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Summary 

Dengue disease is the most common arboviral (viral-arthropod borne) disease in humans, 

with over 40% of the human population in 100 countries at risk of infection. Dengue virus 

causes an estimated 50–100 million infections each year. It has been observed endemically 

in tropical and subtropical regions and recently the records of dengue cases have extended 

geographically to Europe and the United States of America. The latest World Health 

Organization reports show the increasing numbers of dengue cases globally; and it is 

suggested that due to limited access to Dengue diagnostics, the actual infection number is 

more than three times the dengue burden estimate of the WHO (World Health Organization) 

(Nature 2013; 496: 504-7). The spectrum of clinical symptoms ranges from an acute 

debilitating, self-limited febrile illness called Dengue Fever (DF) to a life-threatening vascular 

leakage syndrome, referred to as Dengue Hemorrhagic Fever/Shock Syndrome (DHF/DSS) 

(Guzman, Halstead et al. 2010). An increased risk of severe disease manifestation has 

been associated with sequential infection by different viral serotypes and this is 

hypothesized to be an effect of antibody dependent enhancement (ADE) (Sabin 1952, 

Halstead, Nimmannitya et al. 1967, Balsitis, Williams et al. 2010). To date, there is no virus-

specific treatment available and the economic costs of dengue disease are estimated to be 

very high. Previously our laboratory has generated a fully human antibody based on the 

natural immune response of dengue patients termed 14C10. The 14C10 antibody has 

remarkable protective activity at low concentrations in vitro and in vivo. Thus, it is a good 

therapeutic candidate for dengue virus serotype 1 (DENV1) infection (Teoh, Kukkaro et al. 



 

 

 xx 

2012). ADE in dengue infection is proposed to occur when antibodies at low concentrations 

create immune complexes with the virus and facilitate virus entry into Fc (Fragment 

crystallizable) receptor bearing cells. In my project, I employ molecular engineering 

methodologies to dissect the role of Fc-receptor binding through the Fc-region of an anti-

Dengue antibody in DENV neutralization and clearance. Specifically we use modifications to 

the genetic template of the 14C10 antibody to investigate how changes in subclass, 

glycosylation and Fc-receptor binding activity impacts in vitro and in vivo on neutralizing 

activity. We also aim to establish the role of the Fc domain of the 14C10 antibody in DENV1 

infectivity versus neutralization. Furthermore, we test human and mouse-human variants of 

the 14C10 and their different subclasses on their ability to trigger heterotypic and homotypic 

ADE. Finally, my project aims to investigate the impact of 14C10-based antibody therapy 

upon the ability of the treated hosts to generate their own protective immune response 

where the virus has been rapidly neutralized and cleared from circulation. The data 

presented herein represents a thorough mechanistic dissection of a therapeutic candidate 

antibody for DENV1 with important implications for how this may be employed in a clinical 

context. 
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 Dengue disease 1.1

 Epidemiology 1.1.1

Dengue is the most common arboviral disease in humans, with over 3 billion people in 100 

countries at risk of infection and with an estimated 50–100 million infections each year. 

Dengue disease had been observed mainly in tropical and subtropical regions but recent 

outbreaks in other parts of the world, including Europe and the United Stated of America 

have been reported. It is believed that it is an enzootic disease, which originates from non-

human primates and is transmitted between them and humans by mosquitoes. Once 

infected, a mosquito remains a vector for the rest of its life (usually a few weeks). Moreover, 

it may also the transmit virus transovarially to its progeny (Murphy and Whitehead 2011). 

The main vectors of the Dengue virus (DENV) are two types of mosquito: Aedes aegypti 

(Yellow fever mosquito/jungle mosquito) and Aedes albopictus (Asian tiger), which are 

highly adapted to human habitats. A. aegypti is responsible for most dengue infections in 

South-East Asia, India, Africa, and South and Central America. Due to the decline of vector 

control actions in the Americas, the number of cases transmitted by A. aegypti has 

increased significantly in that part of the world over the past three decades. A. albopictus is 

more resistant to lower temperatures and within the last 10 years, has spread across 

southern European countries. Overall, the last 50 years saw a 30-fold increase in the 

incidence of dengue globally (Pierro, Varani et al. 2011, Caminade, Medlock et al. 2012, 

Wan, Lin et al. 2013). 
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Figure 1. The map representing the Dengue endemic areas as well as the cases outside these 
regions over January-March 2016 (WHO 2016) 

43% of all human population is at risk of Dengue infection  

1.5-3% of the people at risk develop Dengue infection 

0.5% of infected people develop life threatening severe form of Dengue disease 

2-4% of the patients who encounter severe Dengue disease never recover 

A comparison to the influenza annual epidemiological situation (WHO 2016): 
5-15% of the population is affected with influenza  

(0.3-1 bln infections) 

0.3-0.5% of the infected people develop severe influenza illness  

(3-5 mln severe influenza infections) 

8-16% of the severe influenza patients die  

(250 000 - 500 000 deaths, mostly among the elderly over 65 years of age) 
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 Clinical disease 1.1.2

DENV causes a spectrum of clinical symptoms and signs ranging from an acute debilitating, 

self-limited febrile illness termed Dengue Fever (DF) to a life-threatening vascular leakage 

syndrome, referred to as Dengue Hemorrhagic Fever/Dengue Shock Syndrome (DHF/DSS). 

Around 75% of DENV infections in humans are asymptomatic (Duong, Lambrechts et al. 

2015). The symptomatic infections vary in different individuals and the symptoms are 

classified by WHO in the ‘Dengue Guidelines for Diagnosis, Treatment, Prevention and 

Control’ to help health practitioners in the fast diagnosis and in the avoidance of 

misdiagnosis (Figure 2). Most of the DENV- induced disease symptoms are not specific; 

these include fever, headache, abdominal pain, nausea, vomiting, muscle pain, bone and 

joint pain, maculopapular or macular rash and mucosal bleeding. More characteristic is a 

low platelet count and in the most serious cases, severe bleeding linked to increased 

vascular permeability and shock. There are no pathognomonic, i.e. distinctively 

characteristic, symptoms of dengue disease. Depending on the medical observations, the 

disease is classified as Dengue Without Warning Signs/Undifferentiated Dengue, Dengue 

With Warning Signs/Dengue Fever and Severe Dengue/Dengue Hemorrhagic Fever. 

Further, DHF can be classified into four severity grades. Grade I (Dengue Without Warning 

Signs) and II (With Warning Signs) are classified as Non-severe Dengue. Grade III and IV 

are defined as Dengue Shock Syndrome (DSS) (WHO 2009, Narvaez, Gutierrez et al. 

2011). Several hypotheses for why most dengue cases are asymptomatic while others lead 

to non-severe Dengue Disease or Dengue Shock Syndrome and death-these will be 

discussed in more detail in this thesis.  
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Figure 2. WHO classification of the dengue disease distinguishes 3 forms of dengue disease. 

According to WHO classification of Dengue Disease, Dengue Virus Infection is observed as Non-

severe or Severe Dengue. Non-severe Dengue Without Warning Signs includes all the febrile cases 

with any two out of gastrointestinal symptoms, skin conditions, changes in blood morphology, 

capillary fragility (measured with Tourniquet test) or muscles/joints pain. Dengue With Warning 

Signs is diagnosed when one additional abnormality is observed on top of the Non-sever Dengue 

case. To diagnose Severe Dengue one additional serious symptom must be observed: severe 

plasma leakage, severe bleeding or sever organ involvement (WHO 2009).  
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 Transmission of DENV infection 1.1.3

Dengue disease is transmitted by mosquitos susceptible to DENV infection (Chapter 1.1.1.). 

Mosquitos breed in stagnant water and as little as a few millimeters of water is enough for 

the new insects to go through all the developmental stages to form adult mosquitos. 

Mosquitoes lay 70-100 eggs in three to four batches. The larvae hatched from eggs moult 

four times, and between moults they grow rapidly. In two to three days they become pupas, 

which then metamorphose into adult mosquitoes. Hence, a single female mosquito, which 

has access to water might give rise to up to hundred daughter mosquitos in a few days. 

When an adult mosquito bites a dengue-infected host, it draws blood containing DENV into 

its stomach. Seven to twelve days later virus reaches the salivary glands of the mosquito. 

When biting another person, an insect releases saliva together with DENV into the skin 

transmitting the virus and spreading the disease (Salazar, Richardson et al. 2007).  

Once in the human body, the virus infects immune cells in the skin tissue such as 

dendritic cells and the skin-resident macrophages (St John, Abraham et al. 2013). Infected 

immature dendritic cells and macrophages of the skin enter the lymphatic system and reach 

the lymph nodes where monocytes become infected. Humoral and cellular immune 

responses to viral infection trigger strong inflammatory reaction (Chapter 1.2). During the 

replication period, the virus first replicates locally and after three to six days of incubation 

spreads to the bloodstream (Marchette 1973). The reproduction of virus in the bloodstream 

is termed viremia. Around six hours after the onset of viremia, the first symptoms of the 

dengue disease can be noted. Within next six to eight hours the host develops fever. For 
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two to ten days victims can potentially transmit the infection to mosquitoes that bite them 

(Halstead 2007). 

 

 Immunopathogenesis of DENV response 1.2

The pathogenesis of dengue disease is an effect of interplay between multiple risk factors, 

which can be classified either as viral or host in origin (Clyde, Kyle et al. 2006, 

Srikiatkhachorn 2009, Guzman, Halstead et al. 2010). Thus, the development and severity 

of dengue disease depends on many conditions such as the specific strain of infecting 

DENV, the time interval between infections, previous exposure to heterologous DENV 

serotype, and the form and functionality of the patients’ immune system. The age, ethnicity, 

genetics, and presence of additional disorders change the probability of severe forms of the 

disease. DHF is diagnosed more frequently in children, elderly and people with weakened 

immune systems (Costa, Fagundes et al. 2013, Acosta and Bartenschlager 2016). 

 

 Innate Immunity  1.2.1

Pattern Recognition Receptors (PRRs) 

The initial targets for DENV at the site of mosquito bite are Langerhans cells, dermal 

dendritic cells, and interstitial dendritic cells (Navarro-Sanchez, Despres et al. 2005). Viral 

recognition activates interferon (IFN) pathways and pro-inflammatory transcription factors 

such as NF-kB. IFN-α/β and inflammatory cytokines trigger an antiviral response in dendritic 

cells (Severa and Fitzgerald 2007). Other cells, that detect Pathogen Associated Molecular 
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Patterns (PAMPs) and viral antigens include lymphocytes, monocytes, macrophages, 

Kupffer cells (liver macrophages), and endothelial cells. Host pattern recognition receptors 

(PRRs) in these cells are responsible for sensing viral molecules (Jessie, Fong et al. 2004).  

 Families of sensors for viral nucleic acids detection by mammalian cells like the 

cytoplasmic receptors of DExD/H box RNA helicases such as retinoic acid inducible gene I 

(RIG-I) and melanoma differentiation - associated gene 5 (MDA5), together with the 

endosomal Toll-like receptors (TLRs) are the most important PRRs engaged in DENV 

recognition and anti-DENV innate immune response. Interaction of DENV with receptors of 

the DExD/H box RNA helicases activates a macromolecular signaling complex that 

stimulates IFN regulatory factor 3 (IRF3) and NF-kB, which in turn induces IFN-β promoter 

(Loo, Fornek et al. 2008). During antibody-enhanced DENV infection, it was also observed 

that mast cells activated via RIG-I trigger massive chemokine CCL4, CCL5, and CXCL10 

production (Brown, McAlpine et al. 2012). Overall, RIG-I, MDA5, and TLR3 act as 

synergistic sensors inducing IFN-β production and inhibiting replication of DENV 

(Nasirudeen, Wong et al. 2011). Additionally, it was shown that both STAT1-dependent and 

STAT1-independent pathways play a critical role in the anti DENV response in mice, 

induced by type I IFNs (Shresta, Sharar et al. 2005). However, DENV was presented to 

subvert the IFN induced antiviral response by blocking JAK/STAT signaling (Munoz-Jordan, 

Sanchez-Burgos et al. 2003). 

 Except for DENV-sensing receptors, there are also other molecular mechanisms 

responsible for the induction of potentially overwhelming anti DENV-inflammatory 

responses. For example, C-type lectin domain family 5 member A (CLEC5A) was 
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suggested to interact directly with DENV, stimulating the release of proinflammatory 

cytokines in vitro and in vivo. Anti-CLEC5A monoclonal antibodies suppressed plasma 

leakage and internal bleeding in STAT1-deficient DENV infected mice, reducing mortality by 

around 50% (Chen, Lin et al. 2008, Huang, Chen et al. 2016). However, human clinical data 

in the context of CLEC5A activation is required to confirm the importance of this receptor in 

DENV pathogenesis. 

 

Cytokine storm  

The production of cytokines and chemokines in the DENV host response may have dual 

protective and pathologic roles. ‘Cytokine storm’ is a term describing elevated levels of 

proinflammatory cytokines and chemokines. It can be seen in patients with DF, however it is 

much higher in severe dengue cases suggesting its contribution to the pathogenesis of 

DHF/DSS (Srikiatkhachorn 2009, Kim 2011). Massive production of the following cytokines 

was reported in patients with severe dengue disease: TNF-α, IL-6, IL-8, IL-10, chemokine 

ligand (CCL)-2, CCL-3, CXCL-8, CXCL-10, and IFN-γ (Chaturvedi and Elbishbishi 2000, 

Navarro-Sanchez, Despres et al. 2005, Tolfvenstam, Lindblom et al. 2011, Costa, Fagundes 

et al. 2013, Singla, Kar et al. 2016). Some of the inflammatory cytokines represent crucial 

protective molecules in DENV infection. For example IFN-γ as well as IL-12 and IL-18, 

which precede production of IFN-γ, what was demonstrated in murine immunocompetent 

models, play essential protective roles during DENV infection (Fagundes, Costa et al. 2011).  

 Nevertheless, other proinflammatory cytokines target endothelium triggering 

endothelial cell dysfunction and a transient increase in vascular permeability, hemorrhagic 
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occurrence, hemoconcentration, and shock, which can be fatal (Basu and Chaturvedi 2008, 

Rothman 2011). Moreover, decrease in the levels of some of the cytokines, for example IL-8 

and IL-10 was described as the most significant marker of recovery from severe dengue 

(Singla, Kar et al. 2016). Although the patho-mechanism behind the induction and control of 

‘cytokine storm’ is not fully understood, a number of studies have reported a relationship 

between increased levels of particular cytokines (e.g. TNF- α or migration inhibitory factor 

(MIF)) and more severe dengue cases (Chaturvedi and Elbishbishi 2000, Assuncao-

Miranda, Amaral et al. 2010, Costa, Fagundes et al. 2013). Similarly, the chemokine 

production system seems to have both protective and pathological roles during DENV.  The 

activation of CXCR3 and CXCL10 was shown to improve host anti DENV resistance during 

infection (Chen, Lu et al. 2006). On the contrary, increased levels of CCL2, CCL3, CCL4 

and CCL5 have been associated with severe disease outcome and symptoms like 

hypotension, thrombocytopenia, hemorrhagic shock (CCL2-4), and hepatic dysfunction 

(CCL5) (Bozza, Cruz et al. 2008, Conceicao, El-Bacha et al. 2010). 

 

 Adaptive immunity 1.2.2

Humoral Immunity and Antibody Dependent Enhancement (ADE)  

There are four antigenically-distinct serotypes of Dengue virus (DENV 1-4). Antibodies 

against one serotype confer life-long protection against that specific serotype but only 

temporary protection against the other serotypes. It has been suggested in several previous 

studies that secondary (2°) infection with a new serotype of DENV leads to more severe 
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dengue disease and that this is due to antibody dependent enhancement (ADE). In the 

proposed mechanism of ADE, heterotypic antibodies bind to the new DENV serotypes but 

do not neutralize them, instead they facilitate the DENV entry into FcR bearing target cells 

(Halstead 1979). As a result, they enhance DENV replication during 2° infection and trigger 

higher viral load inside the cells compared to the primary disease.  

It has been reported that the complexes of anti-DENV antibodies and FcR down-

regulate TLR expression and up-regulate negative regulators of NF-kB, suppressing innate 

immune response in peripheral blood mononuclear cells of 2° severe dengue patients but 

not in DF patients. The results of the treatment with anti-FcϒRI or anti-FcϒRIIa antibodies 

confirmed reduced viral loads, up-regulated IFN-β synthesis, and increased gene 

expression in the TLR-dependent signaling pathway (Modhiran, Kalayanarooj et al. 2010).  

 The correlation of homotypic and heterotypic neutralizing antibodies (NAbs) titers and 

the disease outcome is still not understood. Conversely, it was presented that the NAbs 

after subsequent infection with another serotype become broadly neutralizing and might limit 

the severity of dengue disease (Olkowski, Forshey et al. 2013). Similarly, new studies 

carried out in a longitudinal cohort by Eva Harris’ group prove that the pre-infection 

presence of cross-reactive NAbs correlates with long-term protection against DF and severe 

forms of DENV infection (Katzelnick, Montoya et al. 2016).  

 In infants who receive the anti-DENV IgG by transplacental transfer from the DENV-

immune mothers, the antibodies were hypothesized to cause ADE (Chau, Quyen et al. 

2008). However, according to other studies infants with higher NAbs titers at birth usually 
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experience symptomatic disease later than those with lower titers (Libraty, Acosta et al. 

2009).  

 Among all those theories there is a consensus that an exacerbated host response, 

uncontrolled immune cell activation and excessive inflammation is directly related to the 

pathogenesis of severe dengue disease (Basu and Chaturvedi 2008, Rothman 2011).  
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 Dengue virus (DENV) 1.3

 Classification of the virus 1.3.1

The Dengue virus (DENV) belongs to the family Flaviviridae, genus Flavivirus next to many 

other globally significant viral pathogens such as Japanese encephalitis virus (JEV), Yellow 

fever virus (YFV), tick-borne encephalitis virus (TBEV) and West Nile virus (WNV) 

(Mackenzie, Gubler et al. 2004, Westway EG, Tidona et al. 2011). Recently a number of 

new Flaviviruses were discovered enlarging the group of flaviviruses to 74-these members 

are classified into groups based on serological and phylogenetic parameters (Blitvich and 

Firth 2015, Colmant, Bielefeldt-Ohmann et al. 2016). The first classification of the group into 

eight serocomplexes was based on a positive hemagglutination inhibition (HI) assay with 

polyclonal sera (Calisher CH, Karabatsos N et al. 1989).  

Later, in 1997, a comprehensive phylogenetic study was undertaken to establish the 

relationship among the flaviviruses (Kuno J, Gwong-Jen JC et al. 1998). The analysis of the 

genes encoding the non-structural 5 protein (NS5) and the structural envelope protein (E) 

led to the classification of the Flaviviruses into clusters reflecting their arthropod association, 

clades correlated with existing antigenic complexes and species. The study showed that 

from the putative ancestor, two clusters of the primary non-vector and secondary vector-

borne viruses evolved. The non-vector flaviviruses were defined as transmitted between 

rodents or bats with no known arthropod vectors. The vector-borne cluster was further 

separated into mosquito (50% of identified flaviviruses) and tick-borne (28% of identified 

flaviviruses) virus clusters (Kuno J, Gwong-Jen JC et al. 1998). Phylogenetic analysis of 
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nucleotide sequence of complete ORF of flaviviruses produced refined and more detailed 

classification of the genus Flavivirus and it is presented in Figure 3 (Blitvich and Firth 2015). 

Insect-Specific Flaviviruses (ISF) are divided into two phylogenetic groups, first, of which is 

classical ISF (cISF) comprising 12 viruses. The second, polyphyletic group consists of 9 

viruses. 
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Figure 3. Phylogenetic tree for genus Flavivirus (Blitvich and Firth 2015). 

