ω2e
−iωL2t|e〉〈g2|+h.c.). (2.25)

After making a rotating frame transformation with

U =


δ1−δ2

2
0 0

0 ω1 − ω2 − δ1−δ2
2

0

0 0 ω1 − δ1+δ2
2

 , (2.26)

the Hamiltonian can be changed as

Hrot = UH3lU
† − i~U ∂

∂t
U †

= ~

 −
δ1−δ2

2
0

Ω∗1
2

0 δ1−δ2
2

Ω∗2
2

Ω1

2
Ω2

2
δ1+δ2

2

 , (2.27)
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Figure 2.3: The atom-laser interaction with (a) Λ-type and (b) M-type schemes.

with δ1 = ω1 − ωL1 and δ2 = ω2 − ωL2. If the detuning of the excited state |e〉 is quite

large such that |δ1+δ2|
2
� |δ1−δ2|

2
, |Ω1|

2
, |Ω2|

2
, the dynamics of the excited state |e〉 can be

ignored. Therefore, one can get the effective Hamiltonian for the lowest two states

H
(eff)
Λ = −~

(
δ1−δ2

2
+ |Ω1|2

2(δ1+δ2)

Ω∗1Ω2

2(δ1+δ2)
Ω1Ω∗2

2(δ1+δ2)
− δ1−δ2

2
+ |Ω2|2

2(δ1+δ2)

)
. (2.28)

The effective two-level system is similar to Eq. (2.15) with effective Rabi frequency in

the off-diagonal part of Eq. (2.28). The effective Rabi frequency between the two ground

states |g1〉 and |g2〉 is generated from the two-photon process. Recently, the experiments

based on M-type scheme (see Fig. 2.3(b)) have been realized [79, 80]. A 87Rb BEC is

trapped in the F = 1 ground state with two Raman laser beams with momenta k1 and

k2. The energy levels are shifted by applying a magnetic field. As a result, the levels

|mF = ±1〉 are displaced with respect to |mF = 0〉 and the two laser beams couple

three states with detunings ±δ. From above discussion for Λ-type levels, one can get the

effective Hamiltonian for the M-type system

HM =
~
2

 −2δ Ω̃∗ 0

Ω̃ 0 Ω̃∗

0 Ω̃ 2δ

 , (2.29)
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Figure 2.4: (a) Atom-laser interaction for tripod levels and (b) the corresponding
eigenenergies.

with Ω̃ = |Ω̃|e−iτ̃ and τ̃ = (k1 − k2)r. The ground state is

|χg〉 = eiτ̃ cos2 ϑ

2
| − 1〉 − sinϑ√

2
|0〉+ e−iτ̃ sin2 ϑ

2
|+ 1〉, (2.30)

where ϑ = arctan
˜|Ω|√
2δ

. The artificial gauge field is A = i~〈χg|∇|χg〉 = −~(k1−k2) cosϑ.

Therefore, the two-photon process with non-zero momentum exchange yields the artificial

gauge field.

2.3.1.2 Non-Abelian Gauge Fields

We have analyzed the artificial gauge field for the ground eigenstate. This belongs to the

Abelian case. If more eigenstates are considered, one can have different artificial gauge

fields and effective magnetic fields. They can be used to simulate spin Hall effect [81] and

pseudospin-dependent Stern-Gerlach effects [82].

Following the adiabatic approach, one can employ a degenerate multiple-level struc-

ture [57, 83] to create non-Abelian gauge fields. An example with degenerate eigenstates

is shown in Fig. 2.4. (a) is the tripod level with three degenerate ground states. They

are coupled to the excited state. With such atom-laser interaction, there exist degen-

erate eigenstates which are separated from other states, as shown in Fig. 2.4(b). It is

realized by Wilczek and Zee that such degenerate eigenstates generalize Berry’s phase

from Abelian to non-Abelian [57]. And the non-Abelian gauge fields can be simulated in

such degenerate systems. Here, we consider a general situation with multiple degenerate

eigenstates.
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And the full quantum state can be written as |Ψ̃(r, t)〉 =
∑N

j=1 ψ̃j(r, t)|χ̃j(r)〉. We as-

sume that there are q degenerate eigenstates, i.e., {|χ̃1(r)〉, |χ̃2(r)〉, . . . , |χ̃q(r)〉}. Similar

to the effective Hamiltonian for one eigenstate (see Eq. (2.23)), the effective Hamiltonian

for q degenerate eigenstates is

HNA =
(p̂− Ã)2

2m
+ W̃ + V Îq + ε, (2.31)

where Îq is the identity operator in the space of q degenerate eigenstates. ε is a diagonal

matrix of eigenenergies εj(j = 1, ..., q). Ã and W̃ are q × q matrices with elements

Ãi,j = i~〈χ̃i|∇χ̃j〉,

W̃i,j =
1

2m

N∑
l=q+1

Ãi,l · Ãl,j

=
~2

2m
(〈∇χ̃i|∇χ̃j〉+

q∑
k=1

〈χ̃i|∇χ̃k〉〈χ̃k|∇χ̃j〉), (2.32)

with i, j ∈ {1, ..., q}. Here, we use ∇|χ̃〉 = |∇χ̃〉. The effective magnetic field B can be

expressed as Bi = 1
2
εiklFkl with

Fkl = ∂kÃl − ∂lÃk −
i

~
[Ãk, Ãl]. (2.33)

The term 1
2
εikl[Ãk, Ãl] is not necessary vanishing, for the vector components of Ã do

not commute in general. Therefore, when degenerate eigenstates appear in the system,

effective non-Abelian artificial gauge fields and magnetic fields can be created.

2.3.2 Laser-Assisted Tunneling in Optical Lattice

In the last twenty years or so, cold atoms in optical lattices have made tremendous

progress. The periodicity of optical lattices makes it possible to study physical models

originally developed in condensed matter physics. For example, in the pioneering work

of D. Jaksch et al., the Bose-Hubbard model which exhibits a quantum phase transition

between superfluid and Mott insulator is suggested [5]. This work has motivated much

progress in the techniques in optical lattice. Thanks to the flexibility in the control with

some parameters such as lattice depth and spacing, the optical lattice can be tuned or

switched off at will during the experiment. Further more, the optical potentials can be

adjusted, modifying the geometry and dimensionality of the lattice, and forming patterns
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such as triangular lattice [84] and Kagome lattice [85]. These advantages make it a

promising experimental platform to mimick solid-state systems.

Another development in recent years is the quantum Hall effect in solid state physics.

The intrinsic symmetries, like time reversal symmetry, particle-hole symmetry and chiral

symmetry, have given rise to systems exhibiting topological properties. To simulate

quantum Hall physics with neutral atoms in optical lattice, the first step is to generate

artificial magnetic field. The artificial gauge field can be produced by laser-induced

complex hopping parameters in optical lattice [86, 87, 88, 6, 3, 71].

In an optical lattice, the tunnelling of cold atoms between two neighbor sites is de-

termined by the overlap between two wavefunctions. In a deep potential well, because

of the negligible overlap between them, tunnleing is unlikely. As the potential decreases,

the kinetic energy makes it possible to tunnel to neighbor sites. To effectively describe

the system, a tight-binding approximation is usually assumed. The dynamics of ultracold

dilute gas of bosonic atoms in 3D optical lattice can be described by a Bose-Hubbard

model [5]

H =

∫
d3rψ†(r)

(
− p̂

2

2m
+ V0(r)

)
ψ(r)

+
1

2

4πas~2

m

∫
d3rψ†(r)ψ†(r)ψ(r)ψ(r) (2.34)

where ψ(r) is a boson field operator for atoms in a given internal atomic state. V0(r) is

the optical lattice potential and as is the s-wave scattering length. To simplify the above

Hamiltonian, one should employ the Wannier functions which constitute an orthogonal

and normalized set of wave functions. They are maximally localized to individual lat-

tice sites. In periodic lattices, Wannier functions are a unitary transformation of the

Bloch functions and are formally an equivalent representation to describe the system.

Expanding the field operators in the Wannier basis and keeping only the lowest vibra-

tional states(i.e., s orbitals), ψ(r) =
∑

i biw(r − ri), the Hamiltonian Eq. (2.34) can be

rewritten as a Bose-Hubbard model

H = −J
∑
〈i,j〉

b̂†i b̂j −
∑
i

µin̂i +
U

2

∑
i

n̂i(n̂i − 1) (2.35)

with J =
∫
d3rω∗(r− ri)(− ~2

2m
∇2 + V0(r))ω(r− rj) being the tunneling matrix element

between adjacent sites. 〈i, j〉 denotes summation over all neighbor lattice sites i and j. b̂i

and b̂†i are bosonic annihilation and creation operators such that n̂i = b†ibi is the number

17



Raman beams

x
y

xn+1nn-1
(a) (b)

∆

V

Figure 2.5: (a) Laser-assisted hopping in 2D square lattice. (b) is the direction-dependent
hopping.

operator of atoms in the lattice site i. b̂i and b̂†i obey the canonical commutation relations

[b̂i, b̂
†
j] = δij. The model is described by the tunneling amplitude J , the chemical potential

µ and the on-site interaction U which can be attractive (U < 0) or repulsive U > 0. The

phase diagram is known to possess the Mott-insulator phase (U � J) and the superfluid

phase (U � J).

In the following discussion, we consider the non-interacting atom approximation, i.e.,

U = 0. To control the hopping, laser-induced tunnelling is introduced [5, 89]. As shown

in Ref. [6], this method can be used to create artificial gauge fields in optical lattice. We

assume that we have a 3D optical lattice where the tunneling in z direction is turned off

and the lattice has the spacing dx = λ/4(dy = λ/2) in the x and y directions. In the x

direction, the two states |g〉 and |e〉 have different potentials if their polarizabilities are

opposite. By choosing this kind of polarizabilities, one can have state-dependent optical

potential. In Fig. 2.5(a), we show state-dependent 2D optical lattice where the blue box

is shown in (b), which illustrates the tilted optical potential in the x direction. Two

running-wave beams R1 and R2 with Rabi frequencies Ω1 and Ω2 propagate along −y,

which can resonantly drive transitions between |g〉 and |e〉 at tilted potentials. Thanks

to the different optical potentials felt by |g〉 and |e〉, one can drive atoms along specific

directions. For example, driving |g〉 at site n with Ω1 laser will make the atom hopping

to |e〉 at site n + 1. But if we use Ω2, the atom will be driven to |e〉 at site n − 1. In

experiment, this tilted potential can be experimentally realized by putting the lattice in

static electric field or by accelerating the lattice.
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The tunneling between two neighbor sites located at rg = (n,m) and re = rg + b1 =

(n+ 1,m) can be calculated as

J (x)
eg e

ik·rg = eik·rg
~Ω

2

∫
w∗e(r − b1)eik·rwg(r)d2r (2.36)

where wg(e)(r) are Wannier functions for corresponding states and b1 = λ/4x̂. We can

see that the laser induced tunnelings between two neighbor sites |e〉n and |g〉n±1 contain

phase factors. Because of the factor eik·r, the integral is nonzero when 2π/|k| is of the

order of the lattice spacing. This laser driving transition is much stronger than J , so the

tunnelings along x direction are dominated by J
(x)
eg . Assume that J

(x)
eg = Jx for Ω1 and

Ω2. Therefore, the final Hamiltonian is

H = −Jx
∑
n,m

(ei2παmĉ†2n+1,mĉ2n,m + ei2παmĉ†2n+1,mĉ2(n+1),m + h.c.)

−Jy
∑
n,m

(ĉ†n,m±1ĉn,m + h.c.), (2.37)

where α = kyλ

4π
, which can be tuned by adjusting the angle between laser beam and the

z-axis.

To realize such experiment, cold atoms with long lifetime for excited state should be

considered. For example, atoms with two electrons in the outermost shell, i.e., ytterbium

and alkaline-earth atoms, have a spin-singlet ground state and a long-lived spin triplet

excited state. Further more, in order to avoid excitations to higher-lying motional Bloch

band, the Rabi frequency Ω should be small compared to the energy gap between ground

and first excited bands.

2.4 Artificial Gauge Fields by Laguerre-Gauss Laser

Modes

In 1992, Allen et al. found that laser beams with angular momentum could be experi-

mentally realized. These laser beams have helical phase fronts and so have an azimuthal

component to the Poynting vector, which results in angular momentum along the beam

travelling axis. The applications of orbit angular momentum of laser light include Hall

effects [90, 91], cooling of rotational motion [92], measuring superfluid fraction [93]. It

provides a useful tool for quantum information processing and quantum simulation. For
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example, creation of artificial gauge fields using laser with angular momentum is studied

in wide literature [61, 94, 95, 96, 91, 97].

Laguerre-Gauss (LG) modes are those modes with nonzero intrinsic orbital angular

momenta. They form a complete and orthogonal basis from which an arbitrary field

distribution can de described. LG modes can be produced by using computer generated

holograms [98] or spatial light modulator [99]. LG laser has been shown to trap cold atoms

in a ring structure potential [100]. And recently, many works have shown circulating

currents with the similar ring structure [93, 101, 102]. Interestingly, one can also use

LG laser to create ring-shaped optical lattice (RSOL) [61, 103]. In Ref. [61], RSOL is

obtained by interfering a LG beam and a plane wave. Another method [103] to create

RSOL is to use two LG modes with different azimuthal indices. The spatial structure

of the intensity distribution can be manipulated by changing the detuning between laser

frequency and atomic resonance frequency. RSOL make it ideal for studying persistent

currents in a geometry with periodic boundary conditions. It stimulates many potential

applications, such as quantum engine [104], superfluid qubits [105, 106], and atomtronics

[107].

With the help of the laser-driven-hopping in lattice, we will show that one can natu-

rally create artificial gauge fields in this RSOL. This LG laser-driven proposal is different

from those for atoms cloud [94, 95, 96, 97] where Berry’s approach is used. Here we em-

ploy LG-laser-assisted tunneling to produce artificial gauge field in ring lattice or square

lattice. Using this LG-laser-assisted method, one can detect Abelian and non-Abelian

artificial gauge fields by interference patterns. As shown in Fig. 2.6(a), the LG laser

is applied perpendicular to the lattice. The amplitude of the LG laser resonant to the

|g〉-|e〉 transition reads

E(r) = Efpl(r)e
ilϕei(ωt−kz), (2.38)

where fpl(r) = (−1)p
√

2p!
π(p+|l|)!ξ

|l|+2L
|l|
p e−ξ

2
, ξ =

√
2r
rw

, rw is the waist of the beam, and

L
|l|
p are the Laguerre functions [61]. For an NS ×NS 2D lattice, we choose rw = NSa/2.

The cylindrical coordinate (r, ϕ, z) is chosen that the longitudinal axis z is along the

propagation direction of the LG laser, and the labels p and l represent the radial and

azimuthal indices, respectively. In Fig. 2.6(a) and (b), we show LG-laser-assisted tun-

neling in square lattice in xy plane. This method is quite similar to the one used in the

experiment of forming toroidal BEC [101] where atoms can be confined and guided by the

LG laser. We would like to note that apart from the typical square lattice system which
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Figure 2.6: Schematic diagram for generating strongly localized effective Abelian and
non-Abelian gauge fields with cold atoms trapped in square (a), (b) and ring (c) lattices.
(d) and (e) are two schemes to generate Abelian and non-Abelian artificial gauge fields.

can be created by the interference of counter-propagating laser beams at the “anti-magic”

wavelength, a ring lattice in (c) can be created by interfering an off-resonant LG laser

and a plane wave with wavelength chosen to be at the “anti-magic” wavelength [61]. At

this stage, the lattice depth is set to be very large such that the tunneling of atoms is

strongly suppressed. As shown in Fig. 2.6(d), resonant LG lasers are applied to drive

transitions between the |g〉 and |e〉 states, leading to atomic hoppings along a loop as

shown in Fig. 2.6(b). Different values of l correspond to different accumulated phase

when atoms move around the loop. We consider l = 1 and l = 0 lasers here. For the

former with l = 1, it is found that the accumulated phase is π, which resembles a system

where an Abelian magnetic field is applied to the atoms. For the latter with l = 0, the

accumulated phase is 0, thus emulating a system with a zero magnetic field applied to

the atoms. Moreover, when considering two sub-states in each |g〉 and |e〉 levels, which

is shown in Fig. 2.6(e), SU(2) field can be generated by employing two LG lasers with

l = 0 and l = 1 to drive transitions between different sub-states.

We first consider a Hamiltonian describing atoms with only one sub-state in each |g〉
and |e〉 levels as

H =
∑
s=g,e

∫
drψ†s(r)[

p̂2

2m
+ ηsV (r)]ψs(r)−

∫
dr[degE(r)∗eiωtψ†e(r)ψg(r) + h.c.]. (2.39)

The three terms in turn give the kinetic energy, the lattice potential, the laser-assisted
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transition, respectively. The state-dependent sign of the lattice potential V (r) is denoted

by ηg = + and ηe = −, due to the lattice lasers at the “anti-magic” wavelength. The

dipole moment of the |g〉-|e〉 transition is denoted by deg.

We choose a lattice potential V that is minimized at sites G = {open-circle sites}
and maximized at sites E = {solid-circle sites} (see Fig. 2.6). In the presence of a

deep lattice potential, ψ†s(r) can be expressed by Wannier functions in the lowest band as

ψ†g(e)(r) '∑j∈G(E) a
†
jω
∗(r−rj). In the numerical simulation, we approximate the Wannier

functions to be Gaussion functions. Here, we have assumed that the lattice potential is

symmetric for the |g〉 and |e〉 states. The Hamiltonian then reduces to a tight-binding

model as

H = −
∑
〈i,j〉

(Ji,j â
†
i âj + h.c.) +

∑
i

εiâ
†
i âi. (2.40)

Here, the chemical potential εi is not relevant in terms of the gauge fields, so we treat

it as uniform by tuning the lattice potential. For the first hopping term, 〈i, j〉 denotes

two nearest-neighbor (NN) sites that one is in the set G while the other is in the set E ,

between which the tunnelling is induced by the LG laser and has a strength

Ji,j = degE

∫
drω∗(r− ri)fpl(r)e

−ilϕeikzω(r− rj), (2.41)

where i ∈ G and j ∈ E .

A natural property of the laser with a non-zero orbital angular momentum is a

position-dependent phase. Since the laser is applied perpendicular to the lattice, the

phase of Ji,j will only depend on the azimuthal angle ϕ, as shown in Eq. (2.41). The

phase of Ji,j can be estimated as Ji,j ∝ e−ilϕ with ϕ the azimuthal angle of the midpoint

between two adjacent sites i ∈ G and j ∈ E . We would like to remark that the sign of

the phase depends on the tunneling direction, where for i ∈ E and j ∈ G, Ji,j ∝ eilϕ.