The classification is based on the whole open reading frame (ORF). The tree is midpoint-rooted, nodes are 

labeled with posterior probability values and branches are highlighted with alternative colors. The clade in 

blue, at the highlighted node, represents the YFV subgroup. Species names are color - coded as follows: blue 

- classical Insect-Specific Flaviviruses (cISFs), discovered first; green - dual-host affiliated ISFs (dISFs); red –

No Known Vector (NKV) Flaviviruses; purple - mosquito/vertebrate Flaviviruses; black - tick/vertebrate 

Flaviviruses. Bar 0.2 - substitutions per nucleotide position (Blitvich and Firth 2015).  
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 Structure of DENV 1.3.2

Dengue virus (DENV) is approximately ~50nm in diameter with a smooth outer surface 

covered with envelope proteins surrounding a lipid bilayer derived from the host cell (Kuhn, 

Zhang et al. 2002, Acosta and Bartenschlager 2016). Inside the envelope is a capsid shell 

that contains the viruses’ genetic material. DENV like all the Flaviviruses possesses a 

single-stranded, plus-sense RNA genome which is around 11kb long (Lindenbach, Thiel et 

al. 2007). The genome encodes a single open reading frame (ORF) flanked by 5' and 3' 

untranslated regions (UTRs) of ~100 and ~400–700 nt, respectively (Markoff L 2003). ORF 

is expressed as a large polyprotein, cleaved by viral and cellular proteases into ten mature 

proteins. Three structural proteins include capsid (C), pre-membrane (prM)/membrane (M), 

envelope (E) proteins and seven non-structural proteins: NS1, NS2A, NS2B, NS3, NS4A, 

NS4B and NS5 (Murphy and Whitehead 2011), (Zou, Kukkaro et al. 2012). The genome 

encodes proteins in the following order 5'–C–prM(M)–E–NS1–NS2A–NS2B–NS3–NS4A–

2K–NS4B–NS5-3' (Rice, Lenches et al. 1985, Lindenbach, Thiel et al. 2007). The E, C and 

prM proteins are built of 495, 120 and 165 amino acids respectively (Mukhopadhyay, Kuhn 

et al. 2005). The prM protein, the E protein and NS1 are the principal target of an antibody 

response of infected individual. The E protein of the Dengue virus (DENV) carries the main 

antigenic determinants of the DENV and it is a major target of neutralizing antibodies. 

Around 65% of the amino acid sequence of the E protein is identical in all DENV serotypes, 

and it contains two glycosylation sites at positions N67 and N153 (Johnson, Guirakhoo et al. 

1994). In mature viral particles, 180 envelope proteins lie flat as 90 head to tail homodimers 

with a T=3 quasi-icosahedral symmetry (Kuhn, Zhang et al. 2002). The residues employed 
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in the formation of the antiparallel dimer and the highly conserved fusion loop (FL) required 

for the low-pH-driven membrane fusion are incorporated into E-DII. The single subunit of 

each dimer consists of three domains: E-DI, E-DII and E-DIII (Figure 4). Elongated E-DII 

and immunoglobulin-like folded E-DIII are connected through lateral hinges of E-DI, a 

central β-barrel structure of each E protein (Modis, Ogata et al. 2003, Rey 2003).  

 

  

 

 

Figure 4. Genome organization of the Flavivirus 

In the polyprotein, upper arrows indicate cleavage sites in the cytosol by the viral serine protease 

NS3 and cofactor NS2B, and lower arrows cleavages in the lumen of the endoplasmic reticulum; 

signal sequences are shown as shaded bars.  (Coia G 1988, Speight G 1989, Westway EG, Tidona 

et al. 2011) 
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 Life cycle of DENV 1.3.3

Immune cells of the host are targeted by DENV. The process starts with recognition and 

interaction between DENV and cellular receptors through heparan sulfate proteoglycans. 

The internalization of the virus into the cell occurs through receptor mediated endosytosis - 

Figure 5A (Acosta and Bartenschlager 2016). There are two cell receptor molecules pivotal 

in dengue infection, the cognate receptor involved in normal infection and Fc receptors 

(FcRs) believed to play a role in antibody dependent enhancement (ADE). The E 

glycoproteins in addition to being the major target of neutralizing antibodies (Abs) (and thus 

vaccine development) are responsible for the main steps involved in the viral entry process 

through cognate receptor recognition and cell and viral membrane fusion. The interaction 

with cellular receptors to initiate viral entry into the host cell is believed to be mediated by 

the E-DIII domain of E protein (Bhardwaj, Holbrook et al. 2001, Chu, Rajamanonmani et al. 

2005, Chin, Chu et al. 2007, Watterson, Kobe et al. 2012). After the virus is internalized into 

the host cells endocytic pathway, acidic conditions cause irreversible conformational 

changes in E proteins which form spike-like trimeric structures aimed outward (Modis, 

Ogata et al. 2015, Zhang, Sheng et al. 2015). The tips of the spikes are hydrophobic what 

allows them to penetrate the membrane of the host endosome. The spikes bend bringing 

the endosomes’ and viruses’ membranes in close proximity leading to their fusion and the 

release of the viral nucleocapsid into the cytoplasmic space - Figure 5B (Modis, Ogata et al. 

2015, Zhang, Sheng et al. 2015).  
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Next, the capsid disintegrates and the viral RNA is released into the cytoplasm where 

direct translation of the virus RNA genome takes place. The whole viral genome is 

translated into a single polyprotein chain (Acosta, Kumar et al. 2014).  

The capsid protein is on the cytoplasmic side of the ER while the E protein and the pre-

membrane (prM) protein are in the lumen where they are activated by host peptidases. In 

the cytoplasm the viral proteases in collaboration with cellular proteins, promote major 

rearrangements of the ER microenvironment and activate proteins in the polyprotein chain 

to form the RNA replication complex (Chatel-Chaix and Bartenschlager 2014, Junjhon, 

Pennington et al. 2014). Some of large number of synthetized copies of RNA are translated 

to make viral proteins used to assemble new viral particles - Figure 5 (Welsch, Miller et al. 

2009).  

The E proteins aggregate in the lumen of the ER, multiple copies of C proteins 

associated with the viral RNA, aggregate on the cytoplasmic side and form the new virus 

particle as it detaches into the lumen of the ER. In the still immature virus, 180 prM proteins 

cover the tips of 180 E proteins preventing the premature fusion inside the host cell. Those 

prM-E heterodimers form 60 spikes on the surface of immature virus. Thus, the surface of 

the immature particles, unlike mature virus, is rough and the diameter is around 10nm 

longer (Zhang, Corver et al. 2003). The virus is believed to be released from ER via the 

conventional secretory pathway. It travels through the trans-Golgi network, where it is 

exposed to acidic conditions, towards the cell surface. Before reaching the surface the prM 

proteins are processed into M proteins as the dissociation of prM-E heterodimers takes 

place, the E proteins are reorganized to form homodimers and prM is exposed for the Golgi-
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resident serine protease furin (Yu, Zhang et al. 2008, Zhang, Hunke et al. 2012). After the 

cleavage of the pr (after exposure to the neutral pH of the extracellular space) peptide viral 

particles gain infectivity and can be released from the cell to infect other cells (Zybert, van 

der Ende-Metselaar et al. 2008). 

 

 

Figure 5. DENV life cycle and antibody responses to DENV infection.  

The attachment of the DENV to the cells is followed by receptor-mediated endocytosis. The 

conformational changes of the E proteins triggered by acidic pH of the endosome exposes the 

fusion loop (green). This allows the membrane of the endosome and the virus to fuse and the viral 

genome is released into the cytoplasm. Now, the virus can replicate and RNA is translated making 

immature virus particles. Fully mature virus develops in the trans-Golgi network, where the prM 

proteins are cleaved by furin. Both premature and mature DENV particles are released from the cell 
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and induce antibody responses to E protein and prM protein respectively. Since NS1 is secreted out 

of the cell anti-NS1 antibodies are also produced. (Acosta and Bartenschlager 2016)  
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 Phylogeny of DENV 1.3.4

As mentioned earlier, there are four confirmed DENV serotypes DENV1, DENV2, DENV3, 

and DENV4. All the serotypes are capable of triggering the clinical disease in all its forms 

(Murphy and Whitehead 2011). Although all four serotypes are endemic in Singapore, the 

majority of dengue patients in this country are infected with dengue serotype 1 and 2. 

Interestingly, periodic shifts between infections with the two most common dengue 

serotypes are observed. For instance in 2010, 70% of dengue patients in Singapore were 

infected with serotype 2 (Lee, Lai et al. 2010). One of the complexities of DENV is the 

presence of its multiple genotypes within each serotype. Genotype was defined by Rico-

Hesse as a genetically distinct group within each serotype, characterized by genome 

sequencing (Rico-Hesse 2003). The genotypes of DENV1-4 are homologous in their 

nucleotide sequence up to 94% and their amino acid composition may differ by up to 3% 

within the E/NS1 junction (Teoh, Kukkaro et al. 2012, Zou, Kukkaro et al. 2012). For 

example there are five distinct genotypes within DENV serotype 1. Genotype I was found in 

Southeast Asia, China and East Africa, genotype II in Thailand, genotype III in Malaysia, 

genotype IV in West Pacific islands and Australia, and genotype V in North and South 

America, West Africa and Asia. The sequence of epitope residues of all DENV1 genotypes 

is conserved, what is consistent with an observation that 14C10 binds to all of them. The 

reason of differences in neutralization activities could be different expostion of target 

residues. (Teoh, Kukkaro et al. 2012). 

The phylogeny of the virus is listed as one of risk factors for the development of 

symptomatic and severe form of dengue (Chapter 1.2). For instance, specific strains of 
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DENV3, genotype III were associated with an increase in severe dengue cases in South 

Asia, East Africa and Latin America (Messer, Gubler et al. 2003, Diaz, Black et al. 2006). Till 

date, the mechanisms explaining the correlation between mentioned DENV strains and the 

severity of the DENV-induced disease remain obscure (Costa, Fagundes et al. 2013).  

An online news report published in October 2013 suggested the existence of a DENV 

serotype 5, identified in Sarawak, Malaysia in 2007 (Normille D. 2013). To date, there is no 

confirmation that an additional serotype of DENV exists as the ‘new’ serotype is closely 

related to DENV4 and might be a variant or genotype of this existing serotype (da Silva 

Voorham 2014).  

 

 Vaccine development 1.4

The development of highly effective dengue vaccine has been a challenge. One of the many 

reasons is that DENV has four serotypes and the recovery from an infection caused by one 

of the serotypes results in a lifelong immunity against only that particular serotype. Even 

though historically there have been only a few places where more than one serotype of 

DENV circulated simultaneously, global travel and urbanization increase the chances of the 

presence of two and more dengue serotypes at the same time and place. Thus, the vaccine 

needs to be tetravalent, triggering the immune protection against all described DENV 

serotypes. Moreover, the adaptive immune response to DENV, which is crucial for the 

antiviral response and the protection from the reinfection, was also reported to escalate the 

chances of an enhancement of disease severity. Nevertheless, since the neutralization of 
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DENV is assumed to be the main mechanism by which protection is acquired, elicitation of 

neutralizing antibodies at protective levels is the capital goal of immunization. Importantly, 

an immunization against DENV, needs to address protective immunity and hypothesized 

enhancing role of antibodies (Murphy and Whitehead 2011). The lack of an appropriate 

animal model is another difficulty for dengue vaccine development.  

 

 Live-attenuated vaccines (LAV) 1.4.1

Live-attenuated Dengue virus vaccine candidates were obtained by tissue culture passage, 

chimerisation, or an introduction of attenuating mutations (Murphy and Whitehead 2011). 

Recently a chimeric yellow fever virus–DENV tetravalent dengue vaccine (CYD-TDV) 

known as Dengvaxia® or ChimeriVax (before only ChimeriVax) by Sanofi Pasteur was 

endorsed by WHO and has already been licensed in Mexico, Brazil, El Salvador and the 

Philippines. It is based on ChimeriVax technology, where certain genes (in Dengvaxia 

DENV prM and E structural genes) are inserted into Yellow Fever (YF) 17D vaccine 

backbone (Guy, Barrere et al. 2011). The choice of YF 17D backbone is justified as it was 

confirmed to be safe over 60 years use in other vaccines such as LAV against JEV, WNV, 

and Modoc virus (Govindarajan, Guan et al. 2016). Phase 3 studies involving 31,000 

children between age 2 and 14 were carried out in Latin America and Asia. Clinical trials 

included 10 275 children aged 2–14 years children (CYD14) in Southeast Asia (Capeding, 

Tran et al. 2014) and 20 869 children, aged 9–16 years (CYD15) Latin America (Villar, 

Dayan et al. 2015) and revealed this vaccine to be 70 percent effective for those with pre-
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exposure to DENV. Based on the results, schedule of three injections over one year is 

advisable in children more likely to be seropositive that is above nine yesr old, living in 

endemic areas, and previously exposed to DENV. Age and location restrictions as well as 

requirement for pre-existing immunity triggered with previous infection are significant 

limitations for dengue-control with Dengvaxia (Guy and Jackson 2016). The vaccine was 

shown before to be safe, not to trigger disease enhancement or vaccine-related severe 

adverse events (SAE) and resulted in relatively low viremia detected in vaccinated 

individuals (Morrison, Minnick et al. 2010, Capeding, Luna et al. 2011). However, the results 

of a phase IIb clinical study carried out in Thailand in children aged 4 to 11 years showed 

disappointing efficacy at 30.2% (Sabchareon, Wallace et al. 2012). The reason for such a 

low protective efficacy was that the incidence of mild disease caused by DENV2 endemic in 

the region at the time of the trial infection was the same in controls and in partially or fully 

vaccinated children (Halstead 2012). Surprisingly, the finding that immuogenicity against all 

four DENV serotypes did not assure the protection for DENV2 infection, is against the 

general consensus that the protective efficacy of anti DENV vaccine is a result of production 

of protective tetravalent neutralizing antibodies.  

A non-chimeric version of DENV was also utilized as a LAV formulation. Each serotype of 

the virus was weakened by multiple passages in Vero cells and then four serotypes were 

combined into a tetravalent formula (Butrapet, Huang et al. 2000). This formulation entered 

phase II of clinical trials, but in some of the patients the vaccine candidate was not 

immunogenic against all four DENV serotypes resulting in unbalanced immunity 

(Sabchareon, Lang et al. 2004). A similar vaccination strategy was employed by the Walter 
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Reed Army Research Institute (WRAIR) and it was also found to stimulate immunity to only 

some of the serotypes (Sun, Edelman et al. 2003). Improved versions of these formulations 

were found to be safe and yielded tetravalent response rates 60% in subjects seropositive 

to at least one dengue virus (DENV) type and 66.7% in unprimed subjects (Thomas, Eckels 

et al. 2013).  

Another way to attenuate the DENV for vaccine formulation is site directed 

mutagenesis of the viral genome. Delta30 vaccine contatins a non-chimeric mutated virus. 

30-nucleotide deletion (Δ30) in the 3’-UTR was effective in attenuating DENV1 and DENV4 

and did not affect the immunogenicity of these serotypes (Men, Bray et al. 1996, Whitehead, 

Falgout et al. 2003, Blaney, Matro et al. 2005). To address the lack of the immunogenicity of 

DENV2 and DENV3, the modification with genetic backbone of DEN4Δ30 was utilized 

(DEN2/4Δ30 and DEN3/4Δ30) (Blaney, Durbin et al. 2010). After initial in vivo tests in 

animal models, the mixtures of monovalent forms started being tested in human trials 

(Durbin, Kirkpatrick et al. 2013).  

Another recombinant tetravalent, chimeric, dengue vaccine named DENVax was 

developed by Division of Vector-Borne Infectious Diseases of the Centers for Disease 

Control and Prevention and is in phase III clinical trials (CDC).  

On many occasions, the first clinical phase of testing of these attenuated viruses, 

generated excellent immunological results and this lead to false degree of optimism for the 

vaccine’s efficacy (Halstead 2012). 
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 Subunit vaccines 1.4.2

Another vaccine strategy used for Dengue is a recombinant subunit vaccine, which utilizes 

only fragments of the virus. This method is considered safe, as it includes protein subunits 

instead of full infectious agent. Moreover it can stimulate balanced immune response to four 

DENV serotypes with minimal risk of ADE when employed in an accelerated immunization 

schedule. The disadvantage is that to achieve the immunity of live attenuated vaccines, the 

subunit vaccines must be administered with an adjuvant and need to administered as 

repeated doses multiple times. The subunit used for anti DENV production is the full or 

fragment of E protein, which is the target of neutralizing antibodies (Clements, Coller et al. 

2010, Coller, Clements et al. 2011).  

 

 Antibodies against DENV 1.5

It has been suggested that antibodies against DENV with the highest capacity of 

neutralization and clearance are serotype-specific (Sabin 1952). Although dengue patients 

produce a broad repertoire of dengue binding antibodies, most of them are postulated to be 

immunologically redundant, e.g. by targeting poorly protective epitopes like prM, or by being 

cross-reactive or having overall weak neutralizing activity (Teoh, Kukkaro et al. 2012). Only 

a tiny fraction of all antibodies are serotype specific, targeting E protein and assuring the 

efficient neutralization of the virus (Teoh, Kukkaro et al. 2012). They are the key antibodies, 

which mediate long-term protection and resolve dengue infection (Teoh, Kukkaro et al. 

2012). It is believed that once infected and recovered a person acquires lifelong serotype-
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specific immunity due to the production of neutralizing homotypic IgG. Nonetheless, 

neutralizing and partially or non-neutralizing heterotypic IgG constitute the biggest fraction of 

all antibodies produced in DENV. Neutralizing heterotypic (cross-protective) IgG are 

responsible for cross-protective immunity, which typically persists for a period of several 

months to a few years (Goncalvez, Engle et al. 2007). Over longer periods, heterotypic IgG 

antibody titers, decrease due to the preferential selection of long-lived memory B cells 

producing homotypic antibodies (Chau, Quyen et al. 2008).  

As mentioned earlier, it is hypothesized that secondary infection with DENV may lead 

to severe disease due to the presence of sub-neutralizing concentrations of antibodies 

produced during the initial infection (Guzman, Alvarez et al. 2007). This phenomenon is 

called antibody dependent enhancement (ADE) and it includes the mother-offspring ADE 

effect and ADE as a result of acquired immunity. Maternally derived anti DENV antibodies 

increase the risk of DHF in the infant infected with DENV for the first time (Green, Beatty et 

al. 2014). The proposed mechanism is that cross-reactive but non-neutralizing antibodies 

bind to, but do not neutralize the virus. It was shown that the cross-reactive antibodies might 

facilitate DENV infection of myeloid cells in vitro by promoting virus entry through FcγR. The 

antibodies would form complexes with DENV and bind to Fc receptor-bearing cells. As a 

result, the virus uptake increases and signaling cascades initiated via the pattern 

recognition receptors TLR-3 and MDA5/RIG-I are down regulated, reducing the antiviral 

response of the cell (Guzman, Alvarez et al. 2007, Rodenhuis-Zybert, Wilschut et al. 2010).  

At the same time, the inflammatory immune response and the production of 

cytokines and chemokines are unusually high. In such cases, the viremia level is much 



 

 

 29 

higher and the course of the disease more severe (Balsitis, Williams et al. 2010, Sasaki, 

Setthapramote et al. 2013). The Harris group has previously intimated that FcγR 

interactions play a critical role in ADE in vivo in both pre and post-exposure treatment 

strategies. Still, the exact mechanism of ADE remains unclear. There are many factors, 

which might influence an ADE effect in vitro and in vivo. In the presence of laboratory-

adapted virus strains, high levels of ADE, but no neutralization activity were observed in 

serum taken from patients during the acute phase of a secondary infection. In contrast, the 

same serum assayed with the autologous virus showed high levels of neutralization activity 

and no ADE (Chaichana, Okabayashi et al. 2014). Even though, the ADE in vitro assay in 

K562 cells is considered the current gold standard, an in vivo ADE assay in an animal 

model might be of more significance (Chan, Watanabe et al. 2015, Milligan, Sarathy et al. 

2015).  
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 Human IgG1 14C10 1.6

A fully human, serotype specific human monoclonal antibody termed 14C10 was derived 

from a dengue resolved patient and is under pharmaceutical development for employment 

in clinical trials. Time-lapse confocal microscopy was employed to determine the 

mechanism of action of 14C10. This study demonstrated that 14C10 functions as a receptor 

antagonist. It impacts on the attachment of the DENV1 to the target cell surface and on a 

post-attachment step to stop the virus from cell entry (Zou, Kukkaro et al. 2012). In vitro 

characterization of 14C10, using PRNT method results in PRNT50 = 0.33 μg and a novel 

quantitative flow assay provides PRNT50 = 4 ng. Importantly, 14C10 has strong neutralizing 

activity for all known genotypes of the serotype 1 of DENV, isolated from the blood of 

patients globally (e.g. Cuba, Hawaii, Vietnam, Singapore). The binding footprint (Figure 6) 

from the binding Fab domain of 14C10 on the virus shows that 120 Fab domains of the 

antibodies bind to 180 E-proteins present on the capsid of the virus. 
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Figure 6. 14C10 binds a virus quaternary structure–dependent epitope  

(a) CryoEM map of a Fab HM14C10-DENV1 complex showing 120 Fabs (blue) binding to 180 

envelope proteins on the virus surface (cyan). Black triangle represents an asymmetric unit. (b) 

View of connecting densities of a Fab 14C10 (I) to envelope protein epitope (purple spheres). The 

domains of an envelope protein: E-DI, E-DII, and E-DIII are colored in red, yellow, and blue, 

respectively. (Teoh, Kukkaro et al. 2012) 
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The 14C10 antibody does not bind to DENV2, DENV3, and DENV4 and, thus it does not 

cause heterotypic enhancement at a sub-neutralizing concentrations. On the other hand, it 

binds and neutralizes the five known genotypes of DENV1 and exhibits some homotypic 

enhancement of DENV1 infection at low sub-concentrations (Teoh, Kukkaro et al. 2012). 

Homotypic ADE was seen in all the subclasses of the human antibody and it was ranked as 

follows IgG3 > IgG1 > IgG2 > IgG4, which may be related to the binding affininty to FcγRIIA 

expressed by K562 cells used in the assay (Chiofalo, Teti et al. 1988, Teoh, Kukkaro et al. 

2012). The exact role of the Fc domain in 14C10 function is unknown. To further determine 

the interactions between 14C10 Fc and the FcγRs, we have designed a mutation of the 

human antibody and a point mutation of mouse 14C10 that also abolishes FcR binding. We 

produced 14C10-hG1LALA, which abrogates binding to human FcγRs and mouse antibody 

hCH1mG1HCH2-3-D265A, which is null for FcγR binding. Moreover, to evaluate an effect of 

antibody subclass on virus neutralization and associated heterotypic and homotypic 

antibody dependent enhancement (ADE), we have generated two different subclasses of a 

mouse variant of HM14C10. 
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 Fc effector domain of IgG and FcγRs 1.7

An antibody binds to an antigen on a virus through its Fab (fragment antigen-binding) 

portion, and the targeting of 14C10 Fab for DENV1 has been previously characterized 

(Teoh et al, 2012). Thus, my project is aimed at characterizing the other part of the antibody 

that encodes functionality-the fragment crystallizable (Fc) portion. Binding of antibody Fc-

regions to Fc receptors (FcR) on cells can induce both pro and anti-inflammatory 

responses, called effector mechanisms (Nimmerjahn and Ravetch 2008). This may be 

important to neutralize the pathogen and eventually stop the inflammation that underlies 

dengue morbidity. FcRs are cell surface transmembrane dimeric receptors. Binding IgG 

through the Fc domain can cause phagocytosis of immune complexes, release of various 

cytokines by many different cells, the antibody-dependent cell-mediated cytotoxicity (ADCC) 

and the complement cascade. Fc domain also binds the neonatal receptor for Fc (FcRN), 

which is responsible for the maintenance of the antibodies serum half-life. One way to 

account for this diversity of biological responses for a single molecular entity is to invoke a 

number of different binding partners.  

Antibody coated pathogens are seen by effector cells through Fc receptors and the 

main Fc effector property is an activation of different FcR-bearing cells. In response to FcR 

binding, macrophages, neutrophils, and dendritic cells phagocytoze virus-antibody 

complexes and clear them from circulation. Non-phagocytic cells of the immune system like 

natural killers cells (NK), eosinophils, basophils, and mast cells, are stimulated to secrete 

cytokines. Activated NK cells destroy antibody-coated targets in a process termed antibody-

dependent cell-mediated cytotoxicity. Moreover, as the IgG is made and secreted into the 



 

 

 34 

circulation, it stimulates feedback mechanisms on plasma cells and DC through their FcγRs 

that control their activation. Antibody binding to the virus can trigger some or all of these 

mechanisms, which result in the pathogen neutralization and clearance (Murphy, Travers et 

al. 2012).  

A significant factor in the functionality of Fc receptors is the expression of both 

activatory and inhibitory forms on the same cell types. Though, the number and specificity of 

FcRs in humans and in mice differ, there is significant homology between them (Figure 7), 

which makes the mouse model suitable for this project (Nimmerjahn and Ravetch 2008, 

Bruhns 2012). Thus, this work aims to establish the role of FcγRs binding, clearance, 

protection and neutralization of a representative therapeutic anti-DENV1 14C10 antibody in 

vitro and in vivo.   
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Figure 7. Human and mouse FcγRs  

FcγRI is a receptor, which has high affinity for IgG1, IgG3 and IgG4 in human and IgG2a, IgG2b and 

IgG3 in mouse. Additionally we can distinguish 5 and 3 low to medium affinity receptors in the 

human and mouse respectively. The second classification of FcγRs into activators or inhibitors is 

based on the signaling pathways they induce. In both human and mouse there is one inhibitory 

FcγR, FcγRIIB, containing immunoreceptor tyrosine-based inhibitory motif (ITIM in its cytoplasmic 

domain. All the activatory receptors of mouse and FcγRI anf FcγRIII (A/B) consist of a ligand-binding 

α-chain and immunoreceptor tyrosine based activating motifs (ITAMs) in signal-transducing γ-chain 

dimer. In human all IgG subclasses bind to all FcγRs except for FcγRIIIB, which does not bind IgG2. 

(Nimmerjahn and Ravetch 2008, Bruhns 2012). 
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 IgG isotypes 1.8

The properties and functions of diverse IgG subclasses, which are already uncovered, give 

an insight into the complexity and importance of the Fc portion of an antibody not only 

between the main antibody isotypes (IgA, IgM, IgD, IgG) but also within the IgG group. In 

human we distinguish four IgG isotypes (IgG1 IgG2 IgG3 IgG4), also termed as IgG 

subclasses.  

 In my project we engineered two mouse-human chimeric IgG subclasses of 14C10 

human IgG1 in order to study the effect of those modifications in vivo. We chose mouse as 

a good model for studying the roles of different IgG immunoglobulins as four existing IgG 

subclasses (IgG1, IgG2a, IgG2b, IgG3) in mouse are well characterized and to some extent 

represent the equivalents of human IgG isotypes. IgG1 antibody is the most prevalent 

antibody and it comprises 60% of all IgG isotypes, while IgG2 comprises 25%, IgG3 – 10% 

and IgG4 – 5% of all IgG isotypes in human (Salfeld 2007).  Mouse IgG2a was proposed to 

be an equivalent of human IgG1, mouse IgG3 represents human IgG2, mouse IgG2b – 

human IgG3 and mouse IgG1 - human IgG4 (Nimmerjahn and Ravetch 2008).  
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Figure 8. Subclasses of IgG antibodies in the human and mouse. 

The figure presents subclasses of IgG antibodies in the human and mouse. All subclasses bind to 

FcRn, which is responsible for their recycling. (a) Disulfide bond structures in the subclasses of 

human IgG antibodies (Liu and May 2012). (a, b) Human IgG subclasses. In humans, IgG1 is the 

most prevalent subclass of IgG antibodies. IgG1, IgG3 and IgG4 cross the placenta. With respect to 

complement activation the effectiveness decreases IgG3 > IgG1> IgG2. IgG4 does not activate the 

complement system. IgG1 and IgG3 mediate opsonization by binding to Fc receptors on phagocytic 

cells. IgG4 has moderate affinity for Fc receptors while IgG2 has extremely low affinity. (c) Mouse 

IgG subclasses. Mouse equivalent of IgG1, IgG2, IgG3 and IgG4 are IgG2a, IgG2b, IgG1 and IgG3 

respectively. IgG2a is the most prevalent mouse antibody. IgG2a and IgG2b bind to all FcγRs and 

are the most potently activating, while IgG3 binds only to FcγRI with low affinity, whereas IgG1 is the 

least activating and preferentially interact with inhibitory FcγRIIB (Hussain, Dawood et al. 1995).  
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 Animal models 1.9

Currently, the AG129 mouse is the most widely available and best characterized animal 

model used in dengue studies (Johnson and Roehrig 1999). However, it should be noted 

that no animal exhibits the full disease spectrum found in humans naturally or 

experimentally. Thus, no ideal animal model for dengue infection is available.  We can make 

the following conclusions about Dengue immunology based upon studies in AG129 and 

human cohorts. The first line of viral defense begins with an intracellular signaling cascade 

resulting in the production of interferon α/β (IFN-α/β), which helps initiate, the adaptive 

response during the course of DENV infection (Green, Beatty et al. 2014). IFN α/β is 

produced by virally infected leukocytes and fibroblasts respectively. After IFN α/β diffuses to 

adjoining cells, it activates gene products that interfere with viral replication, and stimulate 

the production of MHC I: thus enhancing the ability of virally infected cells to present 

peptides to T cells. It also activates NK cells, which recognize and kill host cells infected 

with viruses. Natural killer cells and T cells produce IFN γ, which activates function of 

macrophages. It was demonstrated that DENV subverts the IFN induced antiviral response, 

which highlights the importance of type I IFN system in the host response (Munoz-Jordan, 

Sanchez-Burgos et al. 2003, Costa, Fagundes et al. 2013). The AG129 mouse is genetically 

modified and defective in its IFN α/β and IFN γ responses, which allows effective replication 

of DENV, with some variability in susceptibility (Johson and Roehrig 1999, Tan, Ng et al. 

2010).   
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2 Aims of the project 

 

In summary the aims of my PhD are: 

 

I.  To employ advanced molecular engineering to develop murine and human scaffolds for 

14C10 beyond the standard human IgG1 format (it’s current formulation), including different 

human/mouse chimerics, IgG sub-classes plus defined mutations that altered antibody 

functionality through Fc receptor binding. 

 

II. To utilize engineered antibodies to investigate the role of Fc receptor biology in antibody 

mediated neutralization and viral clearance in vitro and in vivo employing a number of 

defined molecular, cellular and virological assays. 

 

III. To determine the impact of employing different 14C10 antibody formats in therapeutic 

and prophylactic contexts in vivo on the ability of dengue-infected AG129 mice to mount 

their own anti-dengue memory immune response. 
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3 Materials and methods 
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 Cell lines 3.1

 

C6/36 Aedes albopictus cells (American Type Culture Collection ATCC®CRL1660™), Baby 

Hamster Kidney-21 (BHK-21) [C-13] (ATCC® CCL-10™) and Human erythroleukemia K562 

(ATCC® CCL-243™) cell lines were used for this study. C6/36 cells were cultured in 

Leibovitz’s L-15 medium (Gibco, Invitrogen) with 10% of fetal bovine serum (FBS) at 28ºC 

with 5% CO2. BHK-21 cell line was maintained in Roswell Park Memorial Institute 1640 

(RPMI 1640 medium, from HyClone) with 2.05mM L-Glutamine supplemented with 10% of 

FBS at 37ºC in 5%CO2. K562 cells were maintained in RPMI 1640 supplemented with 10% 

of FBS at 37ºC with 5%CO2. 

 

 

 Dengue virus propagation 3.2

Serotype 1 and 2 of DENV were used in this study, DENV1 and DENV2. The two most 

distinct genotypes of DENV1, EHI (genotype 1) and WestPac74 (genotype 4) and genotype 

1 EHI of DENV2 were used in the study. DENV1 EHI and DENV2 EHI strains were isolated 

from dengue patients hospitalized in Singapore by the Environmental Health Institute (EHI). 

The DENV1 EHI.D1, which is a laboratory-adapted strain from clinical isolate, was obtained 

for this study from Prof. Ng Mah Lee laboratory and DENV1 WestPac74 from Novartis 

Institute of Tropical Diseases in Singapore. DENV2 EHI was obtained from Prof. Alonso 
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Sylvie’s lab. Each virus stock was propagated in the monolayer of C6/36 cells in a non-

vented T-75 flask (Nunc) infected with 1 ml of a stock virus at 1x106-1x107 PFU/ml. C6/36 

cells were first incubated with the virus at 28ºC with 5% CO2 for 1 hour and the flasks were 

rocked every 15 minutes. Afterwards, 9 ml of L-15 medium with 2% of FBS was added and 

the cells were monitored every day for the cytopathic effect. Culture media was harvested 

after 5-6 days from infected C6/36 cells and centrifuged for 10 minutes at 10,000 rpm. The 

viral supernatant was aliquoted into the cryovials (Nunc) and stored at -80ºC as viral stocks. 

Virus titer was determined by plaque assay on BHK cells. 

 

 

 Virus Quantification – Plaque Assay 3.3

A standard plaque assay was performed to measure the concentration of the DENV. The 

concentration of the virus was assessed as the number of infectious particles in 1 ml volume 

of supernatant. BHK cells were seeded on 24-well (Nunc) plates to obtain 80% confluency 

24 hours later. Six 10-fold serial dilutions of viral stock were prepared (10-1 to 10-6) in RPMI 

1640 media. Triplicates of 100μl of each dilution were added onto the BHK cells monolayer. 

The stock virus was used as a positive control and the RPMI 1640 media was used as a 

negative control. The BHK cells were incubated with 100μl of samples for 1 hour at 37ºC 

with 5% CO2. The plates were rocked every 15 minutes to avoid drying of the cells. 

Thereafter, each well of the cells was covered with 1ml 1% (w/v) carboxymethyl cellulose 

(CMC) with 2% FBS to assure that the spread of the virus was restricted to the neighboring 
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cells. Cells were incubated for 5 days at 37ºC with 5% CO2, before the CMC was removed, 

and the cells were fixed and stained with 1% (w/v) crystal violet dissolved in (w/v) 

paraformaldehyde (PFA), and incubated on the rocker for 2 hours. The plaques were 

counted manually. 

 

 

Figure 9. Plaque assay used for the assessment of the virus titer of the DENV1 EHI stock 
used in the in vitro and in vivo experiments.  

Virus stock was serially diluted 10-fold in RPMI 1640 (10-1 to 10-6) and incubated with the BHK-21 

cells monolayer. The stock virus was used as a positive control and the RPMI 1640 media was used 

as a negative control. The plaques were counted manually at the concentration where 5-50 clear 

plaques were visible. The titer of this stock is 14 x 105 (dilution factor) x 10 (per ml)= 1.4x107 plaque 

forming units per ml (PFU/ml). 



 

 

 44 

 Cloning of 14C10 constructs 3.4

The sequence template of wild type 14C10 antibody, derived previously from the B cell of a 

human patient and immortalized via the EBV method (Teoh, Kukkaro et al. 2012), was used 

as a template for the expression of the four 14C10 constructs (LALA, mIgG2aEXT, mIgG1, 

mIgG1D265A).  

   

 

Figure 10. Schematics of the constructs engineered for the project.  

(a) 14C10-hG1 (14C10 WT); (b) hCH1mG2aEXT-14C10 (mIgG2aEXT), human Fc domain 

substituted with mouse Fc domain; (c) hCH1mG1-14C10 (mIgG1), human Fc domain and human 

hinge replaced by mouse Fc domain and Fc hinge; (d) 14C10hG1LALA, two leucines L234, L235 

are substituted with alanines in CH2 domain of hG1; (e) hCH1mG1HCH2-3-D265A (mIgG1D265A), 

construct is the same as (a) except point mutation at D265 in the CH2 domain of mIgG1.  

a b 

c d e 
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 Cloning of mG1, mG2a, mG2aEXT 3.4.1

To obtain mIgG2a (hCH1mG2a), mIgG2aEXT (hCH1mG2aEXT - mouse chimeric IgG2a 

with human IgG1 hinge) and mIgG1 (hCH1mG1-14C10 - mouse chimeric IgG1 with mouse 

IgG1 hinge) chimeric constructs of the 14C10 antibody, the following steps were carried out. 

The light chains of the 14C10 WT antibody were cloned from the library phagemid vector 

into the proprietary expression vector via ApaLI-PstI. The variable region of the heavy chain 

of 14C10 was cloned from the library phagemid vector into an in-house expression vectors 

via SfiI-BsmBI restriction sites for the engineering of hCH1mG2a and hCH1mG1. An internal 

ribosome entry site (IRES) insert allowed for expression of two genes from a single vector. 

 

 Cloning of hIgG1LALA, mG1D265A 3.4.2

The commercial QuikChange Mutagenesis kit (Stratagene®) was employed to generate two 

Fc mutants namely hG1LALA and mG1D265A (hCH1mG1D265A), according to the 

manufacturer’s instructions. LALA mutation is localized in the CH2 domain of hG1. 

Construct hCH1mG1D265A is the 14C10hCH1mG1 construct with a point mutation at 

D265A in CH2 domain of mG1.  
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Figure 11. Schematic diagram of the in-house expression vector used to create human IgG. 

The variable light chain and heavy chain of fully human 14C10 immunoglobulin were cloned 

separately via ApaLI-PstI and SfiI-BsmBI restriction sites into proprietary expression vector 

containing standard human constant regions of human G1 antibody and an IRES insert. (Dark 

grey=light chain; Light grey=heavy chain). 

 

 

Figure 12. Schematic of the in-house expression vector used to create chimeric mouse-
human IgG antibodies.  

IRES sequence was inserted into vectors to allow for expression of heavy and light chains from a 

single vector. The variable light chain and heavy chains of fully human 14C10 immunoglobulin were 

cloned via ApaLI-PstI and SfiI-BsmBI restriction sites into proprietary expression vectors containing 

either mouse G2a or G1 constant regions (CH2 and CH3 domains). Mouse IgG2a consists of CH1 

bound to CH2 through human hinge. (Pink=light chain; Blue=heavy chain). 
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 Expression of the 14C10 constructs 3.5

Constructed plasmids were sent to the company 1st Base Asia for sequencing using our in-

house designed primers. Once the sequences of the plasmids were verified, the light chain 

and the respective heavy chain were co-transfected into suspension HEK293-6E cells using 

branched polyethyleneimine (PEI) (Sigma-Aldrich, USA) and harvested 7 days later.  

 

 

Figure 13. Cloning and expression of the 14C10 constructs. 

The variable light chain and heavy chains of the various constructs of 14C10 immunoglobulins were 

cloned separately into proprietary expression vectors via ApaLI-PstI and SfiI-BsmBI restriction sites 

respectively. The commercial QuikChange Mutagenesis kit (Stratagene) was employed to generate 

the two Fc mutants hG1LALA and mG1D265, according to manufacturer’s instructions. The 

constructed plasmids were sent to the company 1st Base Asia for sequencing using our in-house 

designed primers. Once the plasmids were sequence confirmed, the light chain and the respective 

heavy chain were co-transfected into suspension HEK293T cells via standard PEI method and 

harvested 7 days later. The culture supernatant was then purified on HiTrap Protein G column (GE 

Healthcare) on the FPLC. Purified antibodies were analysed by standard protein gel electrophoresis 

followed by their retention of binding specificity for Dengue1 via ELISA before conducting further 

functional studies. 
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 Protein G purification 3.6

The culture supernatant from transfected HEK293-6E was harvested and applied on 5 ml 

HiTrap rProtein G column (GE Healthcare, United Kingdom). The column was washed with 

five column volumes (CVs) of phosphate buffered saline (PBS) and eluted with IgG elution 

buffer (Thermo Scientific, USA). The eluted fractions were neutralised with 1 M Tris-HCl, pH 

9.5. Protein G-purified antibodies were applied onto Centifugal Filter Concentrator with 

Ultracel® 30 Regenerated Cellulose Membrane and the buffer was exchanged to PBS. 

Purities of the protein G purified antibodies were analysed by standard 10% NuPAGE 

sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE).  

 

 

 Functional testing of the engineered antibodies (ELISA)  3.7

 

 Testing of the binding specificity of the constructs 3.7.1

Retention of binding specificity for DENV1 was tested via Enzyme Linked Immunosorbent 

Assay (ELISA) before conducting further functional studies. Binding of hIgG1, hIgG1LALA, 

mIgG1, mIgG2aEXT and mIgG1D265A engineered antibodies versus 14C10 WT antibody 

were compared using the direct ELISA assay. Purified DENV1 EHI or DENV2 NGC was 

coated on the 96-well plates (Nunc MaxiSorp® flat-bottom) 50μl/well and incubated 

overnight at 4oC. Plates were then washed once with PBST 0.05% and twice with PBS and 
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blocked with 4% (w/v) skim milk (Sigma)/PBS at RT for 2 hours. After two rounds of washes 

with PBST 0.05%, purified antibody samples were added to the wells and incubated for 1 

hour at RT. The plates were washed again, before the anti-mouse HRP antibody or anti-

human HRP antibody was added at 1:5000 dilution in 2% (w/v) skim milk (Sigma)/PBS and 

incubated for 1 hour at RT. When hG1 was tested, goat anti-human IgG Fc cross-adsorbed 

(minimal cross-reactive with mouse serum proteins) secondary antibody, HRP-conjugate 

(Pierce), diluted 5000-fold in 2% (w/v) skim milk was utilized. When mIgG1, mIgG2aEXT 

and mIgG1D265A were tested, goat anti-mouse IgG (H+L) cross-adsorbed (minimal cross-

reactive with human serum proteins) secondary antibody, HRP-conjugate (Pierce), 1:5000 

in 2% (w/v) skim milk was used. Plates were washed as described above and 

tetramethylbenzidine (TMB) substrate (Pierce) was added. The reaction was stopped with 

0.1 M sulfuric acid and the reading of absorbance was taken immediately at 450nm by 

spectrophotometer.  