Due to the vortex of the LG laser, the accumulated phase for atoms moving around a

loop enclosing or excluding the laser centre are different. As a simplified illustration,

we consider a centre cell of the square lattice [blue square in the centre of Fig. 2.6(b)].

Here, we assume that the laser centre coincides with the centre of this cell. As a four-

site circle, G and E sites appear alternatively. Without the loss of generality, we assume

ϕ = 0 along the upward direction in Fig. 2.6(b). Then, for a particle moving in a coun-

terclockwise direction, it undergoes tunneling with phases 0, lπ
2

, −lπ, and 3lπ
2

in the four

links, respectively. As a result, the accumulated phase around the centre cell is given by
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Figure 2.7: Numerically calculated net flux for each cell on a 2D square lattice.

0 + lπ
2
− lπ+ 3lπ

2
= lπ. By choosing an odd l, the accumulated phase is nontrivial, giving

a non-zero gauge field within the centre cell. In the following, we focus on the case with

l = 1 for the generation of an Abelian gauge field. As a comparison, a laser with l = 0

will give a zero accumulated phase and therefore correspond to a zero gauge field. On

the other hand, for a cell far away from the laser centre [green square in Fig. 2.6(b)], the

accumulated phase is always zero for any l, which means that a non-zero gauge field is

strongly localized inside the centre cell for l = 1, resembling a very thin solenoid. As an

illustration, we consider a cell centred around r0. The laser centre is set to be the origin

of the system. The coordinates of each site belonging to the cell is r = r0 + δr, which

gives the arimuthal angle

ϕ = arctan(
y

x
) ' ϕ0 +

cosϕ0δy − sinϕ0δx

r0

, (2.42)

provided r0 � a. Here ϕ0 is the azimuthal angle of r0, and a is the lattice constant. With

δx, δy = ±a
2
, the accumulated phase is zero for a cell away from the laser centre.

Numerical simulation for the accumulated flux φij is shown in Fig. 2.7, where an

l = 1 LG laser drives the tunnelling of atoms along a loop enclosing the lattice centre

that coincides with the laser centre. The flux is defined as φi,j = arg(Ji,j)− arg(Ji,j+1) +

arg(Ji+1,j+1) − arg(Ji+1,j), where the tunneling strength Ji,j is given in Eq. (2.41). As

shown in Fig. 2.7, the gauge field is non-zero within only a few cells around the centre.

We would like to remark that even if the centre of the laser is slightly shifted from that

of the lattice, it will not affect the results significantly, although some small fluctuations

may appear around the solenoid. In a similar way, an LG laser drives tunnelling of atoms

which are trapped in a ring lattice. For an l = 1 laser, the accumulated phase along the
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Figure 2.8: The time evolution of particle distributions for particles hopping around a
loop formed by LG beams in a ring with NL = 100 sites under a zero gauge field (a), an
Abelian U(1) field (b), or a non-Abelian SU(2) field ((c) and (d)).

ring is π. It is straightforward to extend to the SU(2) case, where ψs becomes a 2 × 1

column matrix to include the two sub-states |g1〉 and |g2〉 (|e1〉 and |e2〉) in |g〉 (|e〉) level

[see Fig. 2.6(e)]. Two laser beams with l = 0 and l = 1 are employed to drive |g1〉-|e2〉
and |g2〉-|e1〉 transitions, respectively. To give a unitary hopping matrix for two spins,

we should choose l = 0 and l = 1 lasers with the same amplitude to drive the spin-

flipping transitions. It is satisfied when we apply an LG mode with p = 0, l = 1, and a

superposition of two LG modes with p = 0, l = 0 and p = 1, l = 0. The non-Abelian

tunneling matrix is then given by

Ĵij =

(
0 |Jij|
Jij 0

)
, (2.43)

where Jij is given in Eq. (2.41).

For a 1D ring-shaped optical lattice as illustrated in Fig. 2.6(c), numerical simulations

for spatial distributions of particle numbers are plotted in Fig. 2.8, where the particle

numbers are shown as a percentage of the total number in the initially prepared BEC.

We have chosen the lattice site number as NL = 100 and the time period T as 600 in unit

of ER/~, where ER is the recoil energy and the typical hopping is J ' 0.05ER. With

ER/~ = 2π × 900 Hz, the time scale is approximately in the range of 100 ms. Distinctly

different interference pattens can be seen around x = NL/2 site for particles experiencing
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Figure 2.9: The time evolution of particle distributions for particles hopping around a
loop formed by LG beams in a 2D square lattice with 40× 40 sites.

a zero magnetic field as shown in (a), an Abelian U(1) gauge field as shown in (b),

and a non-Abelian SU(2) gauge field as shown in (c)-(d). The interference fringes are

closely related to the phase in our scheme. For an LG laser with l = 1, the accumulated

phase along the circle is π. Since the atoms move along left or right path, the atoms

from different paths will possess a different phase factor at the opposite site, giving a

destructive interference. For an LG laser with l = 0, the phase is always zero, which

resembles the system with particles moving in the absence of any gauge field. The atoms

evolving along two different paths will possess the same phase factor at the opposite site,

and the interference is destructive. The reason for the two subfigures in the SU(2) case

is that two effective spins are involved in the SU(2) field. We plot an effective charge

wave density (the sum of densities of the two effective spins) in (c) and an effective spin

wave density (the difference of densities of the two effective spins) in (d), respectively.

At the NL/2 site, a destructive (constructive) interference is always seen in (b) [(a)].

Two components appear with one colored red and the other blue, where the constructive

interference occurs for one type (red).

For the 2D square lattice case as illustrated in Fig. 2.6(b), we can also prepare the

initial state by loading a BEC around one plaquette. At one side, evolve the system,

and detect the particle distributions at the opposite side. The initial state as shown in

Fig. 2.9(a) is prepared with particles occupying a small area around x = NS/2, y = NS/4

with NS = 40. Such an initial state can be achieved as a ground state of the system with
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two lasers l = 0 and l = 1 switched on. After the initial state is prepared, we switch off

the l = 0 and l = 1 lasers and turn on the following discussed corresponding LG beams

at time t = 0 to drive the time evolution. For the U(1) Abelian field case as shown in

Fig. 2.9(b), we turn on an l = 1 laser as illustrated in Fig. 2.6(d), and for the non-Abelian

SU(2) field case as shown in Fig. 2.9 (c)-(d), we turn on two orthogonally polarized l = 0

and l = 1 lasers as illustrated in Fig. 2.6(e). Numerical simulations with time show that

the angular momentum imparted by the LG beams results in a circular distributions

of atoms. The particle number distribution at the opposite side of the circle from the

initially prepared site again shows clear destructive interference in the case of the Abelian

gauge field - the signature of the AB effect. As a concrete example, screenshots at time

t = 4000~/ER are given in Fig. 2.9 (b)-(d). The effect is similar to the ring geometry

case.
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Chapter 3

Topological Phases in One

Dimensional Optical Lattice

Gauge fields are pivotal in our understanding of physics at all scales. At the highest

energy scales known, the microscopic universe is governed by particles interacting with

each other through the exchange of gauge bosons. At the largest length scales, our

Universe is ruled by gravity, whose gauge structure suggests the existence of a particle

called the graviton that mediates the gravitational force. At the mesoscopic scale, solid-

state systems are subjected to gauge fields of different nature: materials can be immersed

in external electromagnetic fields, but they can also feature emerging gauge fields in their

low-energy description.

3.1 Su-Schrieffer-Heeger Model

In 1979, W.P. Su, J.R. Schrieffer, and A.J. Heeger gave the theoretical explanation for the

soliton formation in long-chain polyenes [108]. Polyacetylene, (CH)x, is a simple linear

polymer formed as a chain of CH groups, as shown in Fig. 3.1. The separations between

neighbor carbon atoms are around 1Å. In polyacetylene, the uniform array of carbon

atoms is unstable. In fact, equilibrium is achieved only after the atoms shift from the

equally spaced positions. This mechanism is known for Peierls distortion.
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Figure 3.1: The dimerized trans-polyacetylene.

3.1.1 Peierls Distortion

The polyacetylene can be described as

HSSH = Hπ +Hph +Hπ−ph. (3.1)

Hπ represents the hopping of π electrons along the chain without spin flip. Hph is the

phonon Hamiltonian of the lattice. And Hπ−ph describes the interactions between elec-

trons and phonons. The Hamiltonian for the free electron is

Hπ = −t0
∑
n,s

(ĉ†n+1,sĉn,s + ĉ†n,sĉn+1,s), (3.2)

where ĉ†n,s and ĉn,s describe the creation and annihilation of π electrons along the chain

without spin flip. t0 is the hopping amplitude for equally spaced crystal and s labels the

spin orientation. The phonon Hamiltonian is

Hph =
∑
n

p2
n

2m
+
K

2
(un+1 − un)2, (3.3)
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Figure 3.2: Energy band structures for electrons hopping in the crystal with (a) equal
space and (b) unequal spaces.

where m is the mass of one unit of the chain, un is the displacement of the nth unit

from its equilibrium position and pn is the momentum conjugate to un. K represents an

effective spring constant describing a harmonic approximation to the bond energy. The

π-electron-phonon interaction is given by

Hπ−ph = α
∑
n,s

(un+1 − un)(ĉ†n+1,sĉn,s + ĉ†n,sĉn+1,s). (3.4)

Here the linear terms in un is justified for the weak coupling.

Assuming that m→∞, one can treat the motion of the nuclei in a classical way. The

dynamics of electrons is influenced by the coupling to phonons of the crystal. Because the

electron-phonon coupling is invariant under spatial translations 2ma, m = ±1,±2, . . .,

the Brillouin zone is reduced to − π
2a

< k < π
2a

and the energy band splits into two

bands which are called valence and conduction bands as shown in Fig. 3.2(b). This band

splitting effect is produced by the spontaneous symmetry-breaking of the translation

symmetry. The ground state is spontaneously distorted to form a charge-density wave

with 〈un〉 6= 0. To see how this spontaneous symmetry-breaking take places, we should

find out the ground energy of the system. With the spatial translation invariance of 2ma,

the uns are constrained: un → 〈un〉 = (−1)nδ. δ can be regarded as the phonon field

produced from crystal distortion. Therefore, the Hamiltonian Eq. (3.1) can be rewritten
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as

HSSH(δ) = −
∑
n,s

[t0 + (−1)n2αδ](ĉ†n+1,sĉn,s + ĉ†n,sĉn+1,s) + 2NKδ2. (3.5)

for a chain of N monomers in a crystal. Under the periodic boundary condition, one can

make Fourier transformations in the reduced Brillouin zone

ĉks− =
1√
N

∑
n,s

e−iknaĉns, ĉks+ = −i 1√
N

∑
n,s

e−ikna(−1)nĉns. (3.6)

for valence and conduction bands, respectively. After these transformations, the Hamil-

tonian reads

HSSH(δ) =
∑
k,s

[εk(ĉ
†
ks+ĉks+ − ĉ†ks−ĉks−) + ∆k(ĉ

†
ks+ĉks− + ĉ†ks−ĉks+)] + 2NKδ2. (3.7)

where ∆k = 4aδ sin ka, εk = 2t0 cos ka. Finally, HSSH(δ) can be diagonalized by making

a Bogoliubov transformation:

âks− = αkĉks− − βkĉks+,
âks+ = βkĉks− + αkĉks+,

with |αk|2 + |βk|2 = 1. Then we can get

HSSH(δ) =
∑
k,s

Ek(n̂ks+ − n̂ks−) + 2NKδ2, (3.8)

where Ek = (ε2
k + ∆2

k)
1/2 and

αk =

√
1 + εk/Ek

2
,

βk =

√
1− εk/Ek

2
sgn(∆k).

In the half-filled case, the total energy of the system is

E0(δ) = −4Nt0
π

∫ π/2

0

[1− (1− z2) sin2 x]1/2dx, (3.9)
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Figure 3.3: The total energy E0 as a function of δ.

with z = 2αδ/t0. For small δ

E0(δ)

N
≈ −4

t0
π
− 2t0

π
[ln(

4

z
)− 1

2
]z2 +K

t20z
2

2α2
. (3.10)

As |z| → 0, the logarithmic term dominates and E0 has a maximum at δ = 0, which

is consistent with Peierls theorem. For an assumed energy gap of 2∆ = 1.4eV and

parameters α = 4.1eV/Å, K = 21eV/Å
2
, and t0 = 2.5eV , we can find the minimum

energy mean-field distortion to be at δ0 ≈ 0.04Å. As shown in Fig. 3.3, the two minima

at δ = +|δ0| and δ = −|δ0| correspond to different phases A and B (Fig. 3.1(a) and (b)).

The symmetric point at δ = 0 is unstable. The symmetry breaking will lead to the system

in either vacuum A or B, or both. For the first two cases, the phonon fields are constant,

i.e., ±|δ0|. If both A and B coexist in the crystal, then a boundary excitation can be

yielded which is know as soliton [109]. The soliton continuously connects the phonon fields

in both vacua. In Fig. 3.4, there are two constant phonon fields ±|δ0| corresponding to A

and B phases. There are also two solitons ±δs surviving at the boundary between A and

B. In Fig. 3.1(c), one soliton is created at the interface. The phonon field of the soliton

interpolates from B to A. In polyacetylene, the solitons are domain walls that separate

regions with different vacua.

The dimerized chain shown above is natural in crystal. This effect is called Peierls

instability or Peierls distortion. This is first pointed out by R. E. Peierl [110]. It states

that a 1D equally spaced chain with one electron per ion is unstable. The distortion

makes ions moves closer to one neighbor but further away from the other neighbor. In

this way, the chain is formed alternately by long bonds and short bonds. The original
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Figure 3.4: The two constant fields ±|δ0| correspond to two vacua A and B, respectively.
The two kink fields ±δs interpolate between A and B.

single band for equally spaced chain changes to separated two bands (see Fig. 3.2).

3.1.2 Topological Edge States

The soliton at the interface represents the topological difference between A and B. There

also exist topological states at the lattices in Fig. 3.1(a) and (b). To visualize the topo-

logical states, we consider the SSH model in the real space. The SSH Hamiltonian can

simply written as

Hssh =
∑
n

J1â
†
nb̂n + J2b̂

†
nân+1 + h.c., (3.11)

where â†n(b̂†n) and ân(b̂n) are the creation and annihilation operators of particles on A(B)

sublattice at the unit cell j. In this model, each unit cell is composed of two subsites, A

and B. In general, the hopping terms in the unit cell J1 and between neighbor cells J2

are different. This enables the two band structure. Here, we assume J1 = 1−cosϕλ, J2 =
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1 + cosϕλ. The above Hamiltonian can be written as

Hssh =
N∑
n=1

(
â†n b̂†n

)( 0 J1

J1 0

)(
ân

b̂n

)
+
(
â†n+1 b̂†n+1

)( 0 J2

0 0

)(
ân

b̂n

)

+
(
â†n b̂†n

)( 0 0

J2 0

)(
ân+1

b̂n+1

)

=
N∑
n=1

MΨ†nΨn + T †Ψ†n+1Ψn + T Ψ†nΨn+1, (3.12)

with

M =

(
0 J1

J1 0

)
, T =

(
0 0

J2 0

)
.

We make an ansatz for the edge state ψ =
∑

n λ
nξ, where ξ is a 2 component spinor.

Hsshψ = Eψ. (3.13)

From the above equation, we can have

(M+ λT † + λ−1T )ξ = Eξ, (3.14)

with E = 0 for edge state.

M+ λT † + λ−1T =

(
0 J1 + J2λ

J1 + J2λ
−1 0

)
. (3.15)

To solve Eq. (3.14), we should find appropriate λ for Det(M+ λT † + λ−1T ) = 0. Then

we have

J1J2λ
2 + (J2

1 + J2
2 )λ+ J1J2 = 0, (3.16)

with two solutions for λ: λ1 = −J1
J2

, λ2 = −J2
J1

. The wavefunction of edge state should

decay along the lattice, so |λ| < 1. From this result we can know, when |J1| < |J2|,
|λ1| < 1; otherwise, |λ2| < 1. This means that no matter |J1| < |J2| or |J1| > |J2|, there

are edge states at E = 0. This corresponds to the lattice in Fig. 3.5(a). There are no

topological phase transitions in the lattice. However, the situation is different for (b). As

|J1| < |J2|, there are degenerate edge states which localize at left and right ends of the

lattice. But, if |J1| > |J2|, no edge states appear in the spectrum gap. Therefore, the

lattice is in a non-topological phase.
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Figure 3.5: Lattice structure and the corresponding spectrum of SSH model.

3.2 Topological Quantum Number in Periodic Lat-

tice

It is well known that a geometric phase is acquired by a slowly moving particle traversing

adiabatically through a closed evolution path with a Hamiltonian governed by path-

dependent parameters. If the system starts with one of the eigenstates of the system,

the adiabatical evolution ensures that the system remains in the particular eigenstate of

the system. The Berry’s phase depends only on the geometry of the state space of the

evolution path, and it is different from the phase arising from dynamical process.

In periodic lattice, the parameter space is naturally defined by the Brillouin zone

where Berry’s phase can be defined. In 1982, D.J. Thouless et al. showed that Hall

conductivity of 2D electronic gas in periodic lattice is quantized [111]. Later, it was

found that the Hall conductivity is actually related to the Berry’s phase defined in the

Brillouin zone of 2D periodic lattice [112, 113]. In 1989, J. Zak found that Berry’s phase

of electron moving in an inversion symmetric crystal is quantized [19]. This quantized

Berry’s phase is thereafter called Zak phase. In this section, we discuss Zak phase in the

SSH model.

3.2.1 Berry’s Phase in Periodic Lattice

It is well known from Bloch’s theorem that periodic systems exhibit energy band struc-

tures. Within the independent particle approximation, the Hamiltonian for a particle in

a crystal is

H =
p̂2

2m
+ V (r), (3.17)
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where V (r + a) = V (r) is the periodic potential with a the Bravais lattice vector.