Additionally, sandwich ELISA was carried out to check the binding characteristics of 

mIgG1 and mIgG2aEXT. The primary antibody (4G2 - human IgG1 specific for Flavivirus 

group antigen) was coated at 5μg/ml, 50μl/well overnight at 4oC onto Nunc MaxiSorp® flat-

bottom 96-well plates. The wells were then washed once with PBST 0.05%, twice with PBS 

and blocked with 4% (w/v) skim milk (Sigma)/PBS at RT for 2 hours. Then non-purified 

DENV1 EHI or DENV2 NGC was added at 106 PFU/ml in 4% skimmed milk, 50μl/well. After 

an incubation of 1 hour at RT, the wells were washed and probed with the samples of 

purified antibodies. 3H5 is a murine monoclonal recombinant chimeric clone of the murine 

monoclonal IgG1 specific for DENV2 and it was used as a control. Goat anti-mouse IgG 
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(H+L) cross-adsorbed (minimal cross-reactive with human serum proteins) secondary 

antibody, HRP-conjugate (Pierce, 1:5000 in 2% (w/v) skim milk) was added 50μl/well and 

incubated for 1 hour. After the final triple wash, TMB substrate (Pierce) was added at 

50μl/well and the reaction was stopped with 0.1 M sulfuric acid 50μl/well. Absorbance was 

read at 450nm by spectrophotometer. 

 

 In vitro neutralization efficacy of the 14C10 constructs 3.7.2

Plaque reduction neutralization test (PRNT) in BHK cells was performed to assess in vitro 

neutralization of two different genotypes of DENV1 EHI and WP74 by all four constructs of 

14C10 versus WT HM14C10. BHK cells were seeded on 24-well plates (Nunc), 24 hours 

earlier, to obtain a monolayer of cells. Virus was diluted to around 400 PFU/ml to give 

around 40 plaques in 100μl. Serial dilutions of the antibodies were preincubated with the 

virus for 1 hour. Each sample of virus-antibody solution was added onto BHK cells in 

triplicates and incubated for 1 hour at 37°C. Each plate had a triplicate of the positive (with 

40-100 viral plaques per well) and the negative (RPMI) controls. Carboxymethyl cellulose 

(CMC) 1% (w/v) was added to assure that the spread of the virus was restricted to the 

neighboring cells. After 6 days of the incubation, the BHK cells were fixed and stained with 

crystal violet in PFA. The level of neutralization was estimated by the number of plaques in 

BHK monolayer, in the plaque-forming units (PFU) per milliliter (ml).   
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Figure 14. Plaque reduction neutralization test (PRNT). 

In vitro neutralization activity of the constructs - sample setup used for testing neutralization 

characteristics of antibodies. The antibodies were serially diluted and pre-incubated with the virus for 

1 hour. Each sample of virus - antibody mixture was added onto the BHK cells in triplicates and 

incubated for 1 hour at 37°C. Each plate had a triplicate of the positive (infected cells without the 

addition of antibodies) and the negative (neat RPMI) controls. Three highest concentrations of 

antibody resulted in the complete neutralization of the virus and no plaques were seen. The 

subsequent three dilutions of the antibody resulted in the partial neutralization with reduced number 

of plaques compared to the positive control. The antibodies at the concentrations 0.47 µg/ml and 

below do not neutralize the virus in vitro. 
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 An influence of the molecular modifications of 14C10 on the ADE effect in vitro 3.7.3

The following procedure was carried out to check for the homotypic ADE of the engineered 

constructs in comparison to 14C10 WT. The K562 cell line (suspension cells cultured in 

RPMI supplemented with 10% FBS) was prepared beforehand. MOI of 0.1 was used (MOI= 

number of virus/number of cells = 0.1). The stock virus was thawed and diluted to the pre-

determined amount. Virus suspension was distributed at 300µl per Eppendorf tube. Two 

positive (infected cells) and two negative (uninfected cells) controls (one for each 24-well 

plate - Nunc) were prepared. Twelve dilutions of an antibody (4-fold serial dilution, starting 

at 150µg/ml) were prepared. The serial dilution of an antibody was transferred into the tubes 

with the virus, and incubated at RT for 1 hour. Meantime the K562 cells were pelleted at 

6000-8000 RPM for 5 minutes. The cells were re-suspended in media and counted. Cells 

were added to virus-antibody mixture and incubated for 1 hour at 37ºC. Afterwards the cells 

were pelleted down at 6000-8000 RPM for 5 minutes and the supernatant was discarded. 

Cells were washed twice with PBS, and re-suspended in 350µl RPMI supplemented with 

2% FBS (for maintenance and expansion of cells) and transferred to 48-well plate and 

cultured for 48 and 72 hours. After the incubation period, cells were centrifuged at 10000 

rpm for 5 minutes and the virus titre of the supernatant was quantified by plaque assay in 

BHK cells. The level of ADE was estimated by the number of infectious plaques in BHK 

monolayer, in the plaque-forming units (PFU) per milliliter (ml). 
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  Setting up the in vivo model for defining the role of FcγRs in the 3.8

Dengue virus neutralization and clearance. 

The NUS Institutional Animal Care and Use Committee (IACUC) approved all the animal 

tests performed in this study. Mice were maintained in a pathogen-free environment in the 

ABSL-2 facility at the National University of Singapore. To minimize discomfort, stress and 

pain to an animal, all the in vivo procedures were performed under isoflurane anesthesia. 

The blood was collected from the jugular vein as the most recommended and the least 

invasive blood collection method (Hoff J 2000). Furthermore this method allowed us to 

withdraw blood as often as needed, according to the approved method and protocol. The 

isoflurane anesthesia allowed us to ensure the correct positioning of an animal. To minimize 

the changes within the blood vessels and the tissues surrounding them, the jugular veins at 

the alternate sides were used for the subsequent blood withdrawal. Each in vivo experiment 

was started with the blood withdrawal to carry out the control measurements of the viremia 

and the antibody levels.  

 

 Infection of the mice 3.8.1

To assess the most efficient route of an infection, the comparison of the viral titers after the 

subcutaneous and intra peritoneal injection was carried out. The subcutaneous infection 

with the same viral titer delivered higher viral blood loads than intra peritoneal infection, thus 

it was decided to utilize this route of infection in all the in vivo experiments of the project. 

The eight-to-nine week old AG129 mice were chosen as the most susceptible to DENV 
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infection and they were inoculated subcutaneously (s.c.) with 200μl of culture of a 

supernatant containing DENV1 EHI (genotype 1) at 106 PFU/ml or DENV1 WP74 (genotype 

4) at 107 PFU/ml.  

 

 Treatment of mice 3.8.2

To decide about the route of an antibody treatment delivery, the following experiment was 

carried out. The mice infected s.c. with DENV1 WP74 (genotype 4) at 107 PFU/ml were 

treated with the 14C10 WT antibody s.c. or i.p. The results proved no significant difference 

in the viremia levels within the two groups, thus it was decided that the antibody would be 

delivered via intra peritoneal route as an experimentally easier procedure. The aspiration 

ensured that the antibody treatment was delivered into the right compartment of the mouse 

body, given only if no blood/urine or any other fluid was aspirated. The antibodies were 

tested at the following concentrations 30μg/mouse as the therapeutic/fully neutralizing 

concentration established by previous study (Teoh, Kukkaro et al. 2012), 10μg/mouse, 

6μg/mouse and 1μg/mouse as the testing and sub-neutralizing concentrations in order to 

detect the differences between various constructs of the 14C10 antibody. The treatment 

schemes appropriate for our studies were established. 
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 Establishing the therapeutic scheme for the in vivo model 3.8.3

Each group consisted of four to five AG129 mice. To control the initial levels of antibodies, 

the blood samples were taken before an infection. Afterwards, the mice were inoculated 

subcutaneously with 200μl of viral suspension containing 106 PFU/ml DENV1 EHI or 107 

PFU/ml DENV WP74. Two days later, the mice were treated intraperitoneally with the 

14C10 antibody. The PBS control group was injected with 200μl of sterile PBS and one 

group of mice was kept naïve. The blood was taken via the jugular bleeding at the following 

days: 3, 4, 5, 9, 15 and 29. A month after the initial infection, the mice were re-challenged 

with the same amount of DENV1 EHI or DENV WP74 as previously. At that time, the naïve 

control group was infected for the first time. Subsequently 3 and 5 days later, the blood was 

obtained from the jugular vein of the anesthetized mice.  

 

 Establishing the prophylaxis scheme for the in vivo studies 3.8.4

Each group consisted of five to six AG129 mice. To control the initial level of antibodies, the 

blood samples were first taken before the infection. The mice were first treated 

intraperitoneally with 14C10 antibody per mouse. The PBS control group was injected with 

200μl of sterile PBS instead of an antibody. One day later, the mice were inoculated 

subcutaneously with 200μl of DENV1 EHI or DENV WP74 at 106 PFU/ml or 107 PFU/ml 

respectively. One group of mice was kept naïve (non-treated and non-infected). Next, the 

blood was taken on day 3, 4, 5, 9, 15 and 29. A month after the initial infection, all the mice 

were re-challenged with the same amount of DENV1 EHI or DENV WP74. The naïve control 
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group was infected for the first time at this point of time. Consequently, the blood was 

collected two and five days after re-challenge. 

 

  Virus quantification of plasma of infected mice 3.8.5

To assess the levels of the DENV1 and DENV2 viremia in the mouse serum 10, 20, 30 and 

40-fold dilutions or four 10-fold dilutions respectively of the samples were prepared. 100μl 

aliquots were inoculated onto BHK cell monolayer seeded on 24-well plates (Nunc) 24 hours 

earlier. Each sample was added in quadruplicates and incubated for 1 hour at 37ºC before 

carboxymethyl cellulose (CMC) 1% (w/v) with 2% FBS was added. After 5-7 days of the 

incubation, BHK cells were fixed and stained with crystal violet in PFA and the plaques were 

counted. The titer of the virus was calculated in plaque-forming units (PFU) per ml. 

 

 Collection of the organs  3.8.6

After the in vivo experiment was completed, all the mice were sacrificed and the organs 

were collected for assessing the viremia in the organs. The tissue samples were snap-frost 

in the liquid nitrogen and stored at -80°C. 
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 ELISA binding assays for the assessment of the antibody levels in the mouse 3.8.7

serum 

 

3.8.7.1 Direct ELISA 

To measure levels of 14C10 in mouse serum, 96-well plates (Nunc, Maxisorp) were coated 

with novel anti-idiotype antibody engineered and generated in our lab, namely E1 (anti-

HM14C10) at 5μg/ml, 50μl/well overnight. Plates were washed once with PBST 0.05% and 

twice with PBS and blocked with 4% (w/v) skim milk (Sigma)/PBS at RT for 2 hours. Mouse 

serum samples diluted 1:10 in 2% (w/v) skim milk were added into the wells, 50μl/well and 

incubated for one hour at RT. Plates were washed once with PBST 0.05% and two times 

with PBS. Goat anti-human IgG Fc cross-adsorbed (minimal cross-reactive with mouse 

serum proteins) secondary antibody, HRP-conjugate (Pierce, diluted 5000-fold in 2% (w/v) 

skim milk was added and incubated for 1 hour. Plates were washed as described above and 

TMB substrate (Pierce) was added. The reaction was stopped with 0.1 M sulfuric acid. 

Absorbance was read at 450nm by spectrophotometer. 

 

3.8.7.2 Sandwich ELISA for the detection of mouse antibodies against DENV1 

To measure the levels of mouse anti-DENV1 antibodies in mouse serum, 96-well plates 

(Nunc MaxiSorp® flat-bottom) were coated with 14C10 at 5μg/ml overnight, at 50 μl per 

well. Plates were washed once with PBST 0.05% and two times with PBS and blocked with 

4% (w/v) skim milk (Sigma)/PBS at RT for 2 hours. The strain and batch of the DENV, which 

was used for the mice inoculation, was added at 106 PFU/ml, 50μl per well. Plates were 
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washed once with PBST 0.05% and two times with PBS. Serum samples diluted 1:10 in 2% 

(w/v) skim milk were added into the wells at 50μl/well and incubated for one hour at RT. 

Plates were washed three times with PBST 0.05%. Goat anti-mouse IgG (H+L) cross-

adsorbed (minimal cross-reactive with human serum proteins) secondary antibody, HRP-

conjugate (Pierce, 1:5000 in 2% (w/v) skim milk) was added and incubated for 1 hour. 

Plates were washed as described above and TMB substrate (Pierce) was added and the 

reaction was stopped with 0.1 M sulfuric acid. Absorbance was read at 450nm by 

spectrophotometer. 

 

3.8.7.3 Sandwich ELISA for the detection of mouse antibodies against PR8 

To measure the levels of mouse anti-PR8 antibodies in mouse serum, 96-well plates (Nunc 

MaxiSorp® flat-bottom) were coated with of human HA4 IgG1 antibody at 5μg/ml (50 μl per 

well) at 4oC overnight. Plates were washed once with PBST 0.05% and two times with PBS 

and blocked with 4% (w/v) skim milk (Sigma)/PBS at RT for 2 hours. The strain and batch of 

the PR8, which was used for the mice inoculation, was added at 106 PFU/ml, 50μl per well. 

Plates were washed once with PBST 0.05% and two times with PBS. Serum samples 

diluted 1:10 in 2% (w/v) skim milk were added into the wells at 50μl/well and incubated for 

one hour at RT. Murine HA4 IgG1 antibody in PBS starting with 40ug/ml with 2-fold dilution 

(50 μl per well) was a positive control. Plates were washed three times with PBST 0.05%. 

Goat anti-mouse IgG (H+L) cross-adsorbed (minimal cross-reactive with human serum 

proteins) secondary antibody, HRP-conjugate (Pierce, 1:5000 in 2% (w/v) skim milk) was 

added and incubated for 1 hour. Plates were washed as described above and TMB 
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substrate (Pierce) was added and the reaction was stopped with 2M sulfuric acid. 

Absorbance was read at 450nm by spectrophotometer. 

 

 Assessment of the total DENV1 in mouse serum 3.9

Serum samples were tested for the presence of infective viral particles with plaque assay. 

To compare neutralization versus clearance we needed to utilize an assay, which has the 

capacity to measure the total viral component of the serum including non-infective 

opsonized or fragmented viral particles. Thus, we carried out the real-time reverse 

transcriptase Polymerase Chain Reaction or quantitative PCR (real time RT-PCR or qPCR). 

The assay protocol was based on the previously published research papers (Lai, Chung et 

al. 2007, Gurukumar, Priyadarshini et al. 2009, Leparc-Goffart, Baragatti et al. 2009), which 

described the development of a quantitative real-time PCR assay for the detection of 

various Dengue serotypes in the serum from patients in the early stage of the disease. 

 

 DENV1 RNA extraction from mouse serum 3.9.1

Total nucleic acid extraction from the viral standard was performed using the DNA and Viral 

NA Small Volume kit (sample volume 200μl, elution volume 100μl) and the Viral NA 

Universal SV protocol on the MagNA Pure 96 Instrument (Roche Diagnostics). The plasmid 

standard constructed according to Lai et al. (2007) was a kind gift from Dr Eng Eong Ooi. 

For extraction of the plasmid standards (106 to 100 copies/μl) 100μl of the standard was 

added to 100μl PBS before extraction. For extraction of viral standards (105 to 101 PFU/ml) 
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standards were made in naïve mouse serum at 50μl then brought to 200μl with PBS before 

extraction. 

 

 Quantitative real-time PCR assay for DENV1  3.9.2

The PCR assay described in Lai et al. (2007) utilized a set of FRET probes (Den1-FL and 

Den1-LC) and two primers (Pan-dengue forward and Pan-dengue reverse) for the detection 

and serotyping of DENV1. However, the probe chemistry and PCR platform used in the 

study was not compatible with the existing PCR platform. Therefore, DENV1-FL fluorescent 

probe was modified into a dual-labeled probe called pan Den-Den1-P(5’-FAM-

CAGGATACAGCTTCCCCTGGTGGTG-BHQ1-3’) to be used with the same two primers for 

5’ nuclease PCR assay. This was followed by sensitivity testing to ensure that the modified 

PCR assay was suitable for subsequent use. The PCR set up was performed using 

SuperScript III® One-Step RT-PCR System with Platinum® Taq DNA, which consisted of 1x 

Reaction Mix, 0.4μM of primers, 0.3μM of probe and 5μl of template in a total reaction 

volume of 20μl. Reverse transcription was carried out at 60oC for 15 min followed by Taq 

polymerase activation at 95oC for 2 min. A 45-cycle PCR amplification was performed with 

denaturation at 95oC for 5s, annealing and extension combined at 60oC for 45sec. The 

fluorescence emitted from the assay was captured at the end of extension phase of each 

cycle and the results analysed with the ABI 7500 Fast PCR System software version 2.0.5.  
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4 Chimerization and rational mutation of a human monoclonal antibody 

with potent Dengue 1 neutralizing activity  
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 Background of the study 4.1

Whilst the Fab portion of an antibody determines its specificity, affinity and neutralizing 

potential, the constant region plays an important role in the outcome of an interaction 

between an antibody and an antigen (DiLillo, Tan et al. 2014, Mak, Hanson et al. 2014).  

Based on elegant studies published in Nature and Science there was an assumption 

that the mutations of 14C10 would have an impact on the activity in vivo. In these studies of 

influenza infection, neutralizing antibodies required FcgR interactions for protection against 

influenza virus in vivo.  Mice were treated with fully functional and mutated versions of anti-

influenza antibody FI6 at 10 mg/kg or 3mg/kg. LALA mutation compromised the 

neutralization of an antibody suggesting that Fc mediated functions are very important to 

clear the virus from the system (Corti, Voss et al. 2011). 

In another publication by DiLillo et al. mouse IgG variants and mutants were used to 

examine the role of FcγRs in the antibody-mediated neutralization of influenza virus. Only 

IgG2a antibody protected mice from weight loss and death. IgG1 antibody (which binds pref 

to inhibitory FcgR), D265A antibody and PBS treated animals were not protected. Hence, 

binding of activating FcγRs was required for antibody-mediated protection (DiLillo, Tan et al. 

2014). Here, we designed constructs of 14C10, a fully human antibody that potently 

neutralizes DENV1 (Teoh et al. 2012), to study the effect of these mutations on the DENV1 

protective efficacy. 
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 Engineering and expression of 14C10 with altered Fc-region 4.2

functionality 

 

 Human 14C10 WT antibody and its LALA mutant 4.2.1

The 14C10 WT antibody is a fully human monoclonal antibody with potent neutralizing 

activity against DENV serotype 1 (Teoh et al 2012). It does not trigger heterotypic antibody 

dependent enhancement (ADE) in vitro, but can mediate homotypic ADE at sub-neutralizing 

concentrations (Teoh, Kukkaro et al. 2012). ADE is hypothesized to happen when 

antibodies at low (sub-neutralizing) concentrations create complexes with the virus that lead 

to increased cell entry via FcγRs (Hu, Thoens et al. 2013). To determine the interactions 

between the Fc domain of the 14C10 and the FcγRs, we designed a human mutant 

antibody 14C10hG1LALA, which does not bind to human FcγRs. In the 14C10hG1LALA 

mutant, the leucine L234 and L235 in the CH2 domain are substituted with two asparagines 

(Figure 16). These substitutions abolish binding to the human FcγRs, which could reduce or 

eliminate the potential homotypic ADE effect (Balsitis, Williams et al. 2010, Williams, 

Sukupolvi-Petty et al. 2013, Arduin, Arora et al. 2015).  
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 Mouse-human chimeric G1 construct and its D265A mutant (mG1D265A) 4.2.2

The mouse IgG1 antibody preferentially binds to low affinity FcγRs. In the mouse-human 

chimeric 14C10mG1 antibody (14C10-hCH1mG1HCH2-3) the hinge, CH2 and CH3 regions 

are substituted with the mouse equivalent IgG1 antibody as projected in Figure 17A. The full 

light chain and the variable region of the heavy chain remain unchanged as compared to the 

14C10 WT (Figure 15). The D265A mutant of the mouse-chimeric IgG1 antibody 

(hCH1mG1HCH2-3-D265A) is a human-mouse chimeric equivalent of the 14C10-

hIgG1LALA that is null for FcγR binding. The hCH1mG1HCH2-3-D265A construct was 

originally created for a study which used alanine scanning across the entire mIgG1 constant 

region to identify a mutant with defective FcγR binding (Clynes, Towers et al. 2000). The 

mutation is located within CH2 and abrogates FcγR binding in mIgG2a and mIgG2b 

(Baudino, Shinohara et al. 2008). The hCH1mG1HCH2-3-D265A point mutation substitutes 

aspartic acid with alanine (Figure 17B). This results in a complete loss of interaction with 

FcγRs (Nimmerjahn, Bruhns et al. 2005, Tan, Leon et al. 2016).  
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 Mouse-human chimeric G2a and G2aEXT (mG2a and mG2aEXT) 4.2.3

To evaluate the effect of antibody subclasses on virus neutralization and the ability to trigger 

homotypic antibody dependent enhancement in vivo, an IgG2a mouse variant of the 14C10 

antibody was produced (Figure 20C). IgG2a mouse antibodies bind all FcγRs (Nimmerjahn 

and Ravetch 2008). The mouse-human 14C10 hCH1mG2a antibody consists of human 

CH1, followed by mouse hinge and mouse CH2 and CH3 (hCH1mG2aHCH2-3). The 

purification process showed that the chimeric IgG2a construct was not folding properly 

(Figure 20C). Therefore, we exchanged the mouse hinge with a human hinge. Eventually 

the mouse-human chimeric G2aEXT antibody with the human hinge (hCH1mG2aHCH2-

3EXT-14C10) was qualified as a suitable construct for further testing. It consists of human 

CH1, followed by human hinge, mouse CH2 and CH3 and it fully bound to FcγRs (Figure 

20D).  
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 Sequence analysis of 14C10 WT antibody and its human and 4.3

chimeric constructs 
The sequences of 14C10 WT and its constructs made in this project are shown in Figure 15 

and Figure 18. 

 Sequence of fully human 14C10 WT antibody 4.3.1

 

Figure 15. Sequence of 14C10 hG1 wild type (WT) antibody. 

The light chain of 14C10 hIgG1 consists of the variable light chain (VL) – highlighted by a red box 

and the standard constant kappa light chain (CL). The heavy chain of 14C10 hG1 consists of the 

variable heavy chain (VH) – highlighted by a purple box and the constant region of the standard 

heavy chain of the human IgG1 antibody including hinge – highlighted in blue. The complimentary 

determining regions (CDRs) VL and VH, namely CDR1, CDR2 and CDR3 which bind them to 

DENV1 are highlighted in black boxes. The nucleotide sequence is accompanied with the 

complimentary amino acid sequence underneath. 
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 Sequence of the LALA mutant of the 14C10 antibody  4.3.2

The 14C10-hG1LALA antibody is a fully human antibody with an altered CH2 domain of the 

heavy chain. The LALA mutation substitutes two leucines with two alanines in the CH2 

domain (Figure 16). The other regions of the heavy chain and the light chain remain 

unchanged as compared to 14C10 WT antibody (Figure 15).  

 

 

 

Figure 16. Sequence of 14C10 hG1LALA construct. 

Schematic of 14C10 hG1LALA presented with the sequence of mutated CH2 domain of the constant 

heavy chain (highlighted in red). The other parts of the antibody remain unchanged as compared to 

14C10 WT (Figure 15).  

**In the CH2 region of the heavy chain of 14C10 hG1LALA two leucines are substituted with two 

alanines. The LALA mutation abrogates binding to the FcγRs (Arduin, Arora et al. 2015). 
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 Schematic and sequence of hCH1mG1 and hCH1mG1D265A mouse-human 4.3.3

chimeric constructs of 14C10 antibody. 

The hCH1mG1 (hCH1mG1HCH2-3) construct is one of the three chimeric (mouse-human) 

constructs of the 14C10 antibody used in this study. In the hCH1mG1 construct, the hinge, 

CH2 and CH3 regions are substituted with the mouse equivalents from mouse IgG1 (Figure 

17A). The CH1 region and the variable region remain unchanged. The light chain is 

unchanged as compared to 14C10 WT antibody (Figure 15). 

In the hCH1mG1D265A (hCH1mG1HCH2-3D265A) construct the light chain remains 

unchanged as compare to the 14C10 WT antibody (Figure 15). The hinge, CH2 and CH3 

regions are substituted with the mouse equivalents from the mouse G1 and in the CH2 there 

is a point mutation at D265A (Figure 17B). In the heavy chain, the variable region and the 

CH1 region of the constant chain remain unchanged. In summary, this construct is the same 

as hCH1mG1 except the point mutation at D265A in the CH2 domain of the mouse IgG1. 
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Figure 17. Sequences of 14C10 hCH1mG1 and 14C10 hCH1mG1D265A constructs. 

A. The nucleotide sequence and the amino acid sequence of the G1 mouse-human chimeric variant 

of the 14C10 antibody (hCH1mG1HCH2-3).  Red box: hinge, CH2 and CH3 regions are substituted 

with mouse equivalents. Mouse G1 hinge is highlighted in blue. 

B. The sequence of the mouse IgG1-D265A mutant of the mouse IgG1 chimeric construct of the 

human 14C10 antibody (hCH1mG1HCH2-3-D265A). Red box: CH2 region with point mutation at the 

point mutation at D265A**. 
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 Sequence of the mouse-human chimeric hCH1mG2a constructs of 14C10  4.3.4

In the hCH1mG2a (hCH1mG2aHCH2-3) antibody, the hinge and the CH2 and CH3 regions 

of 14C10 WT are substituted with mouse regions of the mouse IgG2a, the variable region, 

as well as the CH1 region of the heavy chain remain human. The light chain remains 

unchanged in full as compared to the 14C10 WT antibody (Figure 15). In summary 

hCH1mG2aHCH2-3 has the human CH1, followed by mouse G1 hinge, mouse CH2 and 

mouse CH3 regions (Figure 18).  

In the hCH1mG2a_Ext (CH1mG2aHCH2-3_Ext), only CH2 and CH3 regions are 

substituted with the mouse IgG2a equivalents. Other parts of heavy change and the light 

chain remain unchanged as compared to 14C10 WT (Figure 15). In summary, the heavy 

chain consists of human CH1, followed by the human G1 hinge, then the mouse CH2 and 

CH3 (Figure 18). 
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Figure 18. Sequences of 14C10 hCH1mG2a and 14C10 hCH1mG2a_Ext constructs. 

The nucleotide sequence and amino acid sequence of CH2 and CH3 regions of mouse-human 

chimeric construct hCH1mG2a (hCH1mG2aHCH2-3). In hCH1mG2a, the CH2 and CH3 regions of 

the constant chain were substituted with mouse IgG2a equivalents (A. red box), and the hinge was 

substituted with a mouse G2a hinge (A. highlighted in blue). In hCH1mG2a_Ext, the human G1 

hinge was left unchanged as compared to 14C10 WT (B. highlighted in blue). 
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 Purity of the expressed constructs 4.4

The constructs were electrophoresed by 10% NuPAGE gel in order to check their purity ( 

Figure 19 

Figure 19, Figure 20).  

The hCH1mG2aHCH2-3 construct, which has human CH1, followed by the mouse G1 

hinge, mouse CH2 and CH3 was found not to be folding properly as shown in Figure 20C. 

That is why its modification, hCH1mG2aHCH2-3_Ext, which has the human CH1, followed 

by the human hinge, then the mouse CH2 and CH3, was designed and produced (Figure 

20D). 

Eventually, four constructs qualified for further studies: 14C10-hG1LALA, 

hCH1mG1HCH2-3, hCH1mG1HCH2-3-D265A and hCH1mG2aHCH2-3_Ext. 

 

 

Figure 19. Schematics of human constructs (A. 14C10hG1 and B. 14C10hG1LALA).  

Presence of the heavy and light chain bands at 150 kD (non-reducing conditions) or 50 kD and 25 

kD (reducing conditions) when compared with the marker confirms proper folding of the respective 

parts of the antibodies. 



 

 

 73 

 

 

Figure 20. Schematics of mouse-human chimeric constructs A. hCH1mG1HCH2-3, B. 
hCH1mG1HCH2-3-D265A, C. hCH1mG2aHCH2-3, D. hCH1mG2aHCH2-3_Ext. 

Standard gel electrophoresis of purified antibodies showed that construct hCH1mG2a was not 

folding properly as shown in the figure above (C. red box). The presence of the heavy and the light 

chain bands at 150 kD (non-reducing conditions) or 50 kD and 25 kD (reducing conditions) when 

compared with the marker for the antibody A. B. and D. confirm the proper folding.  
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 Functional tests of the 14C10 antibody and its human and chimeric 4.5

constructs 

 

To confirm that all the changes that were made during the antibody production did not affect 

the binding-neutralization activity of the constructs I carried out multiple tests described 

below. 

 

 Binding specificity and affinity of the 14C10 antibody constructs 4.5.1

An ELISA assay was carried out to confirm DENV1-specific binding and to characterize 

binding affinities of the produced constructs. Binding affinities were compared to that of 

4G2, a murine monoclonal IgG1 antibody specific for a Flavivirus group antigen or 3H5, a 

recombinant chimeric clone of the murine monoclonal IgG1 antibody, specific for DENV2. 

14C10hG1LALA and the 14C10 WT antibody had similar binding affinities to DENV1. All 

mouse constructs had a higher binding affinity to DENV1 than the human 14C10 WT 

proving the retention of binding affinities in all the constructs generated. The DENV1 binding 

affinities of the constructs can be ranked as follows:  hCH1mG1D265A > hCH1mG1 > 

hCH1mG2aEXT > 4G2 > hG1. None of the constructs bound to DENV2 (Figure 21). 
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Figure 21. Binding specificity of the 14C10 hG1LALA construct versus 14C10 WT.  

Binding specificity of 14C10 hG1LALA and 14C10WT were compared by direct ELISA assay. 

Purified DENV1 EHI or DENV2 NGC (specificity control) was coated on Nunc MaxiSorp® plates and 

4% (w/v) skim milk (Sigma)/PBS was used as a negative control. After blocking with 4% (w/v) skim 

milk, samples of purified antibodies (14C10 WT/14C10hG1LALA/3H5) were applied onto the wells 

and incubated for 1 hour. 3H5* is an antibody specific for DENV2. Goat anti-mouse IgG (H+L) cross-

adsorbed, HRP-conjugate (Pierce, 1:5000 in 2% (w/v) skim milk) was used as a secondary antibody. 

After final wash TMB substrate (Pierce) was added and the reaction was stopped with 0.1 M sulfuric 

acid. The reading of absorbance was taken at 450nm by spectrophotometer. Results are averaged 

from two independent experiments and error bars represent SD between experiments.  
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Figure 22. Binding specificity of the mouse-human chimeric constructs versus 14C10 WT.   

Binding specificity of mG1, mG1D265A, mG2a mouse constructs of 14C10 antibody and the wild 

type hG1 14C10 were compared by direct ELISA assay. First, purified DENV1 EHI (dilutions 1 in 20 

or 1 in 50) or DENV2 NGC (diluted 1 in 50) was coated onto Nunc MaxiSorp® 96-well plates at 

50µl/well and incubated overnight at 4oC. The virus was washed off and the wells were blocked with 

4% (w/v) skim milk at RT for 2 hours. Samples of purified antibodies were probed onto washed wells 

and incubated for 1 hour at RT. Then plates were washed again, and the anti-mouse HRP antibody 

or anti-human HRP antibody (1:5000) was added and incubated for 1 hour at RT. Subsequently, 

TMB substrate (Pierce) was added and the reaction was stopped with 0.1 M sulfuric acid. The 

reading of absorbance was taken at 450nm by spectrophotometer. 4G2* is a murine monoclonal 

IgG1 specific for Flavivirus group antigen; 3H5* is a recombinant chimeric clone of the murine 

monoclonal IgG1 specific for DENV2. Results are averaged from two independent experiments and 

error bars represent SD between experiments. 
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Figure 23. Binding specificity of mG2a_Ext and mG1 versus 14C10 WT. 

Sandwich ELISA was carried out to check the binding characteristics of mIgG1 and mIgG2_aEXT. 

The primary antibody (human 4G2 IgG1) was coated at 5µg/ml, 50µl/well overnight at 4oC onto 

Nunc MaxiSorp® flat-bottom 96-well plates. The wells were then washed once with PBST 0.05%, 

twice with PBS and blocked with 4% (w/v) skim milk (Sigma)/PBS at RT for 2 hours. Then non-

purified DENV1 EHI or DENV2 NGC was added at 106 PFU/ml in 4% skimmed milk, 50µl/well. After 

an incubation of 1 hour at RT, the wells were washed and probed with the samples of purified 

antibodies. The 3H5* antibody used as control, is a murine monoclonal recombinant chimeric clone 

of the murine monoclonal IgG1 specific for DENV2. Goat anti-mouse IgG (H+L) cross-adsorbed 

(minimal cross-reactive with human serum proteins) secondary antibody, HRP-conjugate (Pierce, 

1:5000 in 2% (w/v) skim milk) was added 50µl/well and incubated for 1 hour. After the final triple 

wash, TMB substrate (Pierce) was added at 50µl/well and the reaction was stopped with 0.1 M 

sulfuric acid 50µl/well. Absorbance was read at 450nm by spectrophotometer. Results are averaged 

from two independent experiments and error bars represent SD between experiments. 
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 Analyzing the neutralization activity of the engineered 14C10 constructs 4.5.2

Neutralizing activities of the engineered constructs of 14C10 were tested against DENV1 

EHI (Genotype 1) and DENV1 WP74 (Genotype 4) as shown in Figure 24 to 27. First, to 

determine an influence of the LALA mutation on the neutralization based on the Fab–virus 

binding, PRNT was carried out in BHK cells using 4-fold serial dilution of the antibodies with 

30 μg/ml as the highest concentration. The results expressed as the percentage 

neutralization showed no significant differences between the neutralization activity of the 

LALA mutant versus WT antibody. We next tested the neutralization potency of the mouse-

human chimeric IgG1 and its D265A mutant as well as the mouse-human chimeric IgG2a. 

All tested constructs of 14C10 exhibited neutralization activity for EHI and WP74 genotypes 

of DENV1.  

 

 

 

 

 

 

 

 

Table 1. The concentration of an antibody needed to reduce the number of plaques by 50% is 

termed the PRNT50 value. The PRNT50 values (µg/ml) presented in the table were determined with 

Prism by non-linear regression. Values represent an average of triplicates results. 

  

antibody EHI - PRNT50  

(µg/ml) 

WP74- PRNT50  

(µg/ml) 

14C10WT 1.97 0.35 

14C10hG1LALA 1.72 0.43 

14C10mG1 0.78 0.30 

14C10mG1D265A 1.11 0.40 

14C10mG2a 1.14 0.28 
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There was no significant difference between neutralization activities of all the mutants and 

variants of 14C10 versus WT antibody. The results demonstrate that in vitro neutralization 

based on the Fab–virus binding is maintained in all constructs. 

 

 

Figure 24. Neutralizing activities of 14C10 constructs for DENV 1 isolate EHI genotype 1. 

A standard PRNT assay was carried out. Serially diluted 14C10 antibody was incubated with DENV1 

EHI for 1 hour at RT and applied onto BHK cells for an additional hour at 37°C. The cells were 

covered with carboxymethyl cellulose for a 5-days incubation at 37°C. Afterwards, cells were fixed 

and stained with PFA and crystal violet. The plaques were counted. The PRNT50 values were 

calculated using nonlinear regression on GraphPad Prism. Data points represent the average of 

three independent experiments performed in triplicates. Error bars represent SDs.  
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Figure 25. Comparison of neutralization activities of 14C10 constructs for DENV1 EHI in vitro.  

(a) 14C10 WT (b) 14C10hG1LALA, (c) 14C10mG1, (d) 14C10mG1D265A, (e) 14C10mG2aEXT. 

Data points represent the average of at least 2 independent experiments performed in triplicates. 

Error bars represent SDs.  
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Figure 26. Neutralization profile of 14C10 constructs for DENV1 isolate WP74 genotype 4. 

The results show small but not significant differences in neutralization activities of five 14C10 

constructs. All the constructs neutralized DENV1 WP74 to varying degrees. This shows that in vitro 

neutralization based on the Fab – virus binding is maintained regardless of 14C10 construct tested. 

The results are representative of three independent experiments. Error bars represent SDs of 

triplicate samples  

 



 

 

 82 

 

 

Figure 27. Comparison of neutralization activities of 14C10 constructs for DENV1 WP74 in 
vitro. 

All constructs of 14C10 neutralize DENV1 WP74 in BHK cells as shown in the figure, (a) 14C10 WT 

(b) 14C10hG1LALA, (c) 14C10mG1, (d) 14C10mG1D265A, (e) 14C10mIgG2aEXT. The results 

represent the average of at least 2 independent experiments performed in triplicates. Error bars 

represent SDs.   
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 Antibody dependent enhancement (ADE) in vitro mediated by the 14C10 4.5.3

constructs 

To assess the levels of in vitro ADE and determine the infection-enhancing effects of each 

of the constructs at sub neutralizing concentrations, the gold standard assay for ADE in vitro 

in K562 cells was employed. The results showed a clear ADE effect mediated by 14C10 

WT, hCH1mG1 and hCH1mG2aEXT. The ADE effect was absent in LALA and D265A 

mutations (Figure 28). 

 

Figure 28. LALA and D265A mutations eliminate the ADE effect in vitro. 

DENV1 EHI isolate was used to compare the constructs of 14C10 in the context of an antibody 

dependent enhancement (ADE) in vitro. The ADE effect was eliminated in the presence of LALA and 

mG1D265A constructs of 14C10, while WT, mG1 and mG2aEXT constructs of 14C10 triggered ADE 

and caused higher viral load in K562 cells (highlighted in a box). The results are representative of 

three independent experiments. Results represent the average of 3 independent experiments. Error 

bars represent SDs.  
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5 Defining the role of the Fc-region of Immunoglobulin in Dengue virus 

neutralization and clearance 
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 Background of the study 5.1

It was suggested in previous published studies that the neutralizing mechanisms of anti-

influenza antibodies are mediated entirely through their variable regions (Nelson, Palermo et 

al. 2007). However, DiLillo et al. examined the in vivo roles of the interaction between Fc 

portion of anti-influenza antibodies and their cognate Fcγ receptors and found that only five 

out of eight neutralizing antibodies required the above-mentioned interaction to confer 

protection from lethal H1N1 challenge (DiLillo, Tan et al. 2014). The five antibodies that 

required the Fc-FcγR interaction for protection from viral infection in vivo were broadly 

neutralizing monoclonal antibodies (bNAbs). Introduction of a D265A mutation, which 

abolishes Fc binding, significantly reduced their in vivo potency comparing to wild type 

antibodies (Figure 29). Three remaining antibodies were evenly protective regardless of the 

presence of the Fc-FcγR interactions and all of them were strain specific monoclonal 

antibodies (mAbs) (Figure 30). 

We therefore hypothesized that modification of the Fc portion of the DENV1-specific 

14C10 monoclonal antibody would prevent any potential homotypic ADE effect without 

affecting its neutralizing activity. To further examine the role of Fc-FcγR interactions for 

14C10 antibody neutralization of DENV1 we tested in vivo constructs described in chapter 

3, namely 14C10 WT, 14C10hG1LALA, 14C10mG1, 14C10mG1D265A, 14C10mG2aEXT. 
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Figure 29. Fc-FcγR interactions are required for protection from influenza infection by bNAbs 
in vivo. 

(a) Binding of  6F12 bNAb variants to PR8 HA. Mouse G2a, mouse G1 and DA265 mutant  6F12 

bNAb and an IgG2a isotype control mAb diluted as indicated and tested for binding to PR8 HA by 

ELISA. Values represent mean ± s.e.m. relative optical density (OD) values from triplicate wells.  

(b) In vitro plaque reduction neutralization by 6F12 bNAb variants. Values represent mean % 

inhibition, calculated by  comparing plaque numbers in mAb-treated wells with wells receiving only 

PBS.  