According to the Bloch’s theorem, the eigenstates of the above Hamiltonian satisfy the

boundary condition

ψnk(r + a) = eik·aψnk(r). (3.18)

where n is the band index, ~k is the crystal momentum. Eq. (3.18) means that the

Bloch functions ψnk(r) obey k-dependent boundary conditions. In order to define Berry’s

phase, one should require parameter-independent boundary conditions which means that

all the eigenstates reside in the same Hilbert space. In order to do this, we should make

a transformation to the Hamiltonian and eigenstates. The eigenstates can be written

as ψnk(r) = eik·runk(r). Now the transformed eigentates unk(r) satisfy the periodic

boundary conditions

unk(r + a) = unk(r). (3.19)

And the transformed Hamiltonian becomes

H(k) = e−ik·rHeik·r =
(p̂+ ~k)2

2m
+ V (r). (3.20)

In this way, we have the Hamiltonian H(k) and corresponding eigenstates |un(k)〉. This

Hamiltonian identifies the Brillouin zone as a parameter space where k and k+G denote

the same point (G is the reciprocal lattice vector). By making the phase choice such that

|ψn(k)〉 = |ψn(k+G)〉 and considering Eq. (3.18) and Eq. (3.19), |un(k)〉 and |un(k+G)〉
follow the phase relation

unk(r) = eiG·runk+G(r). (3.21)

This gauge choice is called the periodic gauge [114]. Berry’s phase is found to be

γn =

∮
C
dk · 〈un(k)|i∇k|un(k)〉. (3.22)

3.2.2 Zak Phase of SSH Model

In artificial materials, dimerized lattice is easy to be created. There are many systems

have realized such dimerized structure, like optical and waveguide lattices [115, 116, 24].

In optical lattice, lasers with different frequencies can be employed to yield superlattice

for cold atoms [117]. In Fig. 3.6, we show the optical superlattice realized in experiment

which simulates the SSH model. The system is described by Eq. (3.11). In the last

section, we have discussed the topological edge state of SSH model in real space. In this

section, we study Zak phase of SSH model in the crystal momentum space. By performing
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Figure 3.6: The sketch for superlattice. J1,2 are the hopping amplitudes of cold atoms
between neighbor potential wells.

the Fourier transformations,

ân =
1√
N

∑
k

eik·ndâk,

b̂n =
1√
N

∑
k

eik·(n+ 1
2

)db̂k, (3.23)

where N is the number of the unit cells in the lattice, we can get

Hssh = −
∑
k

(â†k, b̂
†
k)Hssh(k)

(
âk

b̂k

)
, (3.24)

with Hssh(k) = hk · σ, σ = (σx, σy, σz). hk =
(
(J1 + J2) cos kd

2
, (J2 − J1) sin kd

2
, 0
)
. One

can solve the Schrödinger equation to get the two-component spinor eigenstates as

u±,k =

(
α±,k

β±,k

)
=

1√
2

(
∓1

e−iθk

)
, (3.25)

where θk = arctan
hyk
hxk

= arctan
(J1−J2) sin( kd

2
)

(J1+J2) cos( kd
2

)
. The difference between J1 and J2 then

induces a gap for the Bloch waves that leads to nontrivial topology. This nontrivial

topology has a correspondence in real space, i.e., edge modes. With this two eigenvectors,
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we can define Zak phase in the Brillouin zone as

ϕZak = i

∫ G/2

−G/2
(α∗k∂kαk + β∗k∂kβk)dk. (3.26)

Therefore, we can find that ϕZak,− = ϕZak,+ = π/2 for J1 > J2 and ϕZak,− = ϕZak,+ =

−π/2 for J1 < J2. This two Zak phases for different lattice configurations represent the

topological difference between them. It is protected by the intrinsic chiral symmetry of

the system. We can change the parameters J1 and J2 such that the configuration of the

lattice can be manipulated. When J1 = J2, the bandgap between up and low bands

closes. In this situation, it returns to single band of homogeneous lattice. The difference

between the Zak phases of ground bands for lattices J1 > J2 and J1 < J2 is π. This

indicates the topological transition between different phases of SSH lattice. By choosing

a different Fourier transformations comparing to Eq. (3.24), Zak phases can be 0 and π

[118].

Berry’s phase in solids [119] can be revealed by magneto-oscillatory effects which

have been realized in graphene systems [120, 121]. However, the direct observation of

Berry’s phase is quite challenging in electronic systems. Adiabatic evolution in the crystal

momentum space typically acquires dynamical phase. In general, to distinguish Berry’s

phase from the dynamical phase is a difficult task. However, Zak phase can be simulated in

many interesting systems, such as optical superlattice [117, 13], photonic crystal [25, 27].

Direct measurement of Berry’s phase has been reported in optical superlattice using a

combination of Bloch oscillation and Ramsey interferometry [117]. One can also measure

the reflection phase to indicate Zak phase in 1D photonic crystal [25].

3.2.3 Physical Observable Corresponding to Zak Phase

In topological systems, the topological invariants usually correspond to some physical

observables. For example, in 2D electron gases, the Hall conductivity is related to the

Chern number [111]. In 1993, King-Smith and Vanderbilt pointed out that Zak phase is

related to macroscopic polarization in crystalline dielectrics [21].

Without loss of generality, we suppose that the time-varying potential depends on a

set of parameters R(t). The Schödinger equation for the time-dependent wave function

|ψ(t)〉 is

i~∂t|ψ(t)〉 = H(t)|ψ(t)〉. (3.27)
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Suppose that |n(t)〉 are instantaneous eigenvectors of H(t), so

|ψ(t)〉 =
∑
n

e−i
∫ t
0 dt
′En(t′)/~an(t)|n(t)〉. (3.28)

Substitute the above equation to the Eq. (3.27) and we have

ȧn(t) = −
∑
m

am(t)〈n(t)|∂t|m(t)〉e−i
∫ t
0 dt
′(Em(t′)−En(t′))/~. (3.29)

Under the parallel transport condition, i.e.,

〈n(t)|∂t|n(t)〉 = Ṙ(t)〈n(t)| ∂
∂R
|n(t)〉 = 0. (3.30)

We denote the wave functions satisfying above condition as |ñ〉. If the time evolution is

adiabatic, i.e., Ṙ(t) = 0, we have ȧn(t) = to zeroth order. To first-order correction, for

m 6= n,

∂tam(t) = −〈m̃|∂t|ñ〉e−i
∫ t
0 dt
′(En(t′)−Em(t′))/~. (3.31)

After integrating above equation by parts, one has

am = −i~ 〈m̃|∂t|ñ〉
En − Em

e−i
∫ t
0 dt
′(En(t′)−Em(t′))/~. (3.32)

Finally, to first order, the wavefunction is

|ψ(t)〉 = e−i
∫ t
0 dt
′En(t′)/~(|ñ〉 − i~

∑
m 6=n

〈m̃|∂t|ñ〉
En − Em

|m̃〉). (3.33)

We now consider a slowly varying time-periodic potential which satisfies H(t+ T ) =

H(t). We discuss the problem by considering the eigenstates {|un(k, t)〉} of H(k, t) (see

Eq. (3.20)). Therefore, from Eq. (3.33) the wave function is given as

|un〉 − i~
∑
m6=n

|um〉〈um|∂/∂t|un〉
En − Em

. (3.34)

Now we also want to know the velocity of particle. From Heisenberg equation we can get

that v = ṙ = (i/~)[H, r]. Here in the k representation as defined in Eq. (3.20), we can
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have

v(k) =
i

~
e−ikr[H, r]eikr

=
1

~
∂H

∂k
, (3.35)

where we use r = i∂/∂k. The average velocity for a given k is

vn(k) =
1

~
∂En(k)

∂k
− i
∑
m 6=n

(〈un|∂H/∂k|um〉〈um|∂/∂t|un〉
En − Em

− c.c.

)
, (3.36)

where c.c. represents the complex conjugate. To simplify above equation, we have

〈un|
∂H(k)

∂k
|um〉 = 〈un|

∂
∑

lEl|ul〉〈ul|
∂k

|um〉

=
∑
l

(
∂El
∂k
〈un|ul〉〈ul|um〉+ El〈un|

∂|ul〉
∂k
〈ul|um〉+ El〈un|ul〉

∂〈ul|
∂k
|um〉

)
= (Em − En)〈un|

∂

∂k
|um〉. (3.37)

Thus, the average velocity is

vn(k) =
1

~
∂En(k)

∂k
− i(〈∂un

∂k
|∂un
∂t
〉 − c.c.). (3.38)

The second term is just the Berry curvature Ωn
kt defined in the time-momentum space.

So vn(k) = 1
~
∂En(k)
∂k
−Ωn

kt. The current of the system can be derived by taking integration

over the Brilouin zone. In such situation, only the second term in Eq. (3.38) is nonzero.

The induced adiabatic current is given by

jc = − 1

2π

∑
n

∫
B.Z.

dkΩn
kt. (3.39)

The sum is taken over the filled bands. With the above result, the polarization difference

in crystalline solids [21] is

∆P = −e
∫ T

0

dtjc

=
e

2π

∑
n

∫ T

0

dt

∫
B.Z.

dkΩn
kt. (3.40)
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With this, King-Smith and Vanderbilt defined the electric polarization of crystalline

solid as P = −eqn. So Zak phase, adiabatic pump and polarization have close relation.

Recently, the particle pumping is realized in many groups with cold atoms in optical

lattices [12, 14].

3.3 Extended SSH Model

We have studied the SSH model in the dimerized lattice and the Zak phase. SSH lattice

has only two energy bands. And the topological phase transition takes place when the

bandgap closes. To investigate more general situations, we would like to consider the

system with higher energy bands. A simple extension to SSH model is to allow for more

subsites in every unit cell. We here discuss the extended SSH model with four sublattices.

3.3.1 Three-Band Model: Aharonov-Bohm Cage

Generalizing the dimerized lattice to more complex superlattice is nontrivial. As shown

in Fig. 3.7(a), we consider a 1D optical lattice with three subsites A,B,C in a cell. This

lattice is topologically nontrivial. It can produce fractional charges which are related

to the symmetry and topology of the system [122, 123]. Here we show that the next-

nearest-neighbor (NNN) hopping can lead to interesting effect. In Fig. 3.7(a), J1 and J2

are the NN tunnelings for cn−1 and an, an and bn, respectively. They are tuned by the

potential height between the wells. The tunneling between bn and cn is vanishing because

of large height between them. However, the long-range hopping can be engineered via

laser-assisted tunneling which is used to generate artificial gauge field [88, 71]. J3 is the

NNN hopping from bn−1 to an, and J4 is the one from an and cn. Because of the laser

driving, J3 and J4 contain phase factors. Fig. 3.7(b) shows the equivalent structure of

the long-range hopping driven lattice. This rhombic lattice has been studied in photonic

lattice [124, 125]. It can be reduced to SSH model. For example, when J1 = J4 = 0, it

is SSH lattice for the upper branch. If J2 = J3 = 0, SSH lattice is formed for the lower

branch. For general situation, there are loops in the lattice.

The Hamiltonian of this system can be written as

H =
∑
n

J1â
†
nĉn−1 + J2b̂

†
nân + J3â

†
nb̂n−1 + J4ĉ

†
nân + h.c.

+∆aâ
†
nân + ∆bb̂

†
nb̂n + ∆cĉ

†
nĉn. (3.41)

40



1 2

34

...... +1

1

3

+1

... ...2

14

3

1

3 2

4

(a) 

(b) 

Figure 3.7: The equivalence between (a) long-range hopping of three-band extended SSH
model and (b) rhombic lattice.

where α̂†n and α̂n are operators for creating and annihilating atoms at the nth cell of

subsites α with α = a, b, c. ∆α are the chemical potential of these subsites. We can

employ the artificial gauge field from Raman transition process to study flat band in 1D

optical lattice.

The dynamical equations can be written as

iȧn = ∆aan + J1cn−1 + J3bn−1 + J∗2 bn + J∗4 cn,

iḃn = ∆bbn + J2an + J∗3an+1,

iċn = ∆ccn + J∗1an+1 + J4an. (3.42)

The solutions for above equations have plane wave form, i.e., an = a(t)eikn, bn = b(t)eikn,

cn = c(t)eikn. Therefore, we can rewrite the equations as

iȧ(t) = ∆aa(t) + (J1e
−ik + J∗4 )c(t) + (J3e

−ik + J∗2 )b(t),

iḃ(t) = ∆bb(t) + (J2 + J∗3e
ik)a(t),

iċ(t) = ∆cc(t) + (J4 + J∗1e
ik)a(t). (3.43)
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Figure 3.8: Energy bands with (a) θ = 0 and (b) θ = π in rhombic lattice. (c) denotes
the localized eigenstate for the flat band in (a). (d) represents the localized eigenstates
for flat bands with E = ±2 in (b). Other parameters are J1 = J2 = J3 = J4 = 1, φ = 0.

Assume a(t), b(t), c(t) ∼ eiEt, we can get the equation

(E + ∆a)(E + ∆b)(E + ∆c) = (E + ∆b)[|J1|2 + |J4|2 + 2|J1||J4| cos(θ − k)]

+(E + ∆c)[|J2|2 + |J3|2 + 2|J2||J3| cos(φ− k)].

(3.44)

where we assume J1J4 = |J1||J4|eiθ, J2J3 = |J2||J3|eiφ. θ and φ is related to the artificial

gauge fields in the optical lattice. To simplify the discussion, we consider the case with

∆a = ∆b = ∆c = 0.

The band energies are: 0,±
√
J2

1 + J2
2 + J2

3 + J2
4 + 2J1J4 cos(θ − k) + 2J2J3 cos(φ− k).

The dispersionless mode is localized state. The origin of such localized state is the effect

of destructive interference. The other two modes are delocalized. The bandgap between

up and low bands is

∆k = 2
√
P0 + 2P1 cos(η − k). (3.45)

where P0 = J2
1 + J2

2 + J2
3 + J2

4 , P1 =
√
J2

1J
2
4 + J2

2J
2
3 + 2J1J2J3J4 cos(θ − φ) and η =

arccos A√
A2+B2 with A = |J1J4| cos θ + |J2J3| cosφ, B = |J1J4| sin θ + |J2J3| sinφ. The

bandgap closes when θ − φ = 0 and |J1| = |J4|, |J2| = |J3|. And the critical momentum
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Figure 3.9: Zak phase for (a) the lowest band and (b) the first excited band changing
with J2 and J4. J1 = J3 = 3 is assumed.

is kc = θ + π. The interesting result is the flat band λ = 0 [126]. In Fig. 3.8(a) and (b),

we present the energy bands for θ = 0 and θ = π, respectively, with J1 = J2 = J3 = J4 =

1, φ = 0. Interestingly, when θ = 0, only the middle band is the flat band. However,

when θ = π, the three energy bands become flat. The eigenstates corresponding to the

flat bands in (a) and (b) are localized. The localized eigenstates are shown in Fig. 3.8(c)

and (d). This destructive interference effect is also known for Aharonov-Bohm cage and

can be simulated with the artificial gauge field [127].

3.3.2 Four-Band Model

We consider the case of four sublattices in a unit cell

H4b = −
∑
n

(J1â
†
nb̂n + J2b̂

†
nĉn + J3ĉ

†
nd̂n + J4d̂

†
nân+1 + h.c.)

−
∑
n

(∆1â
†
nân + ∆2b̂

†
nb̂n + ∆2ĉ

†
nĉn + ∆1d̂

†
nd̂n). (3.46)

Ji are the hoppings between different subsites. ∆1 and ∆2 are the energy offsets or

chemical potentials. The energy offset is chosen such that the unit cell is inversion
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Figure 3.10: Zak phase for the lowest band (a) and the first excited band (b) changes
with J1 and J4. Here J2 = 4.

symmetric. With the periodic boundary conditions, we can make Fourier transformations

ân =
1√
N

∑
k

eiknd̃âk,

b̂n =
1√
N

∑
k

eik(nd̃+d̃/4)b̂k,

ĉn =
1√
N

∑
k

eik(nd̃+d̃/2)ĉk,

d̂n =
1√
N

∑
k

eik(nd̃+3d̃/4)d̂k, (3.47)

where d̃ is the length of unit cell in the four-band lattice. Therefore, H4b =
∑

k Ψ†kH4b(k)Ψk,

with Ψk = (âk, b̂k, ĉk, d̂k)
T

H4b(k) = −


∆1 J1e

iφ 0 J4e
−iφ

J1e
−iφ ∆2 J2e

iφ 0

0 J2e
−iφ ∆2 J3e

iφ

J4e
iφ 0 J3e

−iφ ∆1

 , (3.48)

with φ = kd̃/4.

We assume ∆1 = ∆2 = 0 and study the influence of parameters J1,2,3,4 to Zak phase.

At first, we consider J1 = J3 = C (C is a constant), J2 and J4 can be changed (as shown

in Fig. 3.9). When J2 = J4, the lowest band and the first excited band touch (red-dashed

line in (a)). We see that Zak phase for the lowest band changes abruptly from J2 > J4 to
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J2 < J4. The bandgap between the first excited band and the band above closes along the

yellow-dotted line in (b). Therefore, Zak phase for the first excited band changes when

it touches with upper or lower band. Then, we let J1, J3, J4 be variables and J2 is fixed.

We assume J1 = J3. From Fig. 3.10(a), Zak phase for the lowest band is independent of

J1. But for the second lowest band, Zak phase varies with J1.

In Fig. 3.11, we consider the role of energy offset ∆1,∆2. When J1 and J3 are very

small, there is a critical value for J2. Below that value, the lowest band has only one

Zak phase in the whole range of J4. As J1 and J3 increase, this critical value decreases.

When J1 and J3 are large enough, there are two Zak phases in the whole range of J2

(Fig. 3.11(b)). As J1 and J3 increase continuously, there is linear relationship at the

boundary of two Zak phases between J2 and J4 (Fig. 3.11(c) and (d)).

Figure 3.11: Zak phase of the ground band with ∆1 = 0, ∆2 = 2 under different J1, J3.
(a) J1 = J3 = 0.02. (b) J1 = J3 = 1. (a) J1 = J3 = 10. (d) J1 = J3 = 100.

3.3.3 Edge States and Topological Phase Transitions

The four-band extended SSH model Eq. (3.46) can be rewritten as

H4b =
N∑
n=1

M̃Ψ†nΨn + T̃ †Ψ†n+1Ψn + T̃ Ψ†nΨn+1, (3.49)
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Figure 3.12: Four-band extended SSH model with (a) and (b) two lattice structures. The
corresponding band structures are shown in (c) and (d). J1 = 3− J4, J2 = J3 = 3.

with Ψ†n = (â†n, b̂
†
n, ĉ
†
n, d̂

†
n) and

M̃ =


0 J1 0 0

J1 0 J2 0

0 J2 0 J3

0 0 J3 0

 , T̃ =


0 0 0 0

0 0 0 0

0 0 0 0

J4 0 0 0

 .

Following the procudure Eq. (3.13) and Eq. (3.14), in the open boundary conditions we

have

J1J2J3J4λ
2 − (J2

1J
2
3 + J2

2J
2
4 )λ+ J1J2J3J4 = 0, (3.50)

with two solutions for λ: λ1 = J1J3
J2J4

, λ2 = J2J4
J1J3

. This corresponds to the lattice structure

shown in Fig. 3.12(a). We can see that both |J1J3| < |J2J4| and |J1J3| > |J2J4| ensure

edge states at E = 0 (see the spectrum in (c)). For the lattice Fig. 3.12(b), only |J1J3| <
|J2J4| makes the zero modes appear (as shown in (d)). For a general lattice, we can get

the zero modes condition:
∏

i=odd

Ji =
∏

j=even

Jj.

In the four-band model, we consider four lattice structures: (I) J1 � J2 = J3 = J4,

(II) J2 � J1 = J3 = J4, (III) J3 � J1 = J2 = J4, and (IV) J4 � J1 = J2 = J3, as

shown in Fig. 3.13(a). The unit cells are chosen depending on the hopping parameters.
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Figure 3.13: (a) Four different lattices depending on different choices of the unit cell.
(b) Transitions between different lattice structures by changing NN hopping parameters
(black lines) and NNN hopping parameters (red lines).

Fig. 3.13(b) represents the possible transitions between different lattice structures. The

corresponding energy spectrums are plotted on Fig. 3.14. We can find that (II) has two

degenerate edge states between the two lowest bands. For (I) and (III), there is one edge

state between lowest two bands. The lattice of (IV) does not have edge state. Therefore,

it is a topologically trivial lattice.

Now we discuss the transitions between different lattice structures. For the cases ((a)-

(d) in Fig. 3.14), changing in band structure makes the number of zero modes different.

This is same to the claim of S. Ganeshan et al. that zero mode is a topological invariant in

Aubry-André-Harper (AAH) model [128]. The hopping parameters in AAH model have

definite forms. The variation in lattice structure only involves topological changing of two

middle bands. Therefore, in the AAH model, zero modes can indicate topological phases.

However, in the extended four-band SSH model, there are energy degeneracies between

the lowest bands (see Fig. 3.14(e) and (f)). In (e), we set J3 = 3 − J1, J2 = J4 = 3 and

let J1 varies from 0 to 3. The cases for J1 = 0 and J1 = 3 mirror symmetric. This can be

seen from (I) and (III) in Fig. 3.13(a). The edge states at the ends of lattice are swapped

when J1 changes. For (f), the topological structures of the bands are different. The

topological change does not involve zero modes, which signifies a different topological

transition. Therefore, there are two kinds of topological transitions in this four-band

lattice. This can be seen from the sum of Zak phases of the lowest two bands ϕsum
zak , as

shown in Fig. 3.15. For the cases from (a) to (d) involving zero modes, the differences of

ϕsum
zak are π around the phase transition point. However, for (e) and (f), they are 2π.

In this chapter, we discussed the Zak phases for bulk states (Bloch states) and topolog-

ical edge states in closed boundary conditions and open boundary conditions, respectively.
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Figure 3.14: Energy spectrum of the four-band extended SSH lattice with open boundary
conditions. The hopping parameters are chosen as: (a) J1 = 3 − J4, J2 = J3 = 3, (b)
J2 = 3− J1, J3 = J4 = 3, (c) J3 = 3− J2, J1 = J4 = 3, (d) J4 = 3− J3, J1 = J2 = 3, (e)
J3 = 3− J1, J2 = J4 = 3, (f) J4 = 3− J2, J1 = J3 = 3.
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Figure 3.15: The sum of Zak phases for the lowest two bands corresponding to plots
in Fig. 3.14. J is the hopping for specific cases. (a)-(d) show that the change of ϕsum

zak

because of energy degeneracies between middle bands. (e) and (f) show the change of
ϕsum

zak coming from energy degeneracies between lowest two band.

The Zak phase can be directly observed via guiding atoms adiabatically through Bril-

louin zone [117]. For the photonic crystal with the dimerized lattice structure, surface

impedance of incident photons can be related to Zak phase [129]. Another way to reveal

the relation between Zak phase and the transport of particle is studied by considering the

decay in SSH lattice [28]. The first moment of the distribution of the dissipated particles,

i.e., the average displacement, is found to be proportional to Zak phase. Recently, this

effect has been realized in experiment [24]. For the extended SSH model, e.g., four-band

model has also been discussed [130]. The topological phases in extended four-band SSH

model are symmetry-protected [131]. The topological origin can be understood from the

Majorana basis [128]. Because of the various topological phase transitions, it might be

interesting to consider the topological pumping with the extended SSH model.

49



Chapter 4

Winding Number and Geometric

Phase in Spin Chain

We have discussed quantized Berry’s phase in inversion symmetric 1D periodic lattice

in previous chapter. In this chapter, we study Berry’s phase in spin-1/2 chain. The

universal properties of phase transitions can be explored by geometric phase which was

first proposed by S.L. Zhu in XY model [62]. He found that the derivative of geometric

phase (DGP) with respect to external magnetic field diverges at critical points. And the

finite-size scaling of DGP reveals the universality of phase transition. Such geometric

phase is acquired by spin rotations. However, in the spin chain with periodic lattice, one

can also find a Brillouin zone and geometric phase can be defined there. This geometric

phase defined in Brillouin zone is proportional to winding number. Therefore, we use

the winding number to characterize the topological invariant in the crystal momentum

space. In this chapter, we focus on the spin chain with multispin interactions. Because

of the multispin interactions, the ground states can have topological orders [132, 133]. It

is also found that these systems can be topologically characterized [63, 47].

4.1 Winding Number in Generalized Ising Model

Highly entangled cluster states are useful resource for measurement-based quantum com-

putation. Cluster states are defined as the unique state satisfying Cj|ΨC〉 = +1|ΨC〉,
where the stabilizer operators Cj = σxj σ

z
j+1σ

x
j+2. The cluster state |Ψ〉 is a Z2 × Z2

symmetry protected topological state. However, this symmetry can be broken under

perturbation. When other interaction is introduced, the system exhibits phase transi-

tions [134, 135, 132, 133]. We consider the generalized Ising model where cluster-like
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interaction [136, 137] is included in the Hamiltonian,

HGI =
M∑

j=−M

a(
1 + γ

2
σxj σ

x
j+1 +

1− γ
2

σyjσ
y
j+1) + gσzj

+bσzj (
1 + δ

2
σxj−1σ

x
j+1 +

1− δ
2

σyj−1σ
y
j+1), (4.1)

with periodic boundary condition, i.e., σαN+1 = σα1 . σαj (α = x, y, z) are Pauli matrixes at

site i. M is N/2 ((N − 1)/2) for N even (odd). The NN and inter-spin mediated NNN

interactions in XY plane are controlled by anisotropy parameters γ and δ, respectively.

g is the external magnetic field along z axis. a and b denote the strength of interactions.

For the case of b = 0, it is the XY model. This model has been studied in equilibrium

and nonequilibrium dynamics [55, 53, 62, 54]. When a = −1, γ = 1, it is Ising model. For

|g| < 1, the system has two degenerate ferromagnetic ground states with spin polarized

along | →〉 or | ←〉. | →〉 and | ←〉 are two eigenstates of σx. For |g| > 1, the system is

in the paramagnetic phase where the spins are polarized by g. |g| = 1 is transition points

between this two phases.

To investigate this model, one should simplify the Hamiltonian. As a standard proce-

dure, one can use Jordan-Wigner transformation to map the spins to 1D spinless fermions

with creation and annihilation operators ĉ†j, ĉj,

σxj =
∏

l<j(1− 2ĉ†l ĉl)(ĉj + ĉ†j), (4.2)

σyj = −i∏l<j(1− 2ĉ†l ĉl)(ĉj − ĉ†j), (4.3)

σzj = 1− 2ĉ†j ĉj, (4.4)

with σ±l = (σxl ± iσyl )/2. The operators ĉj, ĉ
†
j obey the canonical fermionic algebra,

{ĉj, ĉ†j′} = δjj′ , {ĉj, ĉj′} = 0, {ĉ†j, ĉ†j′} = 0. (4.5)

The coupled spins transform as

σxj σ
x
j+1 = (ĉ†j − ĉj)(ĉ†j+1 + ĉj+1),

σyjσ
y
j+1 = (ĉ†j + ĉj)(−ĉ†j+1 + ĉj+1). (4.6)
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In the fermionic representation,

HGI =
M∑

j=−M

[a(γĉ†j ĉ
†
j+1 + ĉ†j ĉj+1 + h.c.) + g(1− 2ĉ†j ĉj)

+ b(δĉ†j−1ĉ
†
j+1 + ĉ†j−1ĉj+1 + h.c.)]. (4.7)

By Fourier transformation, ĉk = 1√
N

∑
j ĉj exp(−ijk) with k = −π, ..., π, the Hamiltonian

can be transformed to momentum space,

HGI =
∑
k

i(aγ sin k + bδ sin 2k)(ĉ†kĉ
†
−k + ĉkĉ−k)

+ (a cos k + b cos 2k − g)(ĉ†kĉk − ĉ−kĉ†−k). (4.8)

We write the Hamiltonian in Nambu space Ψ†k = (ĉ†k, ĉ−k) as HGI =
∑

k Ψ†kHGI(k)Ψk.

Using the Anderson pseudospin d(k), the Hamiltonian can be expressed as HGI(k) =

d(k) · σ. d(k) = hyêy + hzêz where êy, êz are the unit vectors in y, z directions. hy =

−(aγ sin k + bδ sin 2k), hz = a cos k + b cos 2k − g.

After diagonalizing the Hamiltonian, we obtain

HGI =
∑
k

2Λk(η̂
†
kη̂k −

1

2
), (4.9)

with

Λk = [(a cos k + b cos 2k − g)2 + (aγ sin k + bδ sin 2k)2]1/2, (4.10)

and η̂k = ĉk cos θk
2

+ ie−i2φĉ†−k sin θk
2

. θk is defined as

θk = arctan
(aγ sin k + bδ sin 2k)

(a cos k + b cos 2k − g))
. (4.11)

The topological structures in the parameter space (hy(k), hz(k)) are shown in Fig.4.1. The

topology can be changed as parameters of the Hamiltonian vary and phase transitions

occur. To characterize the phase transition, one can define the winding number of θk as

W =
1

2π

∫
B.Z.

dθk. (4.12)

Then the phase transition can be [47].
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(a) a > 2b, γ = 1,
δ = 1

(b) a = 2b,γ = 1,
δ = 1

(c) a < 2b, γ = 1,
δ = 1

hy

Figure 4.1: The variation of topology of the parameter space when the system changes.

4.2 Geometric Phase Generated by Spin Rotations

When γ = 0, the Hamiltonian Eq. (4.1) has an additional U(1) symmetry involving

spin rotation in the xy plane, which is broken with finite γ. Those systems with the

broken symmetry constitute a continuous space with the identical spectrum. They are

related by a unitary rotation of all the spins around the z-axis by angle [55]. By applying

such rotation, nontrivial complex instantaneous eigenstates can be created and geometric

property of the system can be studied in these states [55, 53, 62]. The rotating spin chain

is described by

HGI
φ = R†HGIR

=
M∑

j=−M

a

(
1 + γ

2
R†σxj σxj+1R+

1− γ
2
R†σyjσyj+1R

)
+ gR†σzjR

+b

(
1 + δ

2
R†σxj−1σ

z
jσ

x
j+1R+

1− δ
2
R†σyj−1σ

z
jσ

y
j+1R

)
, (4.13)

with R =
∏M

j=−M e−iφjσ
z
j /2. The rotations of the coupled spins are

R†σxj σxj+1R = cosφj cosφj+1σ
x
j σ

x
j+1 − cosφj sinφj+1σ

x
j σ

y
j+1

− sinφj cosφj+1σ
y
jσ

x
j+1 + sinφj sinφj+1σ

y
jσ

y
j+1, (4.14)

R†σyjσyj+1R = cosφj cosφj+1σ
y
jσ

y
j+1 + cosφj sinφj+1σ

y
jσ

x
j+1

+ sinφj cosφj+1σ
x
j σ

y
j+1 + sinφj sinφj+1σ

x
j σ

x
j+1, (4.15)
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R†σxj−1σ
z
jσ

x
j+1R = cosφj−1 cosφj+1σ

x
j−1σ

z
jσ

x
j+1 − cosφj−1 sinφj+1σ

x
j−1σ

z
jσ

y
j+1

− sinφj−1 cosφj+1σ
y
j−1σ

z
jσ

x
j+1 + sinφj−1 sinφj+1σ

y
j−1σ

z
jσ

y
j+1,(4.16)

R†σyj−1σ
z
jσ

y
j+1R = cosφj−1 cosφj+1σ

y
j−1σ

z
jσ

y
j+1 + cosφj−1 sinφj+1σ

y
j−1σ

z
jσ

x
j+1

+ sinφj−1 cosφj+1σ
x
j−1σ

z
jσ

y
j+1 + sinφj−1 sinφj+1σ

x
j−1σ

z
jσ

x
j+1,(4.17)

and R†σzjR = σzj . Then the rotated Hamiltonian is

HGI
φ = −a

2

∑
j

[(cos(φj − φj+1) + γ cos(φj + φj+1))σxj σ
x
j+1

+ (cos(φj − φj+1)− γ cos(φj + φj+1))σyjσ
y
j+1

+ (sin(φj − φj+1)− γ sin(φj + φj+1))σxj σ
y
j+1

− (sin(φj − φj+1) + γ sin(φj + φj+1))σyjσ
x
j+1]

− b
2

∑
j

[(cos(φj−1 − φj+1) + γ cos(φj−1 + φj+1))σxj−1σ
z
jσ

x
j+1

+ (cos(φj−1 − φj+1)− γ cos(φj−1 + φj+1))σyj−1σ
z
jσ

y
j+1

+ (sin(φj−1 − φj+1)− γ sin(φj−1 + φj+1))σxj−1σ
z
jσ

y
j+1

− (sin(φj−1 − φj+1) + γ sin(φj−1 + φj+1))σyj−1σ
z
jσ

x
j+1]

+g
∑
j

σzj . (4.18)

We assume that the spin rotating angle φj = φ for every spin. Based on the transforma-

tions Eq. (4.6) and

σxj σ
y
j+1 = −i(ĉ†j − ĉj)(−ĉ†j+1 + ĉj+1),

σyjσ
x
j+1 = i(ĉ†j + ĉj)(ĉ

†
j+1 + ĉj+1),

σxj−1σ
z
jσ

x
j+1 = (ĉ†j−1 − ĉj−1)(ĉ†j+1 + ĉj+1),

σxj−1σ
z
jσ

y
j+1 = −i(ĉ†j−1 − ĉj−1)(ĉ†j+1 − ĉj+1),

σyj−1σ
z
jσ

x
j+1 = −i(ĉ†j−1 + ĉj−1)(ĉ†j+1 + ĉj+1),

σyj−1σ
z
jσ

y
j+1 = −(ĉ†j−1 + ĉj−1)(ĉ†j+1 − ĉj+1), (4.19)
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we have

HGI
φ =

M∑
j=−M

[a(γe−i2φĉ†j ĉ
†
j+1 + ĉ†j ĉj+1 + h.c.) + g(1− 2ĉ†j ĉj)

+b(δe−i2φĉ†j−1ĉ
†
j+1 + ĉ†j−1ĉj+1 + h.c.)]. (4.20)

Using the Fourier transformation, HGI
φ is transformed to momentum space as

HGI
φ =

∑
k

i(aγ sin k + bδ sin 2k(e−i2φĉ†kĉ
†
−k + ei2φĉkĉ−k)

+(a cos k + b cos 2k − g)(ĉ†kĉk − ĉ−kĉ†−k), (4.21)

The eigenspectrum is as the same as Eq. (4.9). The ground state of HGI
φ is

|χ(φ)〉 =
∏
k

(cos
θk
2
|0〉k|0〉−k − ie−i2φ sin

θk
2
|1〉k|1〉−k). (4.22)

The ground state |χ〉 is a tensor product of states, each lying in the two-dimensional

Hilbert space spanned by |0〉k|0〉−k and |1〉k|1〉−k. The geometric phase

ϕ =
i

M

∫ π

0

〈χ(φ)|∂φ|χ(φ)〉dφ

=
π

M

π∑
k=0

(1− cos θk). (4.23)

We assume that g is the control parameter. Thus, the phase of the system can be

tuned by g. We can find three critical points for g: −a+ b, a+ b, a
2γ2−a2γδ−2b2δ2

2bδ2
for this

generalized Ising model. This phase diagram has been analysed in [134]. There, only

one cluster term, i.e.,
∑

j σ
x
j−1σ

z
jσ

x
j+1 is considered. The full phase diagram should be

interesting when the other cluster-like terms, e.g.,
∑

j σ
y
j−1σ

z
jσ

y
j+1, are considered.

In this section, we give some examples that illustrate the geometric phases and winding

numbers. At first, we look at the simplest case, i.e., Ising model with b = 0, δ = 0, a =

1, γ = 1 in Eq. (4.1). In Fig. 4.2 (a) and (b) we show the geometric phase and DGP. We

can see that there are critical points at |g| = 1. This critical behavior of geometric phase

has been discussed for Ising model [62]. In (b), topology in parameter space (hy(k), hz(k))

are demonstrated for various phases. When g goes across −1, the topology goes from

above horizontal axis to the one containing the original point. As g changes continuously,

there is a transition at g = 1 where the original point leaves the topology. The winding
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dϕ
dg

gg

ϕ

(a) (b) 

Figure 4.2: Geometric phase (a) and DGP (b) with the parameters b = 0, δ = 0, a =
1, γ = 1.

number changes as 0, 1, 0 when g varies from −2 to 2.

With the cluster-like interactions, the phase structure becomes complex and interest-

ing. For the generalized Ising model, one can have different topologies in the momentum

space. In Fig. 4.3, we show the case with b = 1, δ = 1, a = 1, γ = 1. We can see that there

are four phases. When g < −1, the topology is above horizontal axis. As −1 < g < 0,

the original point is in the center of two circles. When 0 < g < 1, only the out circle

contains the original point. Finally, if g > 1, the original point goes out of the topology.

We can find the derivative of geometric phase shows the critical points. Actually, these

different phases correspond to different winding numbers which are 0, 2, 1, 0, respectively.

By manipulating the parameter δ, one can have more topological features. In Fig. 4.4,

we show the plots for b = 1, δ = −0.7, a = 1, γ = 1. This choice of these parameters

gives an interesting structure as shown in Fig. 4.4(b). As g changes from negative to

positive values, the system goes through phases with the corresponding winding numbers

0, 1,−1, 0. When we change δ to −1.5, we get a different topology as shown in Fig. 4.5(b),

where the winding number changes successively as 0,−2,−1, 0.