(c)  Percentage weight change compared to day 0 (left) or percentage survival (right) in  wild-type 

mice treated with mouse G2a 6F12 bNAb, mouse G1 6F12 bNAb,  DA265 mutant 6F12 bNAb or 

PBS before infection with PR8 virus. Weight change values represent mean ± s.e.m. n ≥ 5 mice per 

group. Reprinted by permission from Macmillan Publishers Ltd: Nature Publishing Group, advance 

online publication, (doi: 10.1038/sj.[NM], copyright (DiLillo, Tan et al. 2014)). 
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Figure 30. Strain-specific anti-influenza mAb does not require FcγR contributions during 
protection from viral infection in vivo.  

(a) Percentage weight change compared to day 0 and survival over time in wild-type mice treated 

with mouse IgG2a, mouse IgG1 or DA265 mutant PY102 mAb or PBS before infection with PR8 

virus. Weight change data in is expressed as mean ± s.e.m. n = 5–8 mice per group.  

(b) Percentage survival over time in wild-type mice treated with the indicated doses of mouse IgG2a 

or DA265 mutant PY102 mAb, or PBS, before infection with PR8 virus.  

Reprinted by permission from Macmillan Publishers Ltd: Nature Publishing Group, advance online 

publication, (doi: 10.1038/sj.[NM], copyright (DiLillo, Tan et al. 2014). 
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 Setting up an in vivo model for DENV infection, neutralization and 5.2

clearance 

An AG129 mouse model was used to establish in vivo schemes for our studies as described 

in chapter 3.8. This is an asymptomatic model, and viremia levels are used as read-out of 

infection.  

To assess the route of DENV1 infection, which results in the highest viremia, AG129 

mice were inoculated with the virus intraperitoneally or subcutaneously and plasma viremia 

was compared by plaque assay. In mice infected with DENV1 EHI subcutaneously viremia 

levels were significantly higher (104 PFU/ml) than in mice infected via the intraperitoneal 

route (103 PFU/ml) as presented in Figure 31. Hence, the subcutaneous route of infection 

was chosen as a method of choice for virus inoculation for all in vivo experiments of this 

project. Time points for blood collection were standardized in the experiment presented in 

Figure 32. As a result days 3, 4, 5 and 9 were chosen for the future blood collection time 

points.  

In the therapeutic scheme, animals were infected with DENV1 on day zero and 

treated with 14C10 antibody on day plus two post-infection. Viremia in mice infected with 

different genotypes of DENV1 was compared. In control mice infected with 200μl of 106 PFU 

of DENV1 EHI, viremia reached its peak between days three and four post-infection, with a 

serum titer of 104 PFU/ml. In mice treated with 30μg of 14C10 WT antibody, viremia 

decreased significantly to 102.5 PFU/ml and was detected only on day three. The viral titer in 

the serum of control mice infected with 200μl of 107 PFU DENV WP74 reached its peak of 

103.5 PFU/ml on day four. In mice treated with 30μg of 14C10 WT antibody viremia was not 
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detectable at any time. The viremia levels in mice infected with DENV1 EHI (genotype 1) 

were higher, however the DENV1 WP74 (genotype 4) virus created clearer and easier to 

count plaques in BHK cells. Overall the results confirmed high neutralizing capacity of the 

wild type version of 14C10 antibody. Viremia in mice treated therapeutically with 14C10 was 

either not detectable at any time or decreased significantly. We concluded that both strains, 

namely EHI and WP74 representing most distinct genotypes of DENV1 should be used in 

the experiments of this project (Figure 32). In the prophylactic scheme, the 14C10 antibody 

was given one day before the subsequent inoculation of 200μl of DENV1 WP74 at 107 

PFU/ml. By analogy to the therapeutic scheme, blood was taken on days 2, 3, 4, 5 and 9. In 

infected and non-treated control mice, viremia peaked at 103 PFU/ml on day four (Figure 

34). In mice treated prophylactically with 10μg of 14C10 WT antibody, viremia was not 

detected at any time point, demonstrating that the prophylactic treatment is as efficient as 

the therapeutic treatment on day two. Based on these results, days 3, 4, 5 and 9 were 

chosen for the future blood collection time points. 
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Figure 31. Mice infected with DENV1 EHI subcutaneously develop significantly higher viremia 
than mice infected via intraperitoneal route.  

AG129 mice were infected with DENV1 EHI at 106 PFU in 200 μl/mouse via i.p. route (blue dots) or 

the s.c. (black dots) on day zero, (n=4). Blood samples were taken on days 2 and 4, and viremia 

levels were assessed by plaque assay and data points represent the averages of triplicate results. 

Lines represent mean of the plasma viremia in 4 animals, *p < 0.01.  

 

 
 

Figure 32. Plasma viremia in mice infected with different genotypes of DENV1 

Mice were infected on day zero with 200µl of (a) DENV1 EHI at 106 PFU/ml, (n=4) or (b) DENV1 

WP74 at 107 PFU/ml, (n=5). One group of mice (black dots) was treated with 30µg of 14C10 WT on 

day two (treat), second group of mice was given PBS instead of the antibody (red dots). Blood was 

collected on day 3, 4, 5 and 9 and viremia levels were assessed by plaque assay. Data points 

represent the averages of the triplicates of the plaque assay results from serum of each mouse. 

Lines represent the mean of viremia levels in all mice.  ***p<0.0001 
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Figure 33. Establishing the 14C10 therapeutic scheme in the AG129 mouse model. 

Mice (n=4) were infected with 200 μl of DENV1 EHI at 1x106 PFU (inf) and treated (treat) with 30 μg 

of 14C10 antibody (black dots). Control mice were given PBS instead of the antibody (red dots). To 

examine the kinetics of viremia in serum, blood samples were collected at 6, 12, 24, 48, 72 and 168 

hours post-treatment. Viremia levels (data points) were assessed with plaque assay. *** p<0.0001. 

 

 

Figure 34. Establishing the 14C10 prophylaxis scheme in the AG129 mouse model. 

On day minus one, mice were treated with 10µg of 14C10 antibody (treat), and on day zero DENV1 

WP74 was injected at 1.3x107 PFU at 200µl/mouse (inf). Blood was collected on days 2, 3, 4, 5 and 

9. In mice given 14C10 antibody one day before the inoculation of DENV1, viremia assessed by 

plaque assay was not detectable at any time point (black dots). Control mice were given PBS 

instead of the antibody and they developed standard viremia for this experimental model (red dots). 

*** p<0.0001.   
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 In vivo testing of 14C10 constructs 5.3

To assess in vivo efficacies of hG1LALA, mG1, mG1D265A, mG2aEXT and 14C10 WT, the 

therapeutic and prophylactic schemes described above were utilized in the AG129 mouse 

model. 

 

 Therapy of DENV1 infection by engineered derivatives of 14C10 5.3.1

To assess the efficacy of the antibody candidates as therapy for DENV1 infection, AG129 

mice were inoculated subcutaneously with DENV1 on day zero and given one of the 14C10-

derived antibodies, namely 14C10hG1LALA, mIgG1, mIgG1D265A or mG2aEXT on day 

two post-infection. Antibody dose 30 μg/mouse, was previously established neutralizing 

concentration for the 14C10 WT antibody (Teoh, Kukkaro et al. 2012). Since the results did 

not yield any significant difference between the in vivo efficacies of the 14C10-derived 

constructs used (data not shown), I employed lower concentrations of 10 and 6μg per 

mouse. In mice treated with 10 or 6 μg of the 14C10-derived constructs, virus was still not 

detectable at any time and there was no significant difference in the results regardless of 

the mutation or variation of the construct employed (Figure 35). In control group of non-

treated mice, viremia lasted three days, and the peak was noted on day four. The lack of 

viremia in mice treated with one of five constructs suggested that the antibodies at the 

abovementioned concentrations saturated the system and thus, they were still too high to 

determine differences in the neutralization efficacy.  
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Figure 35. In vivo testing of the 14C10 constructs at 6 µg/mouse (therapy).  

(a) Mice (n=6) were infected with DENV1 EHI 1x106 PFU 200 μl/mouse on day zero (inf) and 

therapy with one of the 14C10 constructs was given on day plus two post-infection (treat). Blood 

was collected before an infection and treatment as well as on day 3, 4, 5 and 9.  

(b) Standard plaque assay was utilized to measure the serum viremia. Serum samples were diluted 

1:10 in RPMI and 100 µl of each sample was applied onto BHK cells in triplicates. After 1-hour 

incubation at 37oC, the cells were covered with overlaid media and incubated for 7 days. Fixed 

and stained cells were used to count the plaques and calculate viremia levels. Each data point 

represents the average of the triplicate results, and the lines represent the mean of viremia in 6 

animals.  

a 

b 
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 Prophylaxis of DENV1 infection with engineered derivatives of 14C10 5.3.1

The experiments described above using a therapeutic scheme of infection and treatment 

showed a complete absence of plasma viremia in mice treated with any of the 14C10 

antibody constructs. Concentrations as low as 30, 10 or 6 μg per mouse post infection 

resulted in complete virus neutralization (Figure 35). We next asked whether mice treated 

with 14C10 constructs prophylactically would still be protected against DENV1 infection. To 

test this, mice were treated with one of 14C10 antibody constructs one day pre-infection. 

Similarly all the mice treated with 14C10 WT or one of the constructs one day before 

DENV1 infection were protected and did not develop the viremia, unlike the control mice 

infected non-treated. 

 

Figure 36. In vivo testing of the 14C10 constructs at 10 µg/mouse (prophylaxis).  

Mice were treated with one of the 14C10 constructs on day minus one pre-infection (treat) and then 

infected (inf) with DENV1 EHI at 1x107 PFU, 200 µl/mouse on day zero, (n=6). Subsequently, the 

blood samples were taken on day 3, 4, 5 and 9. The serum was used to assess viremia levels by 

standard plaque assay. Each data point represents the average of the triplicates results, and the 

lines represent the mean of the viremia in 6 animals, ***p<0.0001. 
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   Defining the role of the Fc-region of antibodies in Dengue virus 5.4

neutralization and clearance 

Although it was shown previously that the D265A mutation might significantly reduce in vivo 

potency of the mutant antibody comparing to the wild type antibody (DiLillo, Tan et al. 2014), 

(Corti, Voss et al. 2011), when the doses of 30, 10 or 6 μg of all five constructs of the 14C10 

WT antibody were used in vivo, there was no significant difference in the viremia level 

(Figure 35). To further determine if changes made in the constructs interfered with 

neutralization in vivo, concentrations of 1 μg per mouse were administered to mice infected 

with DENV1. The serum samples were then tested by plaque assay for the presence of 

infective viral particles. Mice given the WT 14C10 displayed significantly lower viremia 

compared to control mice that were given PBS instead of 14C10 and it was decreasing on 

day three and four compare to day two. On day five, decreasing tendency changed and the 

viremia was higher compare to the previous days (Figure 37). This observed viral rebound 

could be explained as a result of sub-neutralizing antibody concentration, which first partially 

neutralises the virus, and later allows the virus to replicate. Another explanation could be an 

effect of the facilitation of the viral entry through Fc rec, which is unlikely since the result of 

LALA vs. WT 14c10 yield results, which are not significantly different (Figure 38 a). There 

were no significant differences in the neutralization potency between the four modified 

14C10 constructs versus wild type 14C10 antibody (Figure 38).  
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Figure 37. Viremia in mice treated with 14C10 WT at 1 µg/mouse.  

Mice (n=6) were infected with 200 µl of DENV1 EHI at 1x107 PFU/ml on the day zero and given 1 µg 

of 14C10 antibody on the day two post-infection (black dots). Blood was collected on days 3, 4, 5 

and 9. Viremia levels in mouse sera were assessed by plaque assay. The results were compared 

with the control group, infected, PBS-treated (red dots). Viremia levels were tested by plaque assay. 

Serum samples were diluted 1:10 in RPMI and 100 µl of each sample was applied onto BHK cells in 

triplicates. After 1-hour incubation at 37oC, cells were covered with overlaid media and incubated for 

7 days. Fixed and stained cells were used to count plaques and calculate viremia levels. Each data 

point represents the average of the triplicate results, and the lines represent the mean of viremia in 6 

animals, ***p<0.0001. 
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Figure 38. Plasma viremia in mice treated with 1 µg of 14C10hG1LALA, mIgG1, mG1D265A or 
mG2a assessed by plaque assay (Plaque Forming Units). 

Mice (n=6) were infected with DENV1 EHI 1x107 PFU/ml (200 µl/mouse) on day zero (inf) and then 

treated therapeutically with one of five 14C10 antibody constructs (1 µg/mouse) on day plus two 

post-infection (treat). All 14C10 constructs decreased the viremia like the wild type antibody. There 

was no significant difference between the in vivo efficacies of any of the 14C10 constructs versus 

14C10 WT. Mouse sera were assessed for the presence of infective dengue particles by plaque 

assay. Data points represent the averages of triplicate results of each mouse and error bars 

represent SDs. The results of mice treated with 14C10 WT were compared to the results of mice 

treated with each construct, as follows (a) 14C10 WT vs. 14C10hG1LALA, (b) 14C10 WT vs. 

14C10mG1, (c) 14C10 WT vs. 14C10mG1D265A and (d) 14C10 WT vs. 14C10mG2aEXT. No 

significant difference between four constructs and 14C10 WT antibody was detected.  
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 Virus neutralization vs. clearance  5.4.1

Next, to address the question whether the virus neutralized with 14C10 WT antibody or the 

engineered constructs was cleared from the circulation, we employed the qPCR analysis of 

serum samples previously characterized by plaque assay and ELISA. While plaque assay 

detects infective viral particles, and the results can be used for the assessment of 

neutralization, qPCR assay detects both infective and non-infective viral particles, which 

translates into viral clearance.  

 

The limit of detection for the quantitative real-time PCR assay was first determined using 

various dilutions of cultured DENV1 virus samples with known PFU titers, and a detection 

limit of 101 PFU/ml was determined (data not shown). Subsequent testing of the quantitative 

real-time PCR assay using quantitated plasmid controls showed that the limit of detection 

achieved was 100 copies/μl. A CT value of 43 or above was considered to be negative.  The 

assessment of plasma viremia by plaque assay showed that all the constructs used, namely 

14C10 WT, hG1LALA, mG1, mG1D265A and mG2aEXT neutralized DENV1. The outcome 

of the qPCR showed that not only was the virus neutralized but it was also cleared from the 

system by day plus nine post-infection (Figure 39, Figure 40). Thus, the comparison of the 

same samples with those two tests yielded the answer to the role of the Fc-region of tested 

antibodies in Dengue virus neutralization and clearance. As expected, the modifications of 

Fc portion of 14C10, which is a DENV1 specific antibody, did not affect its neutralizing 

capacity. 
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Figure 39. The level of total viral particles in mouse serum assessed by qPCR. 

Mice (n=6) were infected on day zero with DENV1 EHI at 1 x107 PFU, 200 μl/mouse and treated with 

14C10 WT antibody at 1 µg/mouse (black dots) on day two. Control mice were given 200 µl of PBS 

instead of 14C10 WT (red dots). Blood was collected on days 3, 4, 5 and 9. Mouse sera previously 

tested by plaque assay (Figure 37) here were tested with qPCR for total viral particles. Viral RNA 

was extracted and reverse transcription was carried out at 60oC for 15 min followed by Taq 

polymerase activation at 95oC for 2 min. A 45-cycle PCR amplification was performed with 

denaturation at 95oC for 5s, annealing and extension combined at 60oC for 45 sec. The fluorescence 

emitted from the assay was captured at the end of extension phase of each cycle and the results 

analysed with the ABI 7500 Fast PCR System software. Data points represent the avareage of the 

duplicate result and the error bars represent SDs. 
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Figure 40. Total viral particles in mice treated with 1 µg of 14C10hG1LALA, mG1, mG1D265A 
or mG2a assessed with qPCR (Genome Copy Number). 

Mice (n=6) were infected with DENV1 EHI at 1 x107 PFU 200 μl/mouse on day zero (inf) and given sub-

neutralizing concentrations of antibodies (1 µg/mouse) on day two (treat). Mouse sera were collected 

at indicated time points and were assessed for the presence of total (infective and non-infective) 

DENV1 particles by qPCR. The results for each of the 14c10 construct were statistically compared 

to 14C10 WT: (a) 14C10 WT vs. 14C10hG1LALA, (b) 14C10 WT vs. 14C10mG1, (c) 14C10 WT vs. 

14C10mG1D265A and (d) 14C10 WT vs. 14C10mG2aEXT. No significant difference between the 

constructs and 14C10 WT antibody was detected. The difference for mG1D265A/mG2a compared 

to WT on day 5 is not significant (p>0.19). 
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6 The effect of antibody treatment on the induction of natural protective 

immunity 
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 Antibodies as anti-infective treatment / prophylaxis modalities 6.1

There has been a significant revival in the employment of antibodies as anti-infectives in 

recent years, particularly for acute viral infections where alternative therapeutic modalities 

are unavailable.  RNA viruses such as Zika, Ebola, SARS, Nipah, Influenza A and DENV 

are major sources of emerging, acute infectious diseases in human populations and thus 

represent optimal targets for this form of therapy (Morse and Schluederberg 1990, 

Casadevall, Dadachova et al. 2004, Caminade, Medlock et al. 2012, Casadevall and 

Pirofski 2015, Graham and Ambrosino 2015, Shriver, Trevejo et al. 2015, Malone, Homan et 

al. 2016). The mechanism of protection is proposed to be the neutralization and/or 

clearance of the viral pathogen from the circulation of the infected host with an associated 

reduction in the bioavailability of viral PAMPs and antigens. The impact that this form of 

intervention in the natural cycle of infection has on the development of a host long-term 

protective response remains unclear.  We have addressed this question by analyzing 

passive antibody therapy for two genetically, morphologically and phenotypically distinct 

viral pathogens with fully human monoclonal antibodies derived from convalescent patients. 
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 Establishment of a homologous re-challenge model for DENV  6.2

The evaluation of the in vivo efficacy of five different formulations of the 14C10 antibody 

revealed its kinetics and some of the effects on the immune system of the host. To examine 

whether 14C10 antibody treatment impairs the development of a natural immune response 

with associated long-term protection against the same serotype of DENV a novel re-

challenge scheme was established. AG129 mouse model was employed for this study. 

Each group consisted of five to six AG129 mice at the age of eight-to-nine weeks. The mice 

were anesthetized and blood was taken from the jugular vein before all subsequent in vivo 

procedures. Viremia levels in mice were measured by plaque assay. Levels of 14C10 

antibody in mouse sera and the endogenous protection response generated in mice were 

assessed by ELISA assay. 
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 Therapeutic applications in DENV re-challenge model 6.2.1

In the dengue re-challenge therapy scheme, AG129 mice were inoculated subcutaneously 

on day zero and treated intraperitoneally with the therapeutic antibody on day plus two post-

infection. Afterwards, the mice were re-infected subcutaneously on day 32 post-infection 

with the same strain of the virus as the primary infection. Blood samples were taken on days 

3, 4, 5 and 9 post-infection to assess viremia, and on days 11, 14 and 29 to assess the 

levels of the delivered therapeutic antibody still in circulation, as well as the mouse anti-

DENV1 antibody response. On days 35 and 37 re-challenged mice were bled to assess the 

potential secondary viremia and the levels of the given and endogenous antibodies. Control 

group (I) was injected with 200 μl of sterile PBS instead of therapeutic antibody treatment. 

Control group (II) was a group of naïve mice that were inoculated with the virus on day plus 

32 post-infection. Mice infected with DENV1 and treated post-infection with the 14C10 

antibody did not develop any plasma viremia, whereas in the control mice transient viremia 

at 103 -103.5 PFU/ml lasted from day three to five (Figure 42). Interestingly, the re-challenged 

mice remained protected after clearance of the administered antibody on day 32. As 

expected, control mice (II) infected on day 32 only developed transient viremia at 103 

PFU/ml typical for this mouse model (day 35, 37). 
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Figure 41. Therapy of dengue in the re-challenge scheme of infection. 

Eight-to-nine weeks old AG129 mice (n=5) were infected with DENV1 at the established 

concentration on day zero. Thereafter they were treated with 14C10 WT antibody on day two. The 

blood samples taken on day 3, 4, 5, 9, 11, 14, and 29 were assessed for plasma viremia, levels of 

14C10 still present in the mouse circulation and presence of endogenous mouse anti-DENV1 

antibodies. Mice were then re-infected on day 32 with the same strain and quantity of DENV1 as the 

primary infection. Blood samples were taken on days 35 and 37 (day plus three and plus five after 

secondary re-challenge) and tested as previous samples. Control group (I)* was given PBS instead 

of antibody on day two. Control group (II)** was infected only once, on day 32. 
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Figure 42. Plasma viremia in the re-challenge scheme of DENV1 infection and therapy with 
14C10 WT antibody. 