In these examples, the DGP shows the phase boundaries whenever the winding number

changes. There are two kinds of ways that winding number varies across the critical

regime. One is that the winding number difference is unity near the critical points. This

kind of critical regime has been investigated [62]. Another one case is where the winding

number difference is larger than 1. The latter case is quite interesting. To characterize

such phase transitions with large winding number difference, we use the finite-size scaling
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Figure 4.3: Geometric phase (a) and DGP (b) with the parameters b = 1, δ = 1, a =
1, γ = 1.

(a) (b) 
g

dϕ
dg

g

ϕ

Figure 4.4: Geometric phase (a) and DGP (b) with the parameters b = 1, δ = −0.7, a =
1, γ = 1.
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Figure 4.5: Geometric phase (a) and DGP (b) with the parameters b = 1, δ = −1.5, a =
1, γ = 1.

of geometric phase to study the critical phenomena.

4.3 Floquet Driving Induced Multispin Interaction

The generalized Ising model Eq. (4.1) can be rewritten as

HGIF =
M∑

i=−M

a

2
(σxj σ

x
j+1 + σyjσ

y
j+1) +

b

2
σzi (σ

x
i−1σ

x
i+1 + σyi−1σ

y
i+1)

+
c

2
(σxj σ

x
j+1 − σyjσyj+1) +

d

2
σzi (σ

x
i−1σ

x
i+1 − σyi−1σ

y
i+1) + gσzj . (4.24)

In the fermionic representation,

HGIF =
N∑
j=1

[(cĉ†j ĉ
†
j+1 + aĉ†jcj+1 + h.c.) + (dĉ†j−1ĉ

†
j+1 + bĉ†j−1ĉj+1 + h.c.)]

+g(1− 2ĉ†j ĉj). (4.25)

For a system with periodic driving, H(t + T ) = H(t) where T = 2π/ω is the period of

the driving, the Floquet theory can be applied. After using the Floquet state |ψν(t)〉 =

e−iενt|φν(t)〉, one can have the Floquet equation,

HF (t)|φν(t)〉 = εν |φν(t)〉. (4.26)
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where HF (t) = H(t) − i∂t is the Floquet Hamiltonian. The Floquet modes are time-

periodic |φν(t+T )〉 = |φν(t)〉. ν labels the band index. The quasienergies εν and Floquet

states |ψν(t)〉 are only uniquely defined up to the gauge freedom ε′ = εν+nω, |φ′〉 = |φν+n〉.
We fix the gauge by choosing within the first Floquet-Brillouin zone −ω/2 ≤ εν ≤ ω/2.

And the Hamiltonian can be written as

H(t) = H0 + δH(t). (4.27)

To find the effective Hamiltonian of the system, we make a rotating frame transformation.

The unitary operator can be defined as U †(t) = ei
∫ t
0 dt
′δH(t′). And the Hamiltonian in the

new frame is

H̃(t) = U †(t)H(t)U(t)− iU †(t)U̇(t). (4.28)

and |φ̃ν(t)〉 = U †(t)|φν(t)〉.
At first we consider to drive the term (σxj σ

x
j+1 + σyjσ

y
j+1) with a = a0 + a1

2
cosωt,

following the procedure [138], the effective Hamiltonian is

H̃eff
GIF1 =

N∑
j=1

a0

2
(σxj σ

x
j+1 + σyjσ

y
j+1)

+
b

2
(σxj σ

z
j+1σ

x
j+2 + σyjσ

z
j+1σ

y
j+2) + gσzj

+p0(σxj σ
x
j − σyjσyj )

+
∑

l=1,3,...

pol (a1)(σxjM
z
j,lσ

x
j+l − σyjM z

j,lσ
y
j+l)

+
∑

l=2,4,...

pel (a1)(σxjM
z
j,lσ

x
j+l − σyjM z

j,lσ
y
j+l), (4.29)

with M z
j,l = σzj+1...σ

z
j+l−1. Other parameters are

p0 =
d

2

∞∑
m=0

Dm,m+1,

pol =
c

2

∞∑
m=0

(Dm,m+ l+1
2
−Dm,m− l−1

2
),

pel =
d

2

∞∑
m=0

(Dm,m+ l+2
2
−Dm,m− l−2

2
), (4.30)
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Figure 4.6: Multispin interactions for (a) odd and (b) even l as a function of a1/ω.

where Dm,r = (−1)m

(m!)2
( a1

4ω
)2m

(
2m

r

)
. In Eq. (4.29), the multispin interactions characterized

by pol (a1) and pel (a1) are created. In Fig. 4.6 we show the pol and pel as a function of a1/ω.

As the Floquet driving is weak, i.e., a1/ω � 1, only the terms (σxj σ
x
j+1 − σyjσ

y
j+1) and

σzi (σ
x
i−1σ

x
i+1 − σyi−1σ

y
i+1) are kept. As it becomes large, multispin interactions take place.

If we drive c = c0 + c1
2

cosωt, we can get the effective Hamiltonian as

H̃eff
GIF2 =

N∑
j=1

c0

2
(σxj σ

x
j+1 − σyjσyj+1) +

d

2
(σxj σ

z
j+1σ

x
j+2 − σyjσzj+1σ

y
j+2)− h0σ

z
j

+
∑

l=1,3,...

hol (c1)(σxjM
z
j,lσ

x
j+l + σyjM

z
j,lσ

y
j+l)

+
∑

l=2,4,...

hel (c1)(σxjM
z
j,lσ

x
j+l + σyjM

z
j,lσ

y
j+l), (4.31)

with

h0 =
∞∑
m=0

bCm,m−1 − gCm,m,

hol =
∞∑
m=0

a

2
(Cm,m− l−1

2
+ Cm,m− l+1

2
),

hel =
∞∑
m=0

b

2
(Cm,m− l−2

2
+ Cm,m− l+2

2
)− gCm,m− l

2
, (4.32)

where Cm,r = (−1)2m−r

(m!)2
( c1

4ω
)2m

(
2m

r

)
. The difference between Eq. (4.29) and Eq. (4.31) is

the effective multispin interactions.
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4.4 Finite-size Scaling of Geometric Phase

Universality is essential for quantum phase transition. Near critical regime, correlation

length becomes diverging and microscopic details are lost. To investigate the universal

properties, many approaches are proposed to be able to characterize phase transition by

finite-size scaling, e.g., entanglement [139, 140, 141], geometric phase [62], geometric ten-

sor [142], Schmidt gap [143]. Zhu [62] suggested a finite-size scaling analysis of geometric

phase to study phase transition in XY spin chain. The scaling behavior obeys universal

characteristics of phase boundary in Ising university class. However, previous studies

limit the models where phase transition occurs at critical momentum kc independent of

the system parameters. Recent study by Lahtinen and Ardonne discussed criticalities at

symmetry protected critical points in generalized cluster model where all so(N)1 critical

points can be found [144]. At some symmetry protected points, the system has degen-

eracies at the critical momentum away from 0 or π. We are interested in the phase

transitions and finite-size scaling behavior at these critical points.

4.4.1 Phase Diagram of Cluster-Ising Model

In the first section, we have discussed the generalized Ising model Eq. (4.1). In this

section, we consider a model with multispin interactions, i.e., so-called cluster-Ising model

HCI = −
N∑
j=1

λσxjM
z
j,lσ

x
j+l + a

N∑
j=1

σyjσ
y
j+1 + g

N∑
j=1

σzj , (4.33)

The periodic boundary conditions are assumed. When l = 2, M z
j,l is the cluster operator

Cj. After Jordan-Wigner transformation and Fourier transformation, we can write the

Hamiltonian HCI =
∑

k Ψ†kHCI(k)Ψk, where HCI(k) = d̃(k) ·σ. d̃(k) = h̃yêy + h̃zêz with

h̃y = λ sin kl+ a sin k, h̃z = a cos k− λ cos kl− g. The winding number can be calculated

via θ̃k = arctan λ sin kl+a sin k
a cos k−λ cos kl−g .

Table 4.1: Phase and winding number for interactions.

Interaction Phase Winding number
±∑j σ

z
j P 0

±∑j σ
y
jσ

y
j+1 AFM(Y),FM(Y) +1

±∑j σ
x
j σ

x
j+1 AFM(X),FM(X) −1

±∑j σ
x
jZj,lσxj+l C∗l , Cl −l
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For l = 1, M z
j,l = 1, and therefore the Hamiltonian defines the transverse Ising model

with the well known antiferromagnet-paramagnet quantum phase transition in the Ising

universality class. For l = 2, Eq. (4.33) defines the so-called cluster-Ising model in an

external magnetic field. Assuming periodic boundary conditions: σαN+1 = σα1 , the ground

state of Eq. (4.33) for a = g = 0 is a unique state known as cluster state [145]. Such

state enjoys a non trivial global symmetry of the Z2 × Z2 type. For open boundary

conditions, the cluster state is fourfold degenerate. Such a degeneracy can be lifted only

by resorting to operators in the Hamiltonians’s symmetry algebra. In such a specific

sense, the cluster ground state provides an example of quantum phase of matter with

the so-called symmetry protected topological order. Remarkably, such a kind of order

is preserved by the Ising interaction and the external field in Eq. (4.33) until quantum

phase transitions occur into the system.

The winding numbers for the terms in the Hamiltonian are shown in Table 4.1. The

winding number for the first term in Eq. (4.33) is −l. When l = 2, the ground states of

the first part of the Hamiltonian is cluster states or dual cluster states depending on the

value of λ. The winding numbers for AFM(Y) and FM(Y) are both 1. This means that we

can not use the winding number to fully characterize all the phases. However, we know

that if two phases can be adiabatically connected without going through degeneracy, they

are the same phase. With this property, we can distinguish different phases even they

have the same winding number. The high winding number from the first term makes the

system nontrivial.

The cluster-Ising models enjoy non-trivial duality properties. In particular, our Hamil-

tonian Eq. (4.33) can be mapped to the class of models considered in Ref. [63]. The

Hamiltonian for l = 3 is

HGC3 = −
N∑
j=1

λσxj σ
z
j+1σ

z
j+2σ

x
j+3 + a

N∑
j=1

σyjσ
y
j+1 + g

N∑
j=1

σzj . (4.34)

One can make a dual transformation

σzj = τ yj τ
y
j+1,

σxj σ
x
j+1 = τ zj+1,

σyjσ
y
j+1 = −τ yj τ zj+1τ

y
j+2,

σxj−1σ
z
jσ

z
j+1σ

x
j+2 = −τxj τ zj+1τ

x
j+2. (4.35)

We can have
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Figure 4.7: Phase diagram of cluster-Ising models. (a)-(f) are phase diagrams of the
system for l from 1 to 6. We choose λ = 1.

Hdual
CI3 = λ

∑
j

τxj τ
z
j+1τ

x
j+2 − a

∑
j

τ yj τ
z
j+1τ

y
j+2 + g

∑
j

τ yj τ
y
j+1. (4.36)

Since the construction of the phase diagram of the systems relies on energy properties,

the phase diagrams are unaltered by duality.

Phase diagrams with l from 1 to 6 are shown in Fig. 4.7((a)-(f)). Fig. 4.7(a) and (b)

show the detailed phase diagram for l = 1 and l = 2 (see Ref. [63, 47]). The abbreviations

mean different phases: paramagnetic (P), ferromagnetic (FM), antiferromagnetic (AFM),

cluster (C). The superscript specifies the direction of the order. The cases l > 2 were

recently studied by Lahtinen and Ardonne [144]. For even l ((b),(d),(f)), the Zeeman field

is the control parameter. When g > 0, phases with even integer winding numbers are

generated. The Ising interaction a tunes the ferromagnetic or antiferromagnetic phases.

The roles of g and a are exchanged for odd l ((a),(c),(e)). Elaborating on the findings

for l = 2 [132], Lahtinen and Ardonne demonstrated that the criticality of the system is

indeed characterized by the so(l+ 1)1 conformal field theory. The structure of the phase

diagrams is related to the symmetry of (hy(k), hz(k)). Such symmetry implies that for l

even, the phase diagram is symmetric a→ −a; for odd l, the symmetry is g → −g. FMα

or AFMα denotes ferromagnetic or antiferromagnetic order along the spin direction α,

respectively. The C2 and C∗2 cluster and dual cluster phases respectively, display a string

order of the cluster state type with two Majorana modes at the edges of the system; such
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Figure 4.8: Critical momentums for (a) l = 2 and (b) l = 3.

two phases are characterized by string order parameters with different spin polarizations

at the edges [63]. Similarly, C3 phases are cluster state phases with three Majorana modes

at the edges of the system. C3 and C∗3 phases in (c) are distinguished from each other

by the negative and positive Ising interaction a. The Cm and C∗m phases with m > 2 in

Fig. 4.7 ((c)-(f)) are defined in with a similar logic. For even l, C∗m and Cm cluster phases

can be swapped by inversion of the Zeeman field g; for odd l, they can be transformed one

another by swapping ferromagnetic and antiferromagnetic Ising exchange. The different

phases Cm with fixed l in the different panels of Fig. 4.7 can be connected adiabatically.

Namely a fixed phase Cm of a given Hamiltonian Hl evolves in to Cm of Hl+1 under

Hl,l+1 = (t− 1)Hl + tHl+1, t ∈ [0, 1].

The winding numbers for the phases P, C2, FM(Y), AFM(Y), FM(X), AFM(X) are

0,−2, 1, 1,−1,−1, respectively. The generalized cluster states with winding number −l
are “broken” into phases characterized by lower winding numbers (−(l − 1), . . .),−1.

There is a parity property for l in the phase diagrams. Odd and even ls have different

structures of phase diagrams. This would suggest that the generalized cluster states for

odd and even ls have quite different properties.

The green-solid lines in Fig. 4.7 are in the XY universality class. For the blue-dotted

(red-dashed) straight lines indicate Ising phase transitions. The XY and Ising transitions

have a topological difference. The two phases separated by the XY line have winding

number difference equals to 2. However, for ground states separated by the Ising type

transition, the winding number difference is 1. Different from blue-dotted (red-dashed)

lines, the green-solid lines have critical momentum depending on the parameters a and

g. In Figs. 4.8(a) and (b), the critical momentums are presented for l = 2 and l = 3,

respectively.

In Fig. 4.9(a) the critical points are labeled and the energy bands are shown in (b). For
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Figure 4.9: Phase diagram (a) for l = 2 and (b) energy band structures of some critical
points.

the critical points at a = 0 or g = 0, low-energy dispersions are linear (M0,M2,M3,M4).

However, forM1 andM5, the low-energy dispersions are quadratic. Actually the difference

between the dispersions can lead to novel effects. Recent studies reveal a new kind of

Weyl semimetal with quadratic double Weyl fermions arising from the spin-orbit coupling

[146]. They show that the linear and quadratic dispersions have different chiral topological

charges. Recent developments of topological materials in condensed matter physics show

that energy band is a resource to analyse physical properties of the periodic system.

Therefore, we want to study the difference between the linear and quadratic dispersions

with finite-size scaling.

4.4.2 Scaling Behavior of Linear Dispersions

Now we discuss the scaling behavior of phase boundaries close to quantum phase tran-

sitions with z = 1 (green-solid lines in Fig. 4.7). We present the scaling behavior in

Fig. 4.10. The scaling ansatz for the (derivative of the) geometric phase is

dϕ

dg
|gm ' κ1 lnN + const, (4.37)

dϕ

dg
' κ2 ln |g − gc|+ const, (4.38)

where gc is the critical value for infinite long spin chain, and gm marks the anomaly for the

finite size system. According to the scaling ansatz, in the case of logarithmic singularities,

the ratio |κ2/κ1| is the exponent ν that governs the divergence of correlation length. We
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Figure 4.10: Scaling behaviors for the transition line from M3 to M5 according to (a)
Eq. (4.37) and (b) Eq. (4.38). (c) Scaling coefficient κ1 for the green phase boundary in
Fig. 4.7(b) with critical momentum kc changing from π/2 to π. (d) represents κ1 with kc
changing from 0 to π/2 for l = 3.

note that the scaling behavior is related to the band structure at low energy. Now we look

at the case with l = 2. For the reason that the critical properties are found symmetric

about a = 0, we discuss the phase boundaries with 0 < a < 2. In Fig. 4.10(c) we

present the scaling coefficient κ1 when the Ising interaction a changes. We note that the

scaling coefficient κ1 changes smoothly along the XY critical lines (green-solid lines). This

behavior arises because the band structure in the phase boundaries are characterized by

the same topology. Specifically, in M3 there are two degenerate points (or Dirac points)

– see Fig. 4.9(c). As for M4, there are three degenerate points in the band structure.

Therefore, M4 enjoys a so(3)1 criticality rather than the XY one. Therefore, the scaling

coefficients exhibit different discontinuity between M4 and the XY type critical points as

shown in Fig. 4.10.

As for topological quantum phase transitions, we first consider l = 2. At M0, the

quantum phase transition between a paramagnet and a cluster phase occurs. Similarly,

M4,M2 at a = ±1 are quantum multicritical points involving the cluster phase. We found

that the same scaling behaviour is displayed in M2 and M4. The ratio |κ2/κ1| ∼ 1 (see
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Figure 4.11: The value of F = [1− exp(dϕ/dg − dϕ/dg|gm)] as a function N(g − gm) for
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Eq. (4.37) and Eq. (4.38)). For a = 0, phase transitions occur at |g| = 1. As |g| > 1, the

ground state is a trivial insulator(P phase). However, if |g| < 1, the ground state is a

symmetry protected cluster phase. As expected by looking at the dispersion curves M0

and M3 share the same criticality. A similar finding holds for M2 and M4. The scaling

coefficient κ1 for l = 3 is represented in Fig. 4.10(d). For multicritical points with multiple

degeneracies in energy bands, the scaling coefficients are discontinuously connected to the

neighboring critical points which share the same topologies of band structures.

Furthermore, by proper scaling and taking into account the distance of the extremum

of geometric phase from the critical points, it is possible to make all the data for the

value of F = [1− exp(dϕ/dg − dϕ/dg|gm)] as a function of N1/ν(g − gm) for different N

collapse onto a single curve [139, 62]. In (a), the curves for a = 0.1, 0.2, 0.3 are shown.

In (b), the curves for a = 0.7, 1.1, 1.7 are presented.

4.4.3 Scaling Behavior of Quadratic Dispersions

In Fig. 4.7 there are a kind of critical points which are joint points between XY and

Ising classes, i.e., M1 and M5 in (b). M1 and M5 are non-Lorentz-invariant critical

points. These point have special energy band structure. In Fig. 4.9(b), we can see that

the low energy dispersion is quadratic in k. The phase transition is characterized by

the dynamical critical component z = 2. And the phase transitions can not described by

Lorentz-invariant conformal field theory. From numerical calculations, we find the scaling

behaviors as shown in Fig. 4.12. At M1 and M5 the scaling ansatz in Eq. (4.37) and
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Figure 4.12: Scaling behavior for the point M5.

Eq. (4.38) changes to

ln
dϕ

dg
|gm ' κ̃1 lnN + const, (4.39)

and

ln
dϕ

dg
' κ̃2 ln |g − gc|+ const. (4.40)

Because of the quadratic dispersion, the scaling behaviors are found to be logarithmic.

Fig. 4.12(a) and (b) show κ̃1, and κ̃2 being 1.999 and −0.492, respectively. Close to

critical points with quadratic dispersions for l ≥ 2, we find a similar log scaling behavior.

In Fig. 4.13 the low energy dispersions at kc = π are plotted around a = 2. When the

system is close to a = 2, the dispersion has smaller slope, but still linear. When it reaches

a = 2, it becomes k2 dispersion.

We have studied the phase diagrams and quantum criticalities of generalized cluster-

Ising models through the winding number and scaling properties of the geometric phase,

respectively. The critical points with linear and quadratic low-energy dispersions obey
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Figure 4.13: Dispersion curves around kc = π for various values of a.
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different scaling ansatz. Specifically, the critical point with critical exponent z = 2 shows

anomalous logarithmic scaling behavior which is markedly different from that one with

z = 1, with linear dispersions. There is a close connection between topological phase

transition, quantum criticality, energy band structure and geometric phase.
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Chapter 5

Statistical Properties of Quenched

Edge States

Recently, nonequilibrium physics has attracted a lot of interest in eigenstate thermal-

ization hypothesis (ETH) which states that an isolated quantum many-body system

would relax to a state well described by the standard statistical-mechanical prescription

[147, 148]. Experiments, especially ultracold atoms [149, 150, 151, 152, 153], provide a

flexible platform to perform nonequilibrium controlling. Quantum quench is one typical

approach to drive systems from equilibrium state to non-equilibrium. Many systems have

been considered: cold atoms [154], circuit-QED [50], quantum dots [155] and so forth.

Even in topological systems, quantum quenches are shown to exhibit many interesting

effects and applications, for instance, band tomography [156], dynamical phase transition

(DPT) [157, 158], preservation of Chern number [159], by discussing the band prop-

erties. Response of edge states to quantum quench are also explored in open-boundary

topological systems [159, 160]. In addition, edge modes with nonequilibrium dynamics

has also been investigated, e.g., by discussing the scaling of topological defects [161, 162]

and survival probability [163, 164].

In general, physical properties for nonequilibrium systems are manifested through

some dynamical observables. Measures, like Loschmidt echo (LE) which is also known

as the “return” probability, captures the fidelity of the system after a quantum quench.

Moreover, LE is a useful technique that can characterize many phenomena, phase transi-

tion or DPT [52, 165], non-Markovianity [166], and the statistical work done in quench

process [167]. In topological systems, LE is shown to indicate DPT via Fisher zeros [157].

However, many of these works explore the physics via dynamical observables. As noted in

[168, 169], probability distributions in quantum quench are the essence of nonequilibrium
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systems. Indeed, those dynamical observables extract information of systems, which can

fully captured by probability distribution. In particular, the long-time behavior of the

quenched system is described by the probability distribution.

5.1 Loschmidt Echo, Work, and Probability Distri-

bution

Usually, LE is utilized to explore the dynamical behavior of a system. LE is a versatile

technique and can be related to a lot of interesting effects, such as decoherence, phase

transition and non-Markovianity. Loschmidt amplitude (LA) is defined as the overlap

between the initial state and the final state,

G(t) = 〈ψ0|e−iH1t|ψ0〉

=
2N∑
n=1

Pne
−iEnt, (5.1)

where Pn = |〈ψ0|Φn〉|2 and |ψ0〉 is the initial state before quench, and |Φn〉 are the

nth instantaneous eigenstate of quenched Hamiltonian H1. To physically quantify the

dynamics, LE, i.e. L(t) = |G(t)|2 is usually used. It is clear that LE can be understood

as a “return” probability, and it is really an interference effect. The statistics of work

done during the process of a quench is analyzed in Ref. [167]. This has motivated people

to investigate the relation between probability distribution and physical properties in

nonequilibrium systems [170, 171, 168, 172, 173].

Specifically, it has been found in Ref. [171] that the choice of the initial state is

important. When the quenched term H1 − H0, where H0, H1 are initial and quenched

Hamiltonian in spin−1/2 systems, commutes with H0, magnetic susceptibilities can be

interpreted as cumulant of magnetization distribution of initial state. The choice of initial

states can make the quench problem very different [174]. Usually, in equilibrium many-

body systems, phase transitions are characterized by properties of low energy states. For

topological systems, topological invariants change when bandgap closes, and correspond-

ingly the number of edge modes changes. However, topological invariants are not merely

reflected by the low energy characteristics of a system [117]. For the systems under quench

with topological features, one of the edge states could be chosen as an initial state. As

shown in [159, 160], responses of edge states to sudden quench are highly interesting.

Depending on the quenches, the LE exhibits quite different dynamical behaviors. Here,
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we study the problem in a different way. We consider the long-time properties of the

quenched edge state.

5.2 Mixed State Description of Long-time Average

of Quenched System

For a system H0 with eigenstate |ψ0〉, the quantum state when the system is suddenly

quenched to a new Hamiltonian H1 is

|Ψ(t)〉 = e−iH1t|ψ0〉
=

∑
n

e−iEntCn|Φn〉, (5.2)

where |Φn〉 and En are eigenstates and eigenenergies of H1 and Cn = 〈Φn|ψ0〉. An

observable for the system after sudden quench can be written as

O(t) = 〈Ψ(t)|O|Ψ(t)〉
=

∑
n

Pn〈Φn|O|Φn〉+
∑
n6=m

CnC
∗
me
−iEnmt〈Φm|O|Φn〉 (5.3)

with Enm = En−Em and Pn = |Cn|2. Pn is called probability distribution and is the nth

diagonal element of density matrix ρ(t) = |Ψ(t)〉〈Ψ(t)|. To characterize the steady state

after relaxation, one can define long-time average of O(t) as

O = limT→∞
1

T

∫ T

0

dtO(t)

=
∑
n

Pn〈Φn|O|Φn〉+ limT→∞
1

T

∫ T

0

dt
∑
n 6=m

CnC
∗
me
−i(Enm)t〈Φm|O|Φn〉. (5.4)

The average is taken over an integral multiple of the period. If no degeneracy appears,

the second term is zero according to Riemann-Lebesgue lemma. We can write fidelity

into two parts O(t) = O + δO(t) where δO(t) denotes the fluctuation about the average.

In some non-topological many-body systems [154, 54], the fluctuation part characterizes

the nonequilibrium phenomenon. Even in topological systems, the dynamical properties

show differences for various quenches [164].

Ergodic theorem guarantees the thermalization in isolated many-body systems in

which it applies. In such systems, no matter what initial states are, the final states always
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evolve to thermalized steady states. However, in integrable systems with its eigenstate

being initial state, thermalization is not possible. However, the steady state can still be

described by an ensemble, i.e., generalized Gibbs ensemble (GGE) [148]

ρG =
e−

∑
α λαIα

Tr[e−
∑
α λαIα ]

, (5.5)

where λα are Lagrange multipliers constraining the value of each conserved quantity Iα in

the postquench system, i.e., 〈ψ0|Iα|ψ0〉 = Tr[ρGIα]. In our case, Iα are number operators

on the energy eigenstates of postquench system. ρG is GGE ensemble established in

studying the issue of thermalization of isolated systems and is actually the long-time

steady state after sudden quench [148]. From Eq. (5.4) and Eq. (5.5), one can easily find

that

O = Tr[ρGO]. (5.6)

The mixed state of the topological models continues to exhibit topological properties

until the critical temperature [36]. One interesting question is: can the effective ensemble

of the quenched system convey topological information? In the following, we explore the

relation between the long-time steady state and the topology.

5.3 Aubry-André-Harper model

The AAH model is a 1D tight binding model [175, 176]. This 1D model can be used to

realize topological particle pumping [177], and the relation to zero modes is also analyzed

[128]. Moreover, the physics that happens in AAH model is related to other topological

models in 1D, such as Kitaev chain, SSH model [128]. The AAH model can be described

as

H =
N−1∑
i=1

t[1 + λ cos(2πβi+ ϕλ)]â
†
i+1âi + h.c.

+
N∑
i=1

v cos(2πβi+ ϕv)â
†
i âi. (5.7)

When λ = 0, it is called diagonal-AAH model and it is topologically trivial. This diagonal

model has been used to analyze disorder and localization of Bose-Einstein condensate in

quasiperiodic optical lattice [178]. However, if λ is nonzero, the system is topologically

nontrivial. AAH model can be mapped to its 2D ancestor model with ϕv being the crystal
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Figure 5.1: Energy spectrum with λ = 1, v = 0, t = 1 (a). (b)-(d) probability distri-
butions for three quenches from ϕλ = 0 to 0.45π, 0.5π, and 0.7π, respectively. Other
parameters are .

momentum in the second dimension [179]. We consider a simple situation with v = 0.

The inhomogeneous hopping is tuned by the cosine modulation. β = 1/m means m

sublattices in the unit cell. When β = 1/2, it resembles SSH model as we have studied.

Incommensurate lattice has also been studied in terms of Anderson localization in 1D

system with BEC [178]. The recent studies find that quasicrystal with incommensurate

ratio β has the same topological origin as AAH model [23, 177].

For open boundary one-dimensional lattice, there are two edge modes appearing at

the two ends, separated from each other. We first consider initial edge mode at zero

energy, which means edge state degeneracy for infinite length of lattice. For simplicity,

we let t = 1, λ = 1, β = 1/2. The spectrum is plotted in Fig. 5.1(a). When −π
2
< ϕλ <

π
2

there are two edge modes appearing at two ends of the lattice. Assuming that the initial

state is an edge state with ϕλ = 0, then one can quench the system by changing ϕλ

to 0.45π, 0.5π, 0.7π corresponding to (b)-(d), respectively. The probability distributions

in (b)-(d) reveal that the ground band and excited band are symmetrically populated.

This is imposed by the initial condition 〈Ψ0|H0|Ψ0〉 = 0. For this reason, periodic revival

occurs [164].

We next consider the general model with both diagonal and off-diagonal, with the off-
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Figure 5.2: (a-c): spectrums for λ = 0.3, 0,−0.3. (d-f) probability distributions for
quenches from λ = 0.3 to λ = 0.05, 0,−0.3, respectively, with ϕv = π/2. v = 1, ϕλ =
0, t = 1, N = 50.

diagonal parameter λ as the quenched variable. In Fig. 5.2(a)-(c), energy spectrums are

shown with λ = 0.3, 0,−0.3, respectively. The system is initialized at λ = 0.3, ϕv = π/2

where the edge states at two ends are degenerate. Probability distributions in (d)-(f)

represent quantum quench to λ = 0.05, 0,−0.3. As we see, distributions are symmetric

along the energy axis for all cases. In Fig. 5.3, the system is chosen with lower edge mode

at λ = 0.3, ϕv = 0.2π, which is far from the degeneracy point. Fig. 5.3(a)-(c) show the

quench from λ = 0.3 to λ = −0.3, 0, 0.05, respectively. The unbalanced behavior shows

the overlap between initial state and eigenstates of post-quenched system.

5.4 Fidelity and Entropy

An observable for the system after quench can be written as O(t) = 〈Ψ(t)|O|Ψ(t)〉, with

|Ψ(t)〉 =
∑

n e
−iEnt〈Φn|ψ0〉|Φn〉. To capture the main dynamical behaviors of the system,
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Figure 5.3: Probability distributions for different quenches. The initial edge state is
chosen as one with lower energy at λ = 0.3, ϕv = 0.2π. (a)-(c) correspond to the quenches
λ = −0.3, 0, 0.05, respectively.

we choose fidelity [180] as an measurement, i.e.,

F (t) = 〈ψ0|Ψ(t)〉〈Ψ(t)|ψ0〉
= 〈ψ0|

(∑
n,m

e−iEnmt〈Φn|ψ0〉〈ψ0|Φm〉|Φn〉〈Φm|
)
|ψ0〉

=
∑
n,m

e−iEnmt〈ψ0|Φm〉〈Φm|ψ0〉〈ψ0|Φn〉〈Φn|ψ0〉

=
∑
n,m

e−iEnmtPmPn, (5.8)

The dynamical survival probability of initial state shows differences for various quenches

[164]. To explore deeper relation between topological quench and the response of system,

the long-time steady state should be analyzed. The initial state is the edge mode which

is labeled as N/2 from the lowest energy state. Long-time average of F (t) is

F = limT→∞
1

T

∫ T

0

dtF (t). (5.9)

From Eq. (5.6), we have

F = Tr[ρG|ψ0〉〈ψ0|]. (5.10)

As shown in Fig. 5.4(a), when quantum quench is done in the same phase, F has finite

value. But, if the post-quenched system belongs to a different phase, it exhibits quite

different behaviors: namely, F approaches zero if the system is quenched over the critical

point. In Fig. 5.4(b) von Neumann entropy (VNE) S(ρ) = −Tr[ρlnρ] is shown for ρG.

Even though the probability distribution Pn is quite different for ϕv = 0.5π (Fig. 5.2(d))
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Figure 5.4: Long-time average of fidelity (a) and von Neumann entropy (b), with T =
1200, t = 1, v = 1, b = 1/2, ϕλ = 0, N = 200.

and ϕv = 0.2π (Fig. 5.3(c)), VNE does not make so much difference.
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Chapter 6

Detection of Topological Quantum

Number in Circuit-QED System

In previous chapters, we have discussed the Aharonov-Bohm effects and topological phe-

nomena with neutral atoms. In this chapter, we study the topological effects in periodic

photonic systems. The photonic edge states and quantum Hall effect in photonic crystals

have been studied by Haldane and Raghu [181] and also probed experimentally [182]. Re-

cently, artificial gauge fields for photons are also investigated in many photonic systems

[183, 184, 185, 186, 187]. Moreover, the photons in microwave frequency are proposed

for simulating condensed matter effects [188, 189]. In particular, Koch et al. propose

a special passive coupling element between microwave resonators [189]. As a result, the

time-reversal symmetry can be broken and artificial gauge field is generated [189]. The

use of passive coupling elements can avoid some of the challenges posed by dissipation.

The experiments have realized artificial gauge field in circuit-QED systems recently [190].

At first, for electromagnetic waves, one can mimick topological features by fabricating

periodic structures in photonic crystal [191, 182, 129] or coupled cavity array [192]. In

particular, topological Floquet insulator can be realized in an array of evanescently cou-

pled helical waveguides where the propagation coordinate z acts as ‘time’ in experiment

[193]. The graphene-like lattice is fabricated to simulate the topological effects in hon-

eycomb lattice. In the photonic crystal, the properties of photons in the lattice can be

tuned in various ways, e.g., external driving, interaction with atoms, cavity decay. The

cavity decay is also exploited to observe the topological phase transitions [24]. Here, we

focus on the circuit-QED lattice where microwave photons can hop between neighbor-

ing resonators/cavities with the mediation of atoms [194, 195]. The advantage for the

atom-mediated hopping is that one can tune the atoms in such a way that topological
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(a) (b)

Figure 6.1: (a) The circuit diagram of two resonators and a flux qubit. (b) The energy
levels and interactions with resonators.

properties of photons can be changed.

Before the discussion of photonic lattice, we first consider the quantum system with

simple atom-photon interaction. In quantum optics, the interaction between atom and

photon is a fundamental tool to engineer quantum state [196], cool resonator [197], etc.

If several modes of photons are coupled to atoms, the effective interactions (linear and

nonlinear) can be obtained, which are useful to study many-body physics for photons [198,

199]. In the following, we consider the atom-mediated two resonators which will be used to

generate topological states in later sections. This simple quantum system has significant

applications in quantum optics and quantum information processing, e.g., generating

entanglement between resonators [200, 201], producing noninear photon hopping [202].

6.1 Atom-Mediated Two Resonators: Entangled States

The circuit-QED system is a nice setup to perform quantum optical effects and realize

quantum information processing [203, 204]. The entanglement between resonators can be

realized by coupling them to a three level superconducting artificial atom [205, 206]. The

circuit of the system is shown in Fig. 6.1. The qubit we consider is the flux-type [207].

The energy levels of flux qubit can be tuned by the magnetic flux in the superconducting

loop interrupted by Josephson junctions, which are marked by red and blue crosses in Fig.