Therapeutic re-challenge scheme of infection (Figure 41) was used to measure viremia levels in 

mice infected and treated with 30 μg/mouse of 14C10 WT antibody (black circles). Viremia was 

assessed on days 2, 3, 4, 5, 9, 11, 14, 29, 35 and 37. The results were compared to the control 

group (I) – given PBS instead of antibody (red circles) and control group (II) – infected on day 32. 

The experiment was carried out twice with n=5 AG129 mice. Plaque assay was utilized to measure 

the blood viremia, presented as data points. The lines represent mean of the viremia in 5 mice, 

***p<0.0001.   
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 Prophylaxis of dengue in the re-challenge scheme of infection. 6.2.2

In the prophylaxis re-challenge scheme, the AG129 mouse model was treated on day minus 

one pre-infection with 14C10 given intraperitoneally (Figure 43). Control group (I) was 

injected with 200 μl of sterile PBS instead of the antibody. Next, on day zero the mice were 

inoculated subcutaneously with DENV1. A month after the initial infection, on day 32, mice 

were re-infected with the same strain of DENV1 as previously. Control group (II) were kept 

naïve until they were inoculated with DENV1 on day 32. Blood was taken from the jugular 

vein on days 3, 4, 5 and 9 to measure viremia, on days 11, 14 and 29 to measure the levels 

of 14C10 remaining in circulation, and on days 35 and 37 to assess the viremia and the 

levels of the antibodies. In mice given 14C10 antibody before the infection, viremia was not 

detectable at any time point of the experiment. Control group (I) developed viremia at 103 -

103.5 PFU/ml which peaked on day four. After secondary infection, there was no detectable 

virus in the samples taken from mice treated and control group (I). On the contrary, control 

group (II) mice, infected only once on day 32, developed viremia (Figure 44). 
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Figure 43. Prophylaxis of dengue in the re-challenge scheme of infection. 

Mice were treated with the 14C10 WT antibody on day minus one pre-infection. Thereafter, on day 

zero they were infected with DENV1. On day 32, mice were re-infected with the same strain of 

DENV1 as in the primary infection. Blood samples were taken on days 3, 4, 5, 9, 11, 14, 29, 35 and 

37 post-infection to assess the plasma viremia, levels of the given 14C10 antibody and presence of 

the endogenous mouse anti DENV1 antibodies. 
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Figure 44. Plasma viremia in the re-challenge scheme of DENV1 infection and prophylaxis 
with 14C10 WT antibody. 

Prophylactic re-challenge scheme of infection (Figure 43) was utilized to measure viremia levels in 

mice treated with 14C10 WT antibody at 30 μg on day minus one pre-infection. On day zero mice 

were infected with 200 μl DENV1 WP74 at 1.3 x 107 PFU/ml. Blood collected on days plus 2, 3, 4, 5, 

9, 11, 14, 29, 35 and 37 was used to assess serum viremia by plaque assay presented as data 

points. Experiment was carried out twice with n=5 AG129 mice. Serum viremia in mice treated with 

14C10 WT antibody (black dots) was compared to control group (I) - red dots, and control group (II) 

- green dots. Control group (I) was given PBS instead of antibody treatment on day minus one and 

challenged as described above for mice given 14C10. Control group (II) was kept naïve until 

infection on day 32. The lines represent mean of the viremia in 5 mice, ***p<0.0001.    
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 Natural immune response in AG129 mice 6.3

Antibody therapy or prophylaxis may protect against development of viral infections, 

however it is not known how this potentially affects the ability of the host to protect 

themselves against subsequent re-exposure to the same pathogens after clearance of the 

administered antibody. To address this, we employed both pre- and post-infection models 

for delivering anti-DENV1 mAbs to AG129 mice then re-challenged the treated mice with the 

same viruses after the administered antibodies were rendered undetectable in their 

circulation. 

 

 Treatment with 14C10 does not inhibit the natural anti-DENV1 immunity 6.3.1

We found that mice treated with anti-DENV mAb after the primary infection, do not develop 

the viremia after secondary challenge (Figure 42). Thus, we hypothesized that the 

protection observed after the secondary challenge was a result of a murine immune 

response specific to the infecting agent, and that this occurs regardless of whether mice 

were given anti-viral antibodies. To exclude the possibility that the protection after 

subsequent infection observed in mice treated with anti-DENV mAb is not a result of the 

persistent presence of given antibody, we first measured the levels of administered anti-

DENV mAb in mouse serum. In the mice treated with 14C10 WT, the antibody was detected 

only on day 3, 4, 5 (at 3.4 μg/ml) and on day 9 (at 1.1 μg/ml), and afterwards it was not 

detectable proving that it was cleared from the circulation. As expected, in the control 
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groups of mice (I) – PBS treated on day two and infected only on day 32, non-treated, 

14C10 WT was not detected at any time point (Figure 45). 

Levels of mouse endogenous anti-DENV1 antibodies were measured by ELISA. The 

results showed that mice infected and treated with anti-DENV1 mAb produced natural anti-

DENV1 antibodies at the similar levels like mice infected and given PBS instead of mAb. 

The endogenous antibodies were present in the serum in both treated and untreated mice 

during secondary infection. In control group (II) –infected only on day 32, no endogenouse 

anti-DENV1 antibodies were detected (Figure 46). 

Thus, our hypothesis was supported by undetectable levels of given mAb after day 

nine post-infection and the presence of mouse anti-DENV1 IgGs in the treated and control 

groups starting from day four and their presence during subsequent infection (Figure 46). 

Interestingly, the natural mouse IgG responses in mice given 14C10 WT post-infection were 

similar to control infected mice that were not given anti-DENV1 antibodies, suggesting that 

an introduction of 14C10 WT post-infection does not affect the induction of a natural anti-

DENV1 antibody response. 
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Figure 45. Concentration of 14C10 WT in mouse serum in dengue infected and mAb treated 
(therapy) mice. 

Mice were infected with DENV1 WP74 at 1.3 x 107 PFU, 200 μl/mouse on day zero and 30 μg of 
14C10 WT antibody per mouse was administered on day plus two post-infection (black dots). Mice 

were re-infected with the same strain of DENV1 as previously and the viremia was measured on day 

35 and 37. Control group (I) – red dots, was given PBS instead of antibody treatment on day minus 

one and challenged as described above for mice given 14C10. Control group (II) – green dots, was 

kept naïve until infection on day 32. The experiment was carried out twice with n=5 AG129 mice. 

Blood samples were utilized to test levels of given antibody in mouse serum over the time of the 

experiment. Serum samples were tested by ELISA assay. Anti-idiotypic antibody E1 specific for 

14C10 WT antibody was coated on ELISA plates, the serum samples (diluted 1:10) were probed 

onto blocked and washed plates and incubated for 1 hour at RT. After subsequent washing, anti-

human HRP conjugate antibody was added at 5µg/ml, 50µl/well overnight. Plates were washed 

again and TMB substrate was added. The reaction was stopped with 0.1 M sulfuric acid. 

Absorbance was read at 450nm by spectrophotometer. Results are the averages of the duplicate 

reading, **p<0.001, ***p<0.0001.  
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Figure 46. Concentration of mouse endogenous anti-DENV1 antibodies in dengue infected 
mice. 

Blood samples collected in the previous experiment (Figure 45) were here utilized to measure levels 

of natural anti-DENV1 antibodies. ELISA plates were coated with 14C10 WT at 5µg/ml, 50µl/well 

overnight. Plates were washed and blocked with skim milk. The strain and batch of the DENV, which 

was used for the mice inoculation, was added at 106 PFU/ml, 50µl per well. Plates were washed and 

serum samples diluted 1:10 in skim milk were added onto the wells. After subsequent washes goat 

anti-mouse IgG cross-adsorbed secondary antibody, HRP-conjugate (1:5000) was added and 

incubated for 1 hour. Plates were washed and TMB substrate was added. The reaction was stopped 

with 0.1 M sulfuric acid. Absorbance was read at 450nm by spectrophotometer. Results are the 

average of the duplicate experiment.  
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 Prophylactic administration of 14C10 antibody does not stop the immune 6.3.2

system from producing anti-DENV1 antibodies 

The experiment described above showed that therapeutic administration with the 14C10 

anti-DENV1 antibody does not inhibit the induction of a natural protective anti-DENV1 

immune response. The immune response in control mice (I) (DENV1 infected, non-treated), 

which recovered from primary infection, assured protection against DENV1 during 

secondary infection. Similarly, a DENV1-specific protective immune response was observed 

in mice treated therapeutically, which still produced antibodies against DENV1 regardless of 

the presence of 14C10. As a result, during secondary infection, when 14C10 WT antibody 

was no longer present in the treated mouse circulation the virus was still cleared from the 

system. This shows that 14C10 WT treatment does not inhibit the induction of a natural 

immune response against DENV1.  

We next asked whether prophylactic treatment with 14C10 would affect the induction 

of a natural protective anti-DENV1 response. In this case the 14C10 WT antibody might 

bind to DENV1 immediately after administration, thus reducing the opportunity of the virus 

being ‘visible’ for immune cells. Surprisingly, the mice treated prophylactically did not 

develop the viremia after secondary re-challenge, at which time 14C10 is expected to be 

cleared from circulation (Figure 47). Hence, we hypothesized that mice treated with 14C10 

WT pre-infection, were still able to mount their own anti-DENV1 antibodies. To exclude the 

possibility that clearance of the virus after secondary infection was not due to the presence 

of given antibody we confirmed that given 14C10 WT antibody was cleared from the mouse 

circulation before the secondary infection we carried out the Elisa. Administered 14C10 WT 
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antibody was present in the circulation up to day 14 after infection and it was not detectable 

on the day of secondary infection (day 32). As expected, in both the control groups 14C10 

WT was not detectable at any time point. Control group (I) was given PBS instead of 14C10 

WT. Control group (II) was infected on day 32 for the first time (Figure 47).  

Mice treated with 14C10 antibody pre-infection, still produced an anti-DENV1 

response at the comparable level to mice infected non-treated. In control mice (II) which 

were infected with DENV1 WP74 at 1.3 x 107 PFU 200 μl/mouse, three and five days after 

infection, no endogenous antibodies were detected (green circles). The result showed that 

presence of 14C10 WT antibody in mouse serum after prophylactic/pre-infection treatment 

lasted five days longer than after therapeutic/post-infection treatment. It is likely that lower 

serum levels of DENV1 occurred in the prophylactic model, where the virus replication was 

prevented was the reason that 14C10 WT persisted longer in the serum and was detectable 

till day 14. In the therapeutic model, however, the virus could replicate for two days before 

the post-infection treatment with 14C10 WT and all given 14C10 WT antibody was cleared 

from the system faster (by day 11 post-infection). 
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Figure 47. Concentration of 14C10 WT in mouse serum in dengue infected and mAb treated 
(prophylaxis) mice. 

Mice were treated pre-infection with 30 µg of 14C10 WT antibody per mouse on day minus one 

(black dots). On day zero and on day 32 mice were infected with 200 µl of DENV1 WP74 at 1.3 x 

107 PFU/ml. Control group (I) – red dots, was given PBS instead of antibody treatment on day minus 

one and challenged as described above for mice given 14C10. Control group (II) – green dots, was 

kept naïve until infection on day 32. The experiment was carried out twice with n=5 AG129 mice. 

Blood samples taken before all the procedures and on days 2, 3, 4, 5, 9, 11, 14, 29, 35 and 37 were 

used to measure levels of given 14C10 WT antibody. Serum samples were tested by ELISA assay 

with E1 antibody coated on ELISA plates. Serum samples were diluted 1:10, anti-human HRP 

conjugate antibody was used as a secondary antibody. Absorbance was read at 450nm by 

spectrophotometer. Results are the averages of the duplicate reading, **p<0.001, ***p<0.0001. 
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Figure 48. Concentration of mouse anti-DENV1 endogenous antibodies in dengue infected 
mice. 

Blood samples collected in the previous experiment (Figure 47) were here utilized to measure levels 

of murine anti-DENV1 antibodies. The measurement was done by ELISA. Plates were coated with 

14C10 WT overnight, then washed and blocked with skim milk. The strain and batch of the DENV, 

which was used for the mice inoculation, was added and incubated for 1 hour. Plates were washed 

and serum samples diluted 1:10 in skim milk were added onto the wells. After subsequent washes 

goat anti-mouse IgG cross-adsorbed secondary antibody, HRP-conjugate (1:5000) was added and 

incubated for 1 hour. Plates were washed and TMB substrate was added. The reaction was stopped 

with 0.1 M sulfuric acid. Absorbance was read at 450 nm by spectrophotometer. Results represent 

averages of levels of endogenous anti-DENV1 antibodies produced in duplicate experiment.  
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 Analysis of the in vivo treatment with five engineered constructs of 6.4

14C10 antibody in the re-challenge experiments 

The results obtained in the re-challenge experiments show that mice treated therapeutically 

or prophylactically with an anti-DENV1 antibody are still able to mount their own immune 

response against DENV1. In the experiment, mice treated therapeutically or prophylactically 

were re-challenged with the same strain of DENV1 after the 14C10 WT antibody was 

cleared from the murine system. The presence of mouse endogenous antibodies after the 

re-challenge strongly suggests that mice treated with 14C10 WT still produced an adaptive 

immune response equivalent to those recovered from dengue infection untreated 

challenged mice - control group (I). The next question that we wanted to address was the 

impact of the chimerisation and mutation carried out on 14C10 WT antibody on the 

endogenous immune response and long-time protection. Therefore, we measured and 

compared the mouse antibody responses in mice treated with five different constructs of 

14C10 WT. Serum samples were tested for the presence of DENV1, persistence of 

administered antibody and natural anti-DENV1 mouse antibodies. Mice treated with one of 

the constructs LALA, mG1, mG1D265A or mG2a did not develop viremia, similarly to mice 

treated with 14C10 WT antibody Figure 49. Hence, we hypothesized that they produced 

endogenous anti-DENV1 antibodies regardless of which 14C10 construct was given. To 

confirm that the protection was not the result of the persistence of given 14C10 construct 

over the secondary infection, we measured the concentrations of given antibodies. The 

results confirmed that given antibodies were cleared from the mouse system by day of 

secondary infection (Figure 50 - day 32). Interestingly, the levels of endogenous murine 
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anti-DENV1 antibodies were comparable in mice treated with any of 14C10 constructs and 

in non-treated infected mice, demonstrating that the presence of the 14C10 constructs does 

not inhibit the induction of a natural and protective anti-DENV1 response. 

 

 

Figure 49. Plasma viremia in mice treated with constructs of 14C10 versus PBS control. 

Mice were infected with DENV1 EHI at 1x 106 pfu 200 μl/mouse on day zero (inf I) and treated with 

respective antibody construct at 10 μg/mouse on day two (treat). Blood samples were taken on day 

3, 4, 5, 9 and 14. Consequently mice were re-challenged with the same strain and quantity of DENV 

on day 32 (inf II). Control group (I) – was given PBS instead of an antibody (red circles) and control 

group (II) – was infected only once, on day 32 (green circles). As expected, plasma viremia was 

detected in both control groups of mice (I) and (II)– after primary infection in each of the groups, 

days three-five for control group (I) and days 35-37 for control group (II) – black boxes. Mice treated 

with one of the constructs (LALA, mG1, mG1D265A, mG2a) did not develop viremia just like mice 

treated with 14C10 WT antibody.  
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Figure 50. Concentrations of given antibodies in mouse serum over the course of primary 
and secondary infection. 

Mice were infected with DENV1 EHI at 1x 106 pfu 200 μl/mouse on day zero (inf I) and treated with 

one of 14C10 antibody constructs (treat): (a) hG1 WT, (b) hG1LALA, (c) mG1, (d) mG1D265A, (e) 

mG2a, at 10 μg/mouse on day two. Blood samples were taken on day 4, 6, 9 and 29. Mice were re-

challenged with the same strain and quantity of DENV1 on day 32 (inf II). Control group (I) – was 

given PBS instead of an antibody. In all groups given antibody was cleared before the secondary 

infection. That is why, we hypothesized that mice treated with one of the constructs and mice 

infected not treated did not develop viremia due to endogenous mouse immune response.  
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Figure 51. Murine anti-DENV1 endogenous IgG levels in the mouse serum over the course of 
primary and secondary infection. 

Mice were infected with DENV1 EHI at 1x 106 pfu 200μl/mouse on day zero and re-challenged on day 

32, antibody was given on day two post-infection with one of 14C10 antibody constructs at 10 μg: (a) 

Control group, treated with PBS, (b) mG2a, (c) 14C10 WT, (d) hG1LALA, (e) mG1 (f) mG1D265A. 

Murine anti-DENV1 antibodies in serum were assessed with ELISA assay and the averages of 

duplicate experiment are presented as data points.  
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 Anti-human IgG response of the mouse immune system 6.5

Since the constructs of 14C10 antibody used in our studies were either chimeric human-

mouse antibodies or fully human antibodies, we hypothesized that the immune system of 

the mouse would produce an anti-human IgG response. ELISA testing of the serum 

samples from the previous experiments confirmed that all mice infected with DENV1 and 

treated with one of 14C10 antibody constructs produced endogenous antibodies against the 

foreign antibody (Figure 52). It was not surprising that the endogenous anti-human 

response was stronger in mice treated with fully human antibodies (14C10 WT and 

hG1LALA) as compared to mice treated with human-mouse chimeric antibodies. There was 

no significant difference in the level of endogenous antibodies produced in mice treated with 

14C10mG1 antibody and its D265A version. The lowest response was detected in mice 

treated with the mG2a subclass of 14C10 antibody. 
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Figure 52. Anti human response of the mouse immune system. 

To measure anti-human response in mice, which were infected with 200μl DENV1 EHI at 1x 106 

PFU/ml on day zero (inf I) and day 32 (inf II) and then treated on day plus two with one of 14C10 

antibody constructs at 10 μg (treat): (a) WT, (b) hG1LALA, (c) mG1, (d) mG1D265A, (e) mG2a 

serum samples were tested by ELISA. All mice treated with constructs (a-e) produced endogenous 

antibodies against the foreign antibody. The averages of duplicate ELISA experiments are 

presented as data points. Control group (I) – was given PBS instead of an antibody. 
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 Effects of the 14C10 treatment vs. effects of the HA4 anti Influenza 6.6

antibody treatment  

Surprising outcome of the treatment with 14C10 antibody resulted in our general hypothesis 

that an administration of 14C10 antibody neutralizes the virus but does not stop the immune 

system of the host from making their own antibodies, which affirms the long-term protection. 

Thus, we approached our collaborators working on Influenza A virus and anti Influenza A 

antibodies to reproduce our experiments in the respective mouse model. 

 

 Influenza Virus 6.6.1

Influenza A is a prototypic, negative-sense RNA Orthomyxovirus that causes regular 

seasonal epidemics and periodic pandemics (Juergen and Mueller 2002, Palese 2004, 

Taubenberger* and Morens† 2006). Current anti-viral therapies have limited utility in 

outbreak situations (Lee, Yap et al. 2010) and the employment of M2 ion channel inhibitors 

and/or neuraminidase inhibitors usually results in the rapid development of resistance (Li, 

Guan et al. 2004, Tran Tinh Hien, Nguyen Thanh Liem et al. 2004, Hurt, Holien et al. 2009).   

 

  



 

 

 125 

 Vaccination and antibody therapy 6.6.2

The Influenza A vaccine requires yearly re-formulation for both Northern and Southern 

hemispheres, and this also greatly reduces its utility as a suitable response for new 

outbreaks (Li, Guan et al. 2004, Tran Tinh Hien, Nguyen Thanh Liem et al. 2004, Hurt, 

Holien et al. 2009).  Passive antibody therapy is being actively explored as an alternative 

approach for DENV, Inf A and other emerging infections where current prophylaxes 

(vaccines) and specific therapies are limited (Casadevall, Dadachova et al. 2004, Hanson, 

Boon et al. 2006, Casadevall and Pirofski 2015, Shriver, Trevejo et al. 2015).  This is based 

on the relative speed with which neutralizing antibodies can be isolated and/or cloned from 

infected / recovered patients (Pinna, Corti et al. 2009). The HA4 antibody is fully human 

antibody engineered by Brendon Hanson’s lab, which was shown previously to protect mice 

infected with 5 x MLD50 dose of lethal strain of influenza A virus. 
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 Influenza mouse model 6.6.3

Most influenza virus studies in mice engage the BALB/C or C57BL/6 mouse model and the 

lab adapted A/Puerto Rico/8/1934 (H1N1) [PR8] or A/WSN/1933 (H1N1) [WSN] influenza 

viruses (Bouvier and Lowen 2010). In our study, we employed the BALB/C strain in 

conjunction with A/Puerto Rico/8/1934 (H1N1) [PR8]. The model is highly susceptible to 

disease and death after intranasal inoculation of virus. Infected mice lose appetite and 

weight and require euthanasia by day 8 of infection. The read-out of the disease is weight 

loss and death/survival. 