6.1(a). The loop can be treated as a multilevel “atom”. The transition elements between

different levels can also be adjusted by magnetic flux. When the flux is properly tuned,

cyclic transitions between three levels can be realized [208]. A control microwave field

is applied to couple the levels |1〉 and |3〉 via the transmission line. In (b), the energy
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levels of the “atom” are shown. Two resonators couple to the transitions |1〉 ↔ |2〉
and |2〉 ↔ |3〉, respectively. The Hamiltonians for the driven atom and the interaction

between resonators and atoms are H0 and H1

H0 =
2∑
j=1

νj â
†
j âj +

3∑
k=2

ωk1σkk + Ω(σ13e
iν3t + σ31e

−iν3t). (6.1)

H1 = g1(â†1σ12 + â1σ21) + g2(â†2σ23 + â2σ32). (6.2)

Here ν1,2 are the frequencies of the two harmonic oscillators. ν3 is the frequency of the

microwave field. â†j and âj are creation and annihilation operators of the two oscillators,

respectively. σjj and σjk(j 6= k, j, k = 1, 2, 3) are projection operators and transition

operators of the atom, respectively. g1 and g2 represent the atom-resonator interactions,

and Ω is the Rabi frequency of the driven transition |3〉 ↔ |1〉. In the rotating frame, the

Hamiltonians change to

H̃0 = ∆31σ33 + Ω(σ13 + σ31). (6.3)

H̃1 = g1(â†1σ12e
−i∆21t + â1σ21e

i∆21t) + g2[â†2σ23e
−i(∆32−∆31)t + â2σ32e

i(∆32−∆31)t], (6.4)

where ∆31 = ω31 − ν3, ∆32 = ω32 − ν2, ∆21 = ω21 − ν1 ωjk = ωj − ωk are frequency

differences between three energy levels. After diagonalization of H̃0 we obtain the dressed

states which are superpositions of bare states

|+〉 = cos θ|3〉+ sin θ|1〉, |−〉 = − sin θ|3〉+ cos θ|1〉, (6.5)

where we define cos θ =
√

1
2

+ ∆
2d

, sin θ =
√

1
2
− ∆

2d
, d =

√
∆2 + 4Ω2 and ∆31 = ∆. The

dressed states |+〉 and |−〉 have the eigenvalues λ± = 1
2
(∆ ± d), respectively. In the

eigenstates representation, H̃0 = λ+σ++ + λ−σ−−. Considering a unitary transformation

U ′ = exp(−iH̃0t), the system is described by

Hint = g1â
†
1[sin θσ+2e

i(λ+−∆21)t + cos θσ−2e
i(λ−−∆21)t] + g2â

†
2[cos θσ2+e

−i[λ++(∆32−∆31)]t

− sin θσ2−e
−i[λ−+(∆32−∆31)]t] + h.c. (6.6)

Here we consider the three-photon resonance conditions, i.e., ∆21 = ∆31−∆32. By tuning

Rabi sideband resonance λ+ = ∆21 and neglecting these fast oscillating terms, we can
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obtain the reduced Hamiltonian as

HI = (g1â
†
1 sin θ + g2â2 cos θ)σ+2 + h.c. (6.7)

Then we introduce a Bogoliubov transformation,

b̂1 = â1 cosh r + â†2 sinh r,

b̂2 = â2 cosh r + â†1 sinh r, (6.8)

where the squeezing parameter is defined as

r = arctan

√
d−∆

d+ ∆
(∆ > 0), (6.9)

r = arctan

√
d+ ∆

d−∆
(∆ < 0). (6.10)

The Hamiltonian HI is written with the new operators b1 and b2 as

H̃I2 = G(b̂2σ+2 + b̂†2σ2+) (∆ > 0), (6.11)

H̃I1 = G(b̂1σ2+ + b̂†1σ+2) (∆ < 0), (6.12)

where the effective coupling constant G =
√
|g2

2 cos θ2 − g2
1 sin θ2|. In the dressed states

representation Eq. 6.5, the mater equation of the system is written as

˙̃ρ = −i[H̃I , ρ̃] + Laρ̃+ Lcρ̃, (6.13)

with

Laρ̃ =

m6=n∑
m,n=+,−,2

Γmn
2

(2σnmρ̃σmn − σmmρ̃− ρ̃σmm)−
k 6=j∑

k,j=+,−

[
Γkj1in

2
(2σ2kρ̃σj2 − σjkρ̃− ρ̃σjk)

−Γkj2in
σk2ρ̃σ2j] + Γph1(σ++ρ̃σ−− + σ−−ρ̃σ++) +

Γph2
2

(2σpρ̃σp − σpσpρ̃− ρ̃σpσp)

+
∑

l=+,−,2

Γll
2

(2σllρ̃σll − σllρ̃− ρ̃σll), (6.14)
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and

Lcρ̃ =
κ

2
[

2∑
j=1

(Nj + 1)(b̂j ρ̃b̂
†
j − b̂†j b̂j ρ̃) +Nj(b̂

†
j ρ̃b̂j − ρ̃b̂j b̂†j)]

+κM(ρ̃b̂1b̂2 + b̂1b̂2ρ̃− b̂1ρ̃b̂2 − b̂2ρ̃b̂1) + h.c., (6.15)

where σp = σ++ − σ−−. We assume that the decay rates of resonators are the same, i.e.,

κ1 = κ2 = κ. The parameters in the above expressions are

Γ+− = γ31 cos4 θ +
γ33

4
sin2 2θ,

Γ−+ = γ31 sin4 θ +
γ33

4
sin2 2θ,

Γ+2 = γ32 cos2 θ, Γ−2 = γ32 sin2 θ,

Γ2+ = γ21 sin2 θ, Γ2− = γ21 cos2 θ,

Γ+−
1in

= Γ−+
1in

=
γ32

2
sin 2θ,

Γ+−
2in

= Γ−+
2in

=
γ21

2
sin 2θ,

Γph1 =
γ33

4
sin2 2θ, Γph2 =

γ31

4
sin2 2θ,

Γ++ = γ33 cos4 θ,Γ−− = γ33 sin4 θ,Γ22 = γ22,

N1 = N2 = sinh2 r, M = sinh r cosh r, (6.16)

in which the terms Γmn(m,n = +,−, 2,m 6= n) describe the incoherent population trans-

fer between different dressed states, Γkj1in
and Γkj2in

(k, j = +,−, k 6= j) represent the cross

correlations between the incoherent process |±〉 → |2〉 and |2〉 → |±〉, Γphj(j = 1, 2) and

Γkk(k = +,−, 2) are the phase damping terms, Nj(j = 1, 2) and M denote the atomic

reservoir effects. γjk(j 6= k) denote decays from states |j〉 to |k〉. γjj are the dephasing

rates for the states |j〉.
As an illustration, we consider the case ∆ > 0 with the Hamiltonian Eq. 6.11. The

reduced master equation ρ̃′c of the modes a1 and a2 is

˙̃ρ′c = A11(â1ρ̃
′
câ
†
1 − â†1â1ρ̃

′
c) + A22(â†1ρ̃

′
câ1 − â1â

†
1ρ̃
′
c)

+ B11(â2ρ̃
′
câ
†
2 − â†2â2ρ̃

′
c) +B22(â†2ρ̃

′
câ2 − â2â

†
2ρ̃
′
c)

+ A12(â1ρ̃
′
câ2 − â2â1ρ̃

′
c) + A21(â†2ρ̃

′
câ
†
1 − â†1â†2ρ̃′c)

+ B12(â†1ρ̃
′
câ
†
2 − â†2â†1ρ̃′c) +B21(â2ρ̃

′
câ1 − â1â2ρ̃

′
c)

+
κ

2
(â1ρ̃

′
câ
†
1 − â†1â1ρ̃

′
c) +

κ

2
(â2ρ̃

′
câ
†
2 − â†2â2ρ̃

′
c) + h.c., (6.17)
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where the coefficients Amn and Bmn(m,n = 1, 2) are given as

A11 =
κ

2
α22 sinh2 r, A22 =

κ

2
α11 sinh2 r,

B11 =
κ

2
α11 cosh2 r, B22 =

κ

2
α22 cosh2 r,

A12 = A21 =
κ

2
α22 sinh r cosh r,

B12 = B21 =
κ

2
α11 sinh r cosh r. (6.18)

From the master equation Eq. 6.17, the c-number quantum Langevin equations of the

modes a1 and a2 are derived as

dα1

dt
= −(

κ

2
− ζ11)α1 + ζ12α

∗
2 + fα1 ,

dα2

dt
= −(

κ

2
− ζ22)α2 + ζ21α

∗
1 + fα2 , (6.19)

where

ζ11 =
κ

2
(α∗11 − α22) sinh2 r, ζ12 =

κ

2
(α∗11 − α22) sinh r cosh r,

ζ21 =
κ

2
(α∗22 − α11) sinh r cosh r, ζ22 =

κ

2
(α∗22 − α11) cosh2 r. (6.20)

fα1 and fα2 are fluctuation forces of the modes with zero averages 〈fαj〉 = 0 and correlation

functions 〈fx(t)fy(t′)〉 = 2D′xyδ(t− t′). The diffusion coefficients 2D′xy can be calculated

via the generalized Einstein relation and the nonzero diffusion coefficients are

2D′δα∗1δα1
=

κ

2
(α∗11 + α11) sinh2 r,

2D′δα∗2δα2
=

κ

2
(α∗22 + α22) cosh2 r,

2D′δα1δα2
= −κ

2
(α11 + α22) sinh r cosh r,

2D′δα∗1δα∗2 = −κ
2

(α∗22 + α∗22) sinh r cosh r, (6.21)

wherein 2D′xy = 2D′yx and 2D′x∗y∗ = 2D′∗xy. Using the Duan’s criterion [209], the variance

sum Q of the original modes â1,2 is expressed as

Q = 2[1 + 〈δα∗1δα1〉+ 〈δα∗2δα2〉+ 〈δα1δα2〉+ 〈δα∗1δα∗2〉]. (6.22)

As shown in Fig. 6.2, the entanglement between two resonators is created when the

83



Figure 6.2: The variance sum Q of the original modes for ∆ > 0 as a function of the
normalized detuning ∆/Ω. We choose κ = 0.1γ; g1 = g2 = γ; γ31 = 2γ; γ21 = 0.2γ; γ33 =
γ22 = γ.

detuning is chosen properly.

6.2 Topological Photonic State in Atom-Mediated

Resonator Array

In this section, we come to the topic of topological states based on the atom-mediated

resonators. There are various models that support topological states. One possibility

is the optical ring microresonators where the spins are encoded by the clockwise and

counter-clockwise modes [191, 210]. In superconducting circuits several models have

been suggested [211, 212, 213, 214]. The model we consider here is composed of periodic

cells of the atom-mediated transmission line resonator. The photon hopping between

nearest neighbour resonators is tuned through the coupling capacitors and the connected

flux qubits, as shown in Fig. 6.3. an and bn represent two different resonators a and b at

the nth unit cell. The minimal setup of this circuit has been used to create entanglement

between two end resonators [201]. Here, we consider the periodic lattice of this circuit.

The capacitively coupled resonator lattice is described by the SSH Hamiltonian

H0 =
∑
n

J1â
†
nb̂n + J2â

†
nb̂n−1 + h.c., (6.23)
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Figure 6.3: Setup for the one-dimensional circuit-QED lattice. The cavity input-output
process is employed to probe the edge state.

where J1 and J2 are the intra- and inter-cell hopping amplitudes. For the qubit-assisted

hopping, we assume that the two resonators within the same unit cell are both coupled to

the flux qubit Q1, while the two resonators belonging to the two nearest-neighbour unit

cells are both coupled with the flux qubit Q2. The atom-mediated coupling provides an

alternating parametric modulation on the hopping amplitudes and the chemical poten-

tials. In the dispersive regime, when all the qubits are in the ground state, the coupling

between the resonator and the qubit can be removed, leading to an effective transmission

resonator lattice with photon hopping assisted by the connected qubits. Combined with

the previous capacitively coupled resonator lattice, the total Hamiltonian of this cicuit-

QED lattice (in a rotating frame with respect to the external driving frequency ωd and

also in the interaction picture with respect to the qubit energy ω1,2) takes the form

H =
∑
n

(J1 −
g1g2

∆
)â†nb̂n + (J2 +

g1g2

∆
)â†nb̂n−1 + h.c

+
g2

2 − g2
1

∆
(â†nân − b̂†nb̂n) + ∆c(â

†
nân + b̂†nb̂n),

(6.24)

where g1 and g2 describe the coupling strengths between the qubit Q1(Q2) and the res-

onators an and bn, (bn and an+1 ), ∆ = ω1 − ωd = ωd − ω2 is the detuning of the qubit

energies, and ∆c = ωc−ωd is the detuning of the resonator frequency. The qubit-assisted

hopping and on-site modulation terms are introduced in order to map into the effec-

tive second dimension. To simulate the two-dimensional Chern insulator Hamiltonian

[69, 70], we write the qubit-resonator coupling strengths in the above lattice Hamiltonian
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in a parameter space as

g1 = g0 sin(θ/2), g2 = g0 cos(θ/2), (6.25)

where the mixing angle θ = 2 arctan(g1/g2) and g0 =
√
g2

1 + g2
2. The parameter θ is

determined by the ratio between the coupling strength g1 and g2. Note that the cou-

pling strengths between the flux qubit and the resonators can be individually controlled

through using superconducting quantum interferences (SQUIDs) devices and changing

the external magnetic fluxes applied on the SQUIDs loops. Then θ can be engineered

from 0 to 2π for subsequent two dimensional mapping. Moreover, the topological feature

demonstrated below in this model endows this system with topological protection, which

allows our methods to be robust to practical deformations in the parameters engineering.

By substituting the above equation into the total lattice Hamiltonian and further writ-

ing it in momentum space, one can get H =
∑

k C
†
kh(k)Ck, where Ck = (âk, b̂k)

T . The

momentum density has the following form

h(k) = h0 + hxσx + hyσy + hzσz, (6.26)

where h0 = ∆c and h = (hx, hy, hz) = (2J cos kx, 2δ sin kx − Je sin θ sin kx, Je cos θ) with

J = (J1 + J2)/2, δ = (J1 − J2)/2 and Je = g2
0/∆. σx,y,z are the Pauli matrices spanned

by âk and b̂k. Now θ plays the role of the second dimension. This Hamiltonian can

simulate two dimensional Chern insulator. The topological properties of present model

are captured by the Chern number of the Bloch band and the edge state spectrum.

By mapping the two-dimensional torus to a spherical surface, the Chern number of the

occupied ground band can be expressed as

C =
1

4π

∫ ∫
dkxdθ(∂kxĥ× ∂θĥ) · ĥ, (6.27)

where the unit vector ĥ = (hx, hy, hz)/|h| with |h| =
√
h2
x + h2

y + h2
z. Through substitut-

ing hx,y,z into above formula and one can get the Chern number of the ground band as

C =

1 if −Je < 2δ < Je

0 otherwise
(6.28)

One can change the hopping difference δ to engineer the photonic topological phase tran-

sition. It is also worth pointing out that, when the coupling strength g2 = −g0 cos(θ/2),
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Figure 6.4: Energy spectrum of the lattice with (a) Chern number C = 1 for δ = 0 and
(b) Chern number C = 0 for δ = 0.6Je. For the Chern insulator, there are two edge
states at the in-gap energy denoted by the red dashed line. The inset shows the density
distribution of the two edge states. The other parameter are chosen as J = Je and the
lattice size L = 10.

the ground state can be prepared as a Chern insulator with C = −1. According to

the bulk-edge correspondence, the appearance of edge state is a hallmark of topological

phase. In Fig. 6.4(a), we have plotted the edge state spectrum with various values of θ.

There exist one pair of in-gap states which correspond to edge states localized at left and

right boundaries of the lattice. The density distributions for the edge states are plotted

in the inset figure of Fig. 6.4(a). We also show the spectrum for the topological trivial

situation in Fig. 6.4(b) with no edge state in the gap.

6.3 Chern Number of Photonic Lattice

Based on Laughlin’s pumping argument [215], recent scattering theory of topological

insulators shows that topological invariant can be described by the reflection matrices

at the Fermi level [216]. The basic experimental setup is achieved by rolling a two-

dimensional topological system into a cylinder and threading it with a magnetic flux.

For our one-dimensional photonic simulator, if we regard the left and right edges of the

photonic lattice as the two ends of the cylinder, the periodic parameter θ as the external

magnetic flux and the in-gap energy as the fermi level, our system can be naturally used

to simulate the experimental setup in Laughlin’s pumping argument and to test scattering

theory of topological insulators. When the frequency of the incident photon towards one

87



edge is tuned into the in-gap energy and the external periodic parameter θ is tuned over

one period, the pumping particle number per cycle can be expressed as

Q =
1

2πi

∫ 2π

0

dθ
d

dθ
log r(θ), (6.29)

where r(θ) is the reflection coefficient of the incident photon from one edge. In this

way, based on scattering theory of topological insulators [216], the topological invariant

can be characterized by the winding number of the reflection coefficient phase [217].

To further demonstrate this point, we model the total system in the scattering process

into three parts: left lead, device and right lead. We use Green function to analytically

derive the reflection coefficient from the left edge of the above one-dimensional lattice.

In particular, the reflection coefficient from the left lead is calculated below. The total

lattice Hamiltonian of the system is H = HL +HLD +HD +HRD +HR, where

HD =

L/2∑
n=1

[(J1 −
Je
2

sin θ)â†nb̂n + (J2 +
Je
2

sin θ)b̂†nân+1 + h.c.]

+

L/2∑
n=1

[Je cos θ(â†nân − b̂†nb̂n) + ∆c(â
†
nân + b̂†nb̂n)],

HL = −J
2

−∞∑
i=−1

(ĉ†i+1ĉi + h.c.),

HR = −J
2

∞∑
i=L+1

(ĉ†i+1ĉi + h.c.). (6.30)

We assume the lattice sites of device L is even. The tunnelings between leads and device

are given by

HLD = −J
2

(â†1ĉ0 + h.c.), HRD = −J
2

(ĉ†L+1b̂L + h.c.). (6.31)

In the basis {· · ·, ĉ†−1, ĉ
†
0, â
†
1, b̂
†
1, · · ·, â†L/2, b̂

†
L/2, ĉ

†
L+1, ĉ

†
L+2, · · ·}, we can formulate the Hamil-

tonian of the whole system as

H =

 HL τL 0

τ †L HD τR

0 τ †R HR

 , (6.32)
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where

HL =


· · · · · · · · · · · ·
· · · 0 −J/2 0

· · · −J/2 0 −J/2
· · · 0 −J/2 0


∞×∞

, HR =


0 −J/2 0 · · ·
−J/2 0 −J/2 · · ·

0 −J/2 0 · · ·
· · · · · · · · · · · ·


∞×∞

,

τL =


· · · · · · · · · · · ·
0 0 · · · 0

0 0 · · · 0

−J/2 0 · · · 0


∞×L

, τR =


0 0 0 · · ·
· · · · · · · · · · · ·
0 0 0 · · ·
−J/2 0 0 · · ·


L×∞

,

HD =


∆c + Je cos θ J1 − Je

2
sin θ 0 0 · · ·

J1 − Je
2

sin θ ∆c − Je cos θ J2 + Je
2

sin θ 0 · · ·
0 J2 + Je

2
sin θ ∆c + Je cos θ J1 − Je

2
sin θ · · ·

0 0 J1 − Je
2

sin θ ∆c − Je cos θ · · ·
· · · · · · · · · · · · · · ·


L×L

.

Then the Green function for the device is given by [218],

GD = [EÎ −HD − Σr
L − Σr

R]−1, (6.33)

where the self-energies of the leads are Σr
L = τ †Lg

r
LτL and Σr

R = τRg
r
Rτ
†
R. The lead Green

functions are

grL = [(E + iη)Î −HL]−1, grR = [(E + iη)Î −HR]−1. (6.34)

After some straightforward calculations, we find that the non-zero elements in the self-

energies are [Σr
L]11 = J2

4
[grL]∞,∞ and [Σr

R]LL = J2

4
[grR]11, otherwise is zero. Due to the sym-

metrical configuration of the whole system, we note that [Σr
L]11 = [Σr

R]LL. Furthermore,

the dispersion relation of the semi-infinite lead is E = −J cos k, the group velocity in the

lead is νL = νR = ∂E
∂k

= J sin k and the self-energy of the lead is [Σr
L]11 = [Σr

R]LL = −J
2
eika

[218]. Keeping νL > 0 and νR < 0 for the photon injecting from leads to device, we have

89



(assume J > 0 from now on)

νL =
√
J2 − E2,ΣL = [Σr

L]11 =
1

2
(E − i

√
J2 − E2),

νR = −
√
J2 − E2,ΣR = [Σr

R]LL =
1

2
(E + i

√
J2 − E2). (6.35)

Therefore, the device Green function is

GD =


EL Jα 0 0 0

Jα E −∆c + Je cos θ Jβ 0 0

0 Jβ · · · · · · 0

0 0 · · · E −∆c − Je cos θ Jα

0 0 0 Jα ER



−1

L×L

, (6.36)

with EL = E−∆c−Je cos θ−ΣL, ER = E−∆c +Je cos θ−ΣR, Jα = −J1 + Je
2

sin θ,Jβ =

−J2 − Je
2

sin θ. Via the continued fraction method and taking into account the periodic

pattern of the matrix elements in GD, the closed form of [GD]11 can be obtained,

[GD]−1
11 + ΣL = E −∆c − Je cos θ − (J1 − Je

2
sin θ)2

E −∆c + Je cos θ − (J2+Je
2

sin θ)2

[GD]−1
11 +ΣL

. (6.37)

Solving this algebra equation we have

[GD]11 = −2(Ep + P1)

m1 − im2

, (6.38)

where

m1 = J2
1 − J2

2 + (Ep + P1)(∆c + P1)− (J1 + J2)P2

−
√

[E2
p − (J1 + J2)2 − P 2

1 ][E2
p − (P2 − J1 + J2)2 − P 2

1 ], (6.39)

m2 = (Ep + P1)
√
J2 − (Ep + ∆c)2, (6.40)

P1 = Je cos θ, P2 = Je sin θ, (6.41)

and Ep = E − ∆c is the in-gap energy of our photonic system. Based on the Fisher-

Lee relation [219], Snm(E) = −δnm + i
√
νnνm[GD]nm, where the scattering matrix is
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S =

[
rL tR

tL rR

]
. The reflection coefficient from the left lead is thus

rL(θ) = −1 + i
√
J2 − E2[GD]11. (6.42)

Therefore, through substituting Eq. (6.38) into Eq. (6.42), we find that

rL(θ) = −m1 + im2

m1 − im2

. (6.43)

By substituting the above equation into Eq. (6.29), we get

Q =
1

2π

∫ 2π

0

d(arctan
m2

2 −m2
1

2m1m2

)

=
1

2
[sgn(2δ + Je)− sgn(2δ − Je)]

= C. (6.44)

One finds that the winding number of the phase of the reflection coefficients is exactly

equal to the topological invariant of this system.

6.4 Scattering Formulation of Topological Invariant

In this section, we show that the information regarding the photonic reflection coefficient

can be probed spectroscopically using cavity input-output process. The photonic Chern

insulator is then detected by counting the winding number of reflection coefficient phase.

In contrast to fermi system, one can directly probe the edge state and its scattering feature

in our photonic simulator. The reason is that bosonic photons can occupy one particular

eigenstate at the same time. This could be done by externally driving the resonators

with the driven frequency tuned as the eigenenergy of the lattice, then the corresponding

eigenmode would be occupied with some weights. In the rotating frame with respect to

the driving frequency, the driven Hamiltonian is Hd =
∑

n(Ωnaâ
†
n + Ωnbb̂

†
n) + h.c, where

Ωna,nb are the driven amplitudes in the nth unit cell. In the presence of dissipation, the

expectation value of the cavity field âj in steady state can be derived from the solution

of the Lindblad master equation

〈 ˙̂aj〉 = −i〈[âj, H +Hd]〉+ κ
∑
n

〈L[ân]âj〉, (6.45)
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where the Lindblad term L[ân]âj = ânâj â
†
n − {â†nân, âj}/2, κ is the cavity decay rate.

In the new bases a = (〈â1〉, 〈b̂1〉, ..., 〈ân〉, 〈b̂n〉)T and Ω = (Ω1a,Ω1b, ...,Ωna,Ωnb)
T with

Tr representing the transposition of matrix, based on the condition of the steady state

solution 〈 ˙̂aj〉 = 0, we can write the expectation value of the cavity fields in the steady

state as

a = −(∆c + T − iκ
2

)−1Ω, (6.46)

where the elements of matrix T are defined by Tna,nb = Tnb,na = J1 − Je sin(θ/2),

Tna,(n−1)b = T(n−1)b,na = J2 + Je sin(θ/2), Tna(b),na(b) = ±Je cos θ.
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Figure 6.5: The reflection coefficients from the left edge for topological (a) nontrivial
and (b) trivial insulators.

To probe the edge states, we need to occupy this edge states firstly. We choose to

excite the left edge state by external driving the leftmost resonator (see Fig. 6.3), with

the driving microwave pulses chosen as Ω = (Ω1a, 0, ..., 0, 0)T and driven frequency ωd

tuned to the in-gap energy. The reason is that the left edge state has maximal probability

occupying the leftmost resonator. In contrast, if the middle and rightmost resonators are

driven with same laser, the occupied probability of the left edge mode is very small, then

there will almost be no resonant eigenmode and all the photons will finally decay into

vacuum in the steady state. When the driven frequency is tuned as the bulk energy,

the photons are extensively populated in the lattice, which satisfies the feature of Bloch

bulk state. Therefore, the photonic edge state can be directly observed by measuring the

corresponding average photon number in the steady state.

The detection of photonic reflection coefficient is naturally related to cavity input-

output process [220]. Using input-output formalism, the reflected output photons aout1

from the left edge resonator is related to the input photon through aout1 = ain1 +
√
κa1,
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where the input field ain1 is related to the external driving by
√
κain1 = iΩ1a [221]. Using

Eq. (6.46), the photonic reflection coefficient from the left edge is obtained as

rL(θ) =
〈aout1 〉
〈ain1 〉

= 1 + iκ[(∆c + T − iκ
2

)−1]11. (6.47)

In Fig. 6.5(a) and (b), we plot the numerical results of reflection coefficients for photonic

topological nontrivial (Chern number C = 1) and trivial insulator (Chern number C = 0).

The lattice size is L = 10, the driving amplitude Ω1a = 0.1Je and the cavity decay rates

κ = 0.1Je (solid), 0.7Je (dashed) and 1.5Je (dash-dotted). The results show that the

winding number of the reflection coefficient phase of rL is 1 and 0 respectively, which

yield the photonic topological invariants. This method also applies for the right edge

case and the conclusion is same. We take into account the influence of the cavity decay.

The results in Fig. 6.5(a) and (b) show that, if the cavity decay rate is not larger than

the energy gap 2Je, the in-gap energy will remain in the energy gap and the winding

number will remain the same. Then our measurement is very robust to fluctuations of

the frequency of the input photon. For circuit-QED experiment, with a typical choice of

ωd = 5∆, g0 = 0.1∆, the qubit-assisted hopping amplitude Je can approach the order

of 10 MHz. For the current coupled transmission line resonator experiment [222], the

hopping amplitudes J1,2 can be tuned within the range 1− 100 MHz. The experimental

parameters required in our work are within the experimentally accessible regimes.

Therefore, the simulation and detection of photonic Chern insulator is possible in

the circuit-QED lattice by using the atom-mediated resonator array. Similar idea has

been realized in recent experiment [190]. In this chapter, we show that one can use the

scattering of incident photons to detect the topological properties of the system. This

method is highly promising for the photonic lattice. Indeed, the studies of topological

effects in photonic systems pave the way for topological photonics [223, 224]. Depending

the tunable parameters of different systems, there are various ways to fabricate topological

photonic materials. For example, the photonic Floquet topological insulator is realized

in a three dimensional waveguides lattice [193]. The propagation coordinate (z) acts as

‘time’ and can be used to observe topological states.

In circuit-QED system, the nonlinear effects are quite important and can be employed

for topological effects, such as topological pumping [225]. Recently, Lee and Thomale

consider the linear circuits and find that topolectrical boundary resonances appear in the

impedance read-out of a circuit [226]. The topolectrical circuits can establish a bridge

between electronics and topological states of matter. As the nonlinear effects which
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can be generated from the Josephson junction are included, more interesting and novel

phenomena can be explored in the near future [227].
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Chapter 7

Summary and Outlook

In this thesis, we have focussed on gauge fields and geometric phases for several periodic

systems. We now make a summary of this thesis and discuss some potential directions

for future work.

7.1 Summary

In Chapter 2, we introduce the approaches to produce artificial gauge fields. The adiabatic

evolution approach is discussed in both Abelian and non-Abelian cases. The realization of

Aharonov-Bohm effect in optical lattice with the help of artificial gauge field is discussed.

By employing the angular momentum of Laguerre-Gauss lasers, we present a scheme to

observe the interference patterns with the influence of Abelian and non-Abelian artificial

gauge fields.

In Chapter 3, we study the Berry’s phase in optical lattice. For the lattice with

inversion symmetry, Berry’s phase is quantized. Such phase in one dimensional periodic

system with inversion symmetry is also known for Zak phase, which is defined in the

Brillouin zone. Motivated by recent developments in experimental realization of SSH

model in optical lattice, we consider the system with more subsites. The topological

phase transitions are analysed in the four-band model with Zak phase. For the three-band

model, the Aharonov-Bohm cage arising from the destructive interference is considered

if the long-range hopping is generated.

In Chapter 4, we discuss the geometric phase and winding number in 1/2-spin chain

with multispin interactions. First, we use the winding number to label all the phases in

phase diagrams. Then, the finite-size scaling of geometric phase close to critical points

with different low-energy dispersions is considered. The linear and quadratic low-energy
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dispersions obey different scaling behaviors. We observed that there is a close connection

between topological phase transition, quantum criticality, energy band structure and

geometric phase.

In Chapter 5, we consider the nonequilibrium dynamics of edge states. In the topolog-

ical systems with open boundary, the edge modes can be quenched to nonequilibrium by

sudden changing some parameters in the system. In this chapter, we consider a long-time

average of the system and find an equivalent ensemble description of it. By means of the

long-time limit, the fluctuation is averaged out and statistical features are revealed.

At last, we introduce a proposal to realize a photonic Chern insulator in a one-

dimensional circuit-QED lattice in Chapter 6. Based on Laughlins pumping argument

and input-output formalism, the photonic edge states and topological invariant can be

unambiguously measured even in a dissipative resonator network, which may take a

significant step towards observing a topological invariant with circuit-QED.

7.2 Outlook

We next discuss briefly possible future research directions. The topological pumping has

been investigated in the translational invariant lattices, like in waveguide [177], optical

lattices [12, 14, 11]. It is interesting to consider open systems. Because the relation

between pumping charges and topological invariants in the bulk states, the topological

invariants can be studied for mixed states [38, 37, 36]. These works provide motivations

for the topological pumping with thermal states. Another interesting possibility is to

explore the relation between topological invariant and statistical distributions. Some

works have paved the way to this direction [31, 211, 28, 24].

How can the intrinsic topological properties affect the nonequilibrium dynamics? The

role played by topology in quenching edge modes [161, 162] and Bloch states [157, 158] has

been noted. Moreover, the geometric phase has an effect in generating excitations in the

driven spin chain [53]. These works are important attempts to deepen our understanding

of geometric phase or topological invariant in nonequilibrium physics.

The topological orders and geometric effects has been discussed for several decades.

They have brought us some surprising twists. And a question that we may ask is: what’s

next? Is there other possibilities to change our perspective in physics? One possibility

in this direction is an insight into the concept of time. Recently, the idea of time crystal

is proposed [228, 229]. Similar to the translational invariant in spacial crystal, the time

crystal is characterized by the discrete time translational symmetry. Recent works in
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nonequilibrium physics with floquet driving propose a way to realize time-spatial order

[230, 231, 232].
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[158] Szabolcs Vajna and Balázs Dóra. Topological classification of dynamical phase

transitions. Phys. Rev. B, 91(15):155127, 2015. 70, 96

[159] MD Caio, Nigel R Cooper, and MJ Bhaseen. Quantum quenches in Chern insula-

tors. Phys. Rev. Lett., 115(23):236403, 2015. 70, 71

[160] Adolfo G Grushin, Sthitadhi Roy, and Masudul Haque. Response of fermions in

Chern bands to spatially local quenches. arXiv preprint arXiv:1508.04778, 2015.

70, 71

[161] A Bermudez, D Patane, L Amico, and MA Martin-Delgado. Topology-induced

anomalous defect production by crossing a quantum critical point. Phys. Rev.

Lett., 102(13):135702, 2009. 70, 96

[162] A Bermudez, L Amico, and MA Martin-Delgado. Dynamical delocalization of

Majorana edge states by sweeping across a quantum critical point. New J. Phys.,

12(5):055014, 2010. 70, 96

[163] Aavishkar A Patel, Shraddha Sharma, and Amit Dutta. Quench dynamics of edge

states in 2D topological insulator ribbons. Eur. Phys. J. B, 86(9):1–6, 2013. 70

[164] Atanu Rajak and Amit Dutta. Survival probability of an edge Majorana in a one-

dimensional p-wave superconducting chain under sudden quenching of parameters.

Phys. Rev. E, 89(4):042125, 2014. 70, 72, 74, 76

112



[165] HT Quan, Z Song, XF Liu, P Zanardi, and CP Sun. Decay of loschmidt echo

enhanced by quantum criticality. Phys. Rev. Lett., 96(14):140604, 2006. 70

[166] Pinja Haikka, John Goold, Suzanne McEndoo, Francesco Plastina, and Sabrina

Maniscalco. Non-Markovianity, Loschmidt echo, and criticality: A unified picture.

Phys. Rev. A, 85(6):060101, 2012. 70

[167] Alessandro Silva. Statistics of the work done on a quantum critical system by

quenching a control parameter. Phys. Rev. Lett., 101(12):120603, 2008. 70, 71

[168] Francis NC Paraan and Alessandro Silva. Quantum quenches in the Dicke model:

Statistics of the work done and of other observables. Phys. Rev. E, 80(6):061130,

2009. 70, 71

[169] Lorenzo Campos Venuti and Paolo Zanardi. Universality in the equilibration of

quantum systems after a small quench. Phys. Rev. A, 81(3):032113, 2010. 70

[170] Ross Dorner, John Goold, Cecilia Cormick, Mauro Paternostro, and Vlatko Vedral.

Emergent thermodynamics in a quenched quantum many-body system. Phys. Rev.

Lett., 109(16):160601, 2012. 71

[171] L Fusco, S Pigeon, TJG Apollaro, A Xuereb, L Mazzola, M Campisi, A Ferraro,

M Paternostro, and G De Chiara. Assessing the nonequilibrium thermodynamics in

a quenched quantum many-body system via single projective measurements. Phys.

Rev. X, 4(3):031029, 2014. 71

[172] Yulia E Shchadilova, Pedro Ribeiro, and Masudul Haque. Quantum quenches and

work distributions in ultralow-density systems. Phys. Rev. Lett., 112(7):070601,

2014. 71

[173] Lorenzo Campos Venuti and Paolo Zanardi. Unitary equilibrations: Probability

distribution of the Loschmidt echo. Phys. Rev. A, 81(2):022113, 2010. 71

[174] Marcos Rigol and Mattias Fitzpatrick. Initial-state dependence of the quench dy-

namics in integrable quantum systems. Phys. Rev. A, 84(3):033640, 2011. 71
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[188] Andrew A Houck, Hakan E Türeci, and Jens Koch. On-chip quantum simulation

with superconducting circuits. Nat. Phys., 8(4):292–299, 2012. 78

[189] Jens Koch, Andrew A Houck, Karyn Le Hur, and SM Girvin. Time-

reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A,

82(4):043811, 2010. 78

[190] P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Babbush, R. Barends, B. Campbell,

Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, E. Jeffrey, J. Kelly, E. Lucero, J. Mu-

tus, O’Malley P.J.J., M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner,

T. White, E. Kapit, H. Neven, and J.M. Martinis. Chiral groundstate currents of

interacting photons in a synthetic magnetic field. Nat. Phys., 13(2):146–151, 2017.

78, 93

[191] Mohammad Hafezi, Eugene A Demler, Mikhail D Lukin, and Jacob M Taylor.

Robust optical delay lines with topological protection. Nat. Phys., 7(11):907–912,

2011. 78, 84

[192] Jiasen Jin, Davide Rossini, Rosario Fazio, Martin Leib, and Michael J Hartmann.

Photon solid phases in driven arrays of nonlinearly coupled cavities. Phys. Rev.

Lett., 110(16):163605, 2013. 78

[193] Mikael C Rechtsman, Julia M Zeuner, Yonatan Plotnik, Yaakov Lumer, Daniel

Podolsky, Felix Dreisow, Stefan Nolte, Mordechai Segev, and Alexander Szameit.

Photonic floquet topological insulators. Nature, 496(7444):196–200, 2013. 78, 93

[194] M. Mariantoni, F. Deppe, A. Marx, R. Gross, F.K. Wilhelm, and E. Solano. Two-

resonator circuit quantum electrodynamics: A superconducting quantum switch.

Physical Review B, 78(10):104508, 2008. 78

[195] G.M. Reuther, D. Zueco, F. Deppe, E. Hoffmann, E.P. Menzel, T. Weißl,

M. Mariantoni, S. Kohler, A. Marx, E. Solano, R. Gross, and P. Hänggi. Two-

resonator circuit quantum electrodynamics: Dissipative theory. Physical Review B,

81(14):144510, 2010. 78

[196] M. Hofheinz, H. Wang, M. Ansmann, R.C. Bialczak, E. Lucero, M. Neeley, A.D.

O’connell, D. Sank, J. Wenner, J.M. Martinis, and A.N. Cleland. Synthesizing

arbitrary quantum states in a superconducting resonator. Nature, 459(7246):546–

549, 2009. 79

115



[197] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander,

E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, and

A.N. Cleland. Quantum ground state and single-phonon control of a mechanical

resonator. Nature, 464(7289):697–703, 2010. 79

[198] Dimitris G Angelakis, Marcelo Franca Santos, and Sougato Bose. Photon-blockade-

induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev.

A, 76(3):031805, 2007. 79

[199] Michael J Hartmann, Fernando GSL Brandao, and Martin B Plenio. Strongly

interacting polaritons in coupled arrays of cavities. Nat. Phys., 2(12):849–855,

2006. 79

[200] Frederick W Strauch, Kurt Jacobs, and Raymond W Simmonds. Arbitrary control

of entanglement between two superconducting resonators. Physical review letters,

105(5):050501, 2010. 79

[201] H Wang, Matteo Mariantoni, Radoslaw C Bialczak, M Lenander, Erik Lucero,

M Neeley, AD OConnell, D Sank, M Weides, J Wenner, et al. Deterministic entan-

glement of photons in two superconducting microwave resonators. Physical review

letters, 106(6):060401, 2011. 79, 84

[202] Borja Peropadre, David Zueco, Friedrich Wulschner, Frank Deppe, Achim Marx,
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