 

 

 Reproduction of the re-challenge therapy and prophylaxis schemes 6.7

in the Influenza model  

In the DENV model, mice given 14C10 WT antibody one day before infection did not 

develop viremia. 14C10 WT was cleared by day 29, yet mice were protected against 

secondary infection with DENV1 on day 32. The measurement of murine anti-DENV1 

response showed that treated mice produced their own IgG antibodies and were protected 

over subsequent infection. Here we carried out experiments utilizing another RNA virus in 

the analogous models (pre or post-infection schemes) to test whether the phenomenon 

found in dengue infection model can be translated into a more general rule that an 

administration of the anti-viral antibodies has no negative impact on the development of 

natural immunity. 
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 Therapeutic influenza re-challenge scheme 6.7.1

By analogy to the previously described Dengue re-challenge model, an infection of BALB/C 

mice with influenza virus A/Puerto Rico/8/1934 [PR8] at 250 PFU per mouse on day zero 

was performed. Mice were infected intranasally on day zero and treated with an antibody via 

intraperitoneal route two days post-infection. It is a lethal model, and weight loss and 

death/survival rate are the read-outs of the disease. 

 

 

 

Figure 53. HA4 antibody therapy regime of mice infected with PR8 influenza A virus. 

After intranasal infection with A/Puerto Rico/8/1934 virus [PR8] at 250 PFU on day zero, BALB/C 

mice were treated intraperitoneally with HA4 antibody at 450 μg per mouse on day two (n≥6). 

Control group (I) was given PBS instead of HA4 antibody. To measure the level of HA4 antibody and 

host’s anti-influenza IgG level in the HA4 treated mice, blood samples were taken on day 3, 15 and 

28. On day 32 mice were re-challenged with A/Puerto Rico/8/1934 virus [PR8]. Control group (II) 

was infected only once, on day 32.  
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HA4 treatment of mice infected with lethal strain of influenza virus [PR8] prevented weight 

loss (Figure 55) and resulted in 100% survival rate following primary infection. Most 

importantly, treated mice were protected from a re-challenge on day 32 (Figure 54). To 

confirm the hypothesis that the long-time protection was a result of the presence of natural 

anti-influenza IgG antibodies, we collected and analysed mouse serum for the presence of 

administered HA4 antibody and natural murine IgG antibodies. Administered antibody was 

undetectable in sera by day 15 (Figure 56a). At the same time, murine anti-influenza IgG 

antibody was detected on day 15. Thus, we concluded that treatment with PR8-specific 

antibody did not hamper the development of mouse anti-influenza IgG (Figure 56b). These 

results suggest that an administration of a therapeutic antibody does not impair the 

development of a natural immune response with associated long-term protection against the 

same strain of virus, suggesting that this phenomenon was not only DENV-specific. 
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Figure 54. HA4 antibody thearapy protects PR8 infected mice from death.  

Survival curve of mice infected with PR8 and treated therapeutically with HA4. Mice (n≥6) were 

infected with PR8 at 250 PFU on day zero [PR8 inf (I)] and treated with HA4 antibody at 450 μg on 

day two post-infection. All mice, which belonged to control group (I) were given PBS instead of HA4 

antibody and all of them died by day 8. On the contrary, all HA4 treated mice survived the infection. 

On day 32 mice, which survived the primary infection were re-challenged with the same dose of PR8 

[PR8 (II)]. All those mice survived the secondary infection. Control group (II) was infected only once, 

on day 32 and all mice from this group succumbed to infection within 8 days.  
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Figure 55. HA4 antibody therapy protects influenza infected mice from weight loss.  

Percentage weight change in mice infected with PR8 virus and treated post-infection with HA4 

antibody (in black) compared to mice infected, non-treated in red (a) and green (b). Weight change 

values represent mean ± s.e.m. n≥6 mice per group. 

 

Figure 56. Anti-infectious antibody administered therapeutically does not stop hamper the 
development of mouse IgG. 

Mice (n≥6) were infected with A/Puerto Rico/8/1934 virus [PR8] at 250 PFU on day zero and treated 

with HA4 antibody at 450 µg on day two post-infection. In vivo experiment showed that passive 

immunization with HA4 did not affect host’s ability to mount its own immunity against influenza 

infection (shown in secondary challenge). Hence it was desired to analyse the amount of host’s 

murine antibodies raised over the course of primary infection; when the mouse was treated with HA4 

IgG1. To measure the levels of HA4 and murine natural IgG antibodies in the HA4 treated mice, 

blood samples were taken on day 3, 15 and 28. (a) HA4 antibody was detected on day 3 but not 

later on day 15 or 28. (b) On the contrary, murine anti-PR8 IgG was not detectable on day 3 but it 

was detected on day 15 and 28.   
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 Prophylactic influenza re-challenge scheme 6.7.2

BALB/C mice were first treated with HA4 antibody intraperitoneally on day minus one. 

Subsequently, the animals were infected intranasally influenza virus A/Puerto Rico/8/1934 

[PR8] at 250 PFU per mouse on day zero.  

 

 

 

Figure 57. HA4 antibody prophylaxis regime of mice infected with PR8 influenza A virus. 

BALB/C mice were first treated intraperitoneally with HA4 antibody at 450 μg per mouse on day 

minus one and then infected intranasally with A/Puerto Rico/8/1934 virus [PR8] at 250 PFU on day 

zero (n6). Control group (I) was given PBS instead of HA4 antibody. Blood samples were taken on 

day zero, 3, 15 and 28 to control the levels of HA4 antibody and host’s anti-influenza IgG levels. On 

day 32 mice were re-challenged with A/Puerto Rico/8/1934 virus [PR8]. Control group (II) was 

infected only once, on day 32. 
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Mice administered with HA4 antibody one day before PR8 infection survived both primary 

and secondary infection (Figure 58) and maintained their body weight over the whole 

experiment (Figure 59). HA4 antibody was cleared in 8 out of 9 mice by day 28 (Figure 60a) 

and murine anti-PR8 antibodies were detected on days 15 and 28 (Figure 60b). These 

findings confirmed the previous finding that mice given anti-Inf A antibodies prophylactically 

still develop their own anti-influenza antibody response that protects them from subsequent 

infection.  

 

Figure 58. Survival curve of the mice infected with PR8 and treated prophylactically with HA4. 

Mice (n≥6) were first treated with HA4 antibody at 450 μg per mouse on day minus one and then 

infected with PR8 at 250 PFU on day zero [PR8 inf(I)]. Control group (I) – red, was given PBS 

instead of HA4 antibody and all the mice died by day 8. On day 32 mice were re-challenged with 

PR8 [PR8 inf(I)]. Control group (II) –green, was infected only once, on day 32 and all the mice from 

this group died within 8 days (by day 40). All the HA4 treated mice survived the primary and 

secondary infection. 
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Figure 59. HA4 antibody prophylaxis protects influenza infected mice from weight loss. 

Percentage weight change in mice infected with PR8 virus and treated with HA4 antibody (black 

dots) compared to mice infected, non-treated in red (a) and green (b). Weight change values 

represent mean ± s.e.m. n≥6 mice per group. 

 

 

Figure 60. Anti-infectious antibody administered prophylactically does not stop hamper the 
development of mouse IgG.  

Mice (n≥6) were treated with HA4 antibody at 450 μg per mouse on day minus one and then 

infected with A/Puerto Rico/8/1934 virus [PR8] at 250 PFU on day zero. Blood samples were taken 

on day 3, 15 and 28 to control the levels of HA4 administered antibody and host’s anti-PR8 IgG 

levels. (a) HA4 antibody was detected on day zero and 3 but not on day 15 or 28. (b) The presence 

of HA4 antibody in the serum before introduction of the virus did not stop the immune system from 

producing natural murine anti-influenza IgG (detected on day 15 and 28).   
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 Complexity of the immune response against DENV and antibody 7.1

therapy 

The outcome of a DENV infection depends on a complex interplay of intrinsic (host) and 

extrinsic (virological) factors.  

 

 Correlation between viremia level and disease severity 7.1.1

Even though it is believed that a molecule which could be delivered into a patient and 

reduce viral load in the system might have an impact on the disease manifestation, one 

needs to be aware that the correlation between viral titer and clinical manifestation is still 

unproven. According to a study by Vaughn et al., DENV quantity in blood correlates with 

dengue severity (Vaughn, Green et al. 2000). The team analysed four groups of around 50 

patients at two hospitals in Thailand, each group infected with one of the DENV serotypes. 

The results showed that the severity of dengue disease depended on DENV level, virus 

serotype and antibody response pattern. Interestingly, the symptoms in patients infected 

with DENV2 were relatively more serious than in all the other groups. Moreover, in more 

than 80% of secondary dengue cases the symptoms were more severe when compared 

with primary dengue cases (Vaughn, Green et al. 2000). Another group utilized blood 

samples from pediatric patients of a hospital-based study in Thailand (Libraty, Endy et al. 

2002). Fifty-four children with secondary DENV infections, all infected with DENV3, 

participated in the study. The analysis of viremia levels yielded a direct relation between 

higher mean viral load and severe outcome in the early stages of dengue disease including 
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plasma leakage and low platelet count. However, the high levels of cytokines such as IL-10, 

TNF related to thrombocytopenia and the elevated levels of ALT to plasma soluble IL-2 

receptor levels independently of viral load (Libraty, Endy et al. 2002). Similarly, the results of 

a study conducted in Taiwan demonstrated clear correlation between viremia level and 

disease severity (Wang, Chao et al. 2003). The cohort consisted of 20 adults infected with 

DENV3, of which 9 were diagnosed with DF and 11 with DHF. During febrile illness, the 

blood of DHF patients showed higher viremia levels than the blood of DF patients. In 

addition, during defervescence, the viral RNA was undetectable in DF patients while in DHF 

patients it was still elevated (Wang, Chao et al. 2003). The same group carried out another 

study in Taiwan that included 103 DENV2-infected patients and reported consistent results 

that DHF patients had significantly higher DENV-containing immune complexes and lower 

clearance rate than DF patients (Wang, Chen et al. 2006). 

 In contrast, a more recent study showed lack of association between DENV viral load 

and dengue disease severity (Singla, Kar et al. 2016). This time the research was 

conducted in pediatric dengue patients experiencing primary or secondary DENV infection 

in New Delhi, India. Thirty cases were classified as non-severe dengue warning signs, 21 

patients were diagnosed with DF, 46 children had severe dengue and 5 cases were fatal. 

High viremia was correlated with delayed recovery and low platelet count, but no relation 

with the disease severity was observed (Singla, Kar et al. 2016). Another study, which 

examined the role of interplay of intrinsic factors in the pathogenesis of severe dengue 

disease, was conducted in Vietnam in a cohort of 158 adults (Fox, Le et al. 2011).  The 

authors did not observe a relation between viral load and disease severity and suggested 
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that it could be more prevalent during secondary infection while most of their cases were 

primary dengue disease (Fox, Le et al. 2011). However, the relation between primary or 

secondary DENV infection and disease severity also remains unclear. 

 Notwithstanding the described controversies, the current trend in dengue research is 

to pursue inhibitors against DENV and thus 14C10 antibody is a potential antiviral 

therapeutic for dengue disease caused by DENV1. The high viremia levels in patients with 

secondary infection and probable ADE effect might be correlated with severe clinical 

manifestation of the disease. Since the viremic peak of the virus in patients is relatively long 

(6 to 7 days), it gives a wide window for therapeutic intervention.  

 

 Antibody therapy 7.1.2

One of the key challenges in dengue therapy is treating the overwhelming inflammatory 

immune response (including a strong cytotoxic T cell response) that is engendered by acute 

DENV infection. This is why an ideal dengue therapy needs not only to focus on the viral 

load, but also should deal with the inflammatory response caused by the DENV. There are 

two potential ways of achieving this aim. One way would be an inhibition of the virus and 

subsequent control of inflammatory response, for instance by additional 

immunosuppression. The second, safer and more efficient way would be to block and clear 

the virus simultaneously, inducing decrease in bioavailability of viral molecular patterns 

driving the inflammatory response. Antibody 14C10 is a single molecule that could 

potentially accomplish both these goals. The main doubt related to 14C10 antibody 

treatment is the possible homotypic ADE effect. A mutation in the Fc portion might be a way 
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to overcome this concern. Nonetheless, this mutation might affect the number of processes, 

which are triggered via FcRs binding. My project aimed to determine the role of antibody 

FcR binding regions in DENV neutralization defined as the loss of infectivity through 

reaction of the virus with specific antibody and clearance of the virus from the system.  

 I described here engineering of five constructs of 14C10 antibody, namely 14C10 

WT, 14C10hG1LALA, 14C10mG1D265A, 14C10mG1 and 14C10mG2aEXT (Chapter 4). 

14C10hG1LALA and 14C10mG1D265A were utilized to study the role of FcγRs in the 

DENV neutralization and clearance. The study of the LALA and D265A versions of 14C10 

antibody were based on the previous results of other groups (Balsitis, Williams et al. 2010, 

Corti, Voss et al. 2011, DiLillo, Tan et al. 2014). As an example, the group of Antonio 

Lanzavecchia studied the LALA modification of FI6 antibody. FI6 is a neutralizing anti 

influenza antibody, which binds to Group 1 and Group 2 Influenza A Hemagglutinins and 

was shown to fully protect mice from lethal infection with A/Puerto Rico/8/34 (H1N1) virus 

after at 4mg/kg pre-infection and at 15mg/kg post-infection (Corti, Voss et al. 2011). The 

LALA modification of the Fc portion of the FI6 antibody did not hamper in vitro binding and 

neutralizing activity. The half-lives of the mutated and wild type versions were comparable 

since the mutation does not affect the FcRN binding. However, treatment of lethally infected 

mice with a 2.5 higher dose of 10mg/kg of FI6-LALA protected only 40% of the animals. 

Consequently, an administration of FI6-LALA at 3mg/kg protected only 20% of lethally 

infected mice. The results led to a conclusion that the lack of complement and FcR binding 

substantially decreases FI6-LALA functional activity in vivo (Corti, Voss et al. 2011). Fc-

mediated functions seemed to be crucial for the clearance of the virus from the system. 
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Thus, no significant difference between 14C10 WT and 14C10hG1LALA in vivo efficacy was 

an unexpected result. Two other constructs, 14C10mG1 and 14C10mG2aEXT, representing 

mouse IgG1 and mouse IgG2 were used to determine the influence of the immunoglobulin 

subclass on neutralizing affinity. Similarly, the results showed no significant difference in the 

neutralizing affinity in vivo. It confirmed very high affinity of 14C10 antibody and suggested 

that 14C10hG1LALA might be an answer to the potential homotypic ADE.  

 Additionally, it seems probable that the mechanism of action of broadly neutralizing 

antibodies and strain specific antibodies are different. This could be the reason why the 

modification of the Fc portion of an antibody affects the in vivo efficacy of broadly 

neutralizing antibodies but not the specific ones. Our 14C10 WT antibody is a DENV1-

specific antibody, and the modifications that we made did not change the neutralizing 

activities in vivo. 

 A phase I clinical trial for 14C10 is planned to start in 2017, and it will include testing 

the pharmacokinetics (PK) of the antibody. For the assessment of 14C10 WT concentration 

in serum an anti-idiotypic clone of anti-14C10 antibody (E1) was generated in our lab (Lim, 

Chan et al. 2015). E1 is a chimeric mouse-human antibody (mG2a/hG3) and was used to 

trace the 14C10 levels in the prophylactic and therapy models in the AG129 mice. The 

results showed that in mice infected and treated with 14C10 WT, the 14C10 WT antibody 

was cleared from the system between days 5 and 14, and no 14C10 was detected at the 

time of the subsequent infection. At the same time the endogenous protection response in 

mice was measured by sandwich ELISA. Regardless of the 14C10 antibody treatment post 

or pre-infection, mice generated their own antibodies against DENV1, and this immune 
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response assured virus clearance during subsequent DENV1 infection. At the same time, 

the in vivo experiment complements the in vitro tests, thus E1 is a potential assay antibody, 

which can be used to determine the concentration of serum 14C10 antibody in clinical trials. 

 

 

 Molecular biology of DENV clearance, neutralization and post 7.2

infective immunity 

We looked into the potential mechanisms of neutralizing and clearing the virus as well as 

the development of post-infective immunity. We observed that the wild type antibody and its 

LALA or D265A versions, which do not involve the FcR binding in the neutralization or 

clearance process, still neutralize and trigger the clearance of the virus. The hypothetical 

cellular mechanism behind acquiring long-time protection against DENV1 regardless of the 

antibody treatment during the first infection are run by the complement components and low 

affinity antibodies like IgM, which are present in mouse circulation as fully functional 

antibodies. It is likely that the 14C10 antibodies bind and neutralize the virus through 

blocking the cells that DENV needs for a productive infection. Simultaneously, natural 

immune components attach to the virus and render it susceptible to uptake via complement 

receptors and low affinity Fc receptors leading to immune clearance. Thus, the immune 

complexes are processed regardless of the lack of the involvement of Fc binding of the 

administered antibodies.  
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 Alternative vaccine strategy - Ring fence prophylaxis 7.3

Since our suggested alternative vaccine approach is dependent on individuals getting 

infected naturally, it would be useful to examine whether the same effect would be obtained 

if the antibody and virus, in an attenuated or inactivated form, were administered at the 

same time, so that a single injection would guarantee protection. Interestingly, in the 

prophylactic setup, human antibodies persisted for longer in the treated mice compared to 

the therapeutic setting. This may reflect the relative numbers of viral pathogens that require 

antibody/binding neutralization for the clearance effect. Under conditions of post-infection 

treatment, the virus is able to replicate and expand to greater numbers than is possible with 

prophylaxis. In the prophylactic model, the virus was neutralised almost immediately since 

14C10 antibody was administered one day before an infection.   

In the dengue model of infection, the levels of induced anti-DENV1 IgG antibodies in 

mice infected and non-treated were similar to those in mice treated with 14C10 WT pre-

infection (Figure 48). Similarly, in the influenza model of infection, there was a significant 

increase in anti-PR8 antibody production by day 15 in mice treated with anti-Inf A antibody 

pre-infection (Figure 59). The induction of antibody responses in mice treated 

prophylactically with monoclonal antibodies demonstrate that passive immunization does 

not impair the induction of a host immune response against the specific virus.  

 These data suggest that passive immunization does not inhibit the induction of an 

antibody response in the host, even when given before infection, suggesting that antibodies 

can also be used in a prophylactic manner to prevent individuals from subsequent infection. 

For example, anti-DENV1 or anti-Inf A mAbs could potentially be administered to patients 
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diagnosed with DENV1 or with Influenza A (as post-infection therapies) as well as at-risk 

individuals in their proximity (ring-fence prophylaxis) to limit the spread of the viruses.  

 In our alternative vaccine strategy, people living in the proximity of the infected 

people would be protected with the administered antibody and in case of the natural 

exposure to virus they would develop protective immunity just like recovered (treated or 

non-treated) patients (Figure 61).  The process of vaccine development is time-consuming. 

Our findings open the possibility on the formulation combining mAbs with an infective agent 

in a much quicker process. This necessitates further studies employing more viruses in the 

similar experimental models. 
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Figure 61. Ring Fence Prophylaxis with anti-viral antibodies.  

RNA viral infections can be treated post-infection with neutralizing monoclonal antibodies and the 

treatment does not hamper the natural immune response and long-time protection over the 

subsequent contact with the same strain of virus. We hypothesize that prophylactic administration of 

monoclonal antibodies to people living in proximity of diagnosed individuals, would protect them 

from getting infected. More importantly, based on our findings we claim that in case of natural 

exposure to an infective agent, the immune system of a prophylactically treated person would still 

develop a protective immune response just like survivors of the infection. (Image contributed by 

Maria Lisa Knudsen). 
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