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Summary

This thesis consists of three chapters on mechanism design.1 The first

chapter studies the foundations of dominant-strategy mechanisms. The second

chapter examines the equivalence of stochastic and deterministic mechanisms.

In the third chapter, we focus on the design of e�cient mechanisms in dynamic

environments with interdependent valuations and evolving private information.

The first chapter. Traditional models in mechanism design make strong

assumptions about the agents’ hierarchies of beliefs about each other. For

example, in models with independent types, agents’ beliefs about other agents

are common knowledge among the agents and the mechanism designer. This

seems peculiar in the context of mechanism design, where the focus is on

asymmetric information; imperfect information about others’ beliefs seems at

least as pervasive as imperfect information about others’ preferences. Relaxing

these assumptions has been the focus of the literature of robust mechanism

design. We consider a revenue-maximizing mechanism designer who has an

estimate of the distribution of the agents’ payo�-relevant observations, but she

does not have any reliable information about the agents’ beliefs (including their

beliefs about one another’s payo� types, their beliefs about these beliefs, etc.).

1The first chapter is coauthored with Yi-Chun Chen; the second chapter is coauthored
with Yi-Chun Chen, Wei He, and Yeneng Sun; the third chapter is coauthored with Wei He.
The third chapter has been published in Games and Economic Behavior.
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The mechanism designer could use a dominant-strategy mechanism, which

does not rely on any assumptions of the agents’ beliefs. Alternatively, the

mechanism designer could use mechanisms that ask the agents to report their

beliefs about one another’s payo� types, and to report their beliefs about these

beliefs, etc. In the extreme, the mechanism designer could use mechanisms

that ask the agents to report everything; that is, their whole infinite hierarchies

of beliefs. We examine whether there is any theoretical foundation (in terms of

optimality) for the use of dominant-strategy mechanisms.

The second chapter. The mechanism design literature essentially builds

on the assumption that a mechanism designer can credibly commit to any

outcome. This requirement implies that any outcome of the mechanism must

be verifiable before it can be employed. In this vein, a stochastic mechanism

demands not only that a randomization device be available to the mechanism

designer, but also that the outcome of the randomization device be objectively

verified. As noted in La�ont and Martimort (2002, p. 67), “Ensuring this

verifiability is a more di�cult problem than ensuring that a deterministic mech-

anism is enforced. ... The enforcement of such stochastic mechanisms is thus

particularly problematic.” In the second chapter, we consider a general social

choice environment that has multiple agents, a finite set of alternatives, and

independent and dispersed information. We prove that for any Bayesian incen-

vii



tive compatible mechanism, there exists an equivalent deterministic mechanism.

A deterministic mechanism is robust to the availability of the randomization

device, and the ability of the mechanism designer to commit to any outcome

induced by the randomization device. Our result implies that every mecha-

nism can in fact be deterministically implemented, and thereby irons out the

conceptual di�culties associated with stochastic mechanisms.

The third chapter. We focus on the design of e�cient mechanisms in

dynamic environments with interdependent valuations and evolving private

information. Under the assumption that each agent observes her own realized

outcome-decision payo� from the previous period, we construct an e�cient,

incentive-compatible mechanism that is also budget-balanced in every period

of the game.
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Chapter 1

Revisiting the Foundations of
Dominant-Strategy Mechanisms

1.1 Introduction

Suppose that a revenue-maximizing mechanism designer has an estimate of

the distribution of the agents’ payo� types, but she does not have any reliable

information about the agents’ beliefs (including their beliefs about one another’s

payo� types, their beliefs about these beliefs, etc.), as these are arguably never

observed. The mechanism designer ranks mechanisms according to their worst-

case performance - the minimum expected revenue - where the minimum is

taken over all possible agents’ beliefs. The use of dominant-strategy mechanisms

has a maxmin foundation if the mechanism designer finds it optimal to use a

dominant-strategy mechanism.

A closely related notion is the Bayesian foundation. The use of dominant-

strategy mechanisms is said to have a Bayesian foundation if there exists a

1



particular assumption about (the distribution of) the agents’ beliefs, against

which the optimal dominant-strategy mechanism achieves the highest expected

revenue among all detail-free mechanisms. Note that if there exists such an

assumption, then the worst-case expected revenue of an arbitrary detail-free

mechanism obviously cannot exceed its expected revenue against this particular

assumption, which in turn cannot exceed the worst-case expected revenue of

the optimal dominant-strategy mechanism. Therefore, the Bayesian foundation

is a stronger notion than the maxmin foundation.

In the context of a revenue-maximizing auctioneer, Chung and Ely (2007)

show that, under a regularity condition on the distribution of the bidders’

valuations, the use of dominant-strategy mechanisms has maxmin and Bayesian

foundations. What has been missing thus far from the literature on mechanism

design is the study of such foundations in general environments. In this

paper, we study the maxmin and Bayesian foundations in general social choice

environments with quasi-linear preferences and private values. This exposes the

underlying logic of the existence of such foundations in the single-unit auction

setting, and extends the argument to cases where it was hitherto unknown.

We start with the following contrast between two bilateral trade models

(Section 1.3). In the standard bilateral trade model in which traders are ex

ante identified buyers or sellers, the use of dominant-strategy mechanisms

2



has maxmin and Bayesian foundations. We then consider a bilateral trade

model with ex ante unidentified traders. In this economic environment, we

explicitly construct a single Bayesian mechanism that does strictly better than

the optimal dominant-strategy mechanism, regardless of the assumption about

(the distribution of) the agents’ beliefs. In other words, there is neither a

Bayesian foundation nor a maxmin foundation. To the best of our knowledge,

this is the first example of a revenue maximization setting in which the use of

dominant-strategy mechanisms does not have a maxmin foundation.1

From this contrast, we abstract the uniform shortest-path tree condition.

Our result builds on the recent literature on the network approach to mechanism

design, in particular, Rochet and Stole (2003), Heydenreich, Müller, Uetz, and

Vohra (2009), Vohra (2011) and Kos and Messner (2013).2 We formulate

the optimal mechanism design question as a network flow problem, and the

optimization problem reduces to determining the shortest-path tree (the union

of all shortest-paths from the source to all nodes) in this network. We say that

there is uniform shortest-path tree if for each agent, the shortest-path tree

is the same for all dominant-strategy implementable decision rules and other

1Chung and Ely (2007, Proposition 2) construct an example in which a Bayesian
foundation does not exist, but their construction is silent about the existence of a maxmin
foundation. Bergemann and Morris (2005) study an implementability problem. Börgers
(2013) adopts a di�erent notion of optimality.

2Also see Rochet (1987), Gui, Müller, and Vohra (2004), and Müller, Perea, and Wolf
(2007).
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agents’ reports.

We show that under an additional regularity condition, the uniform shortest-

path tree ensures the maxmin and Bayesian foundations of dominant-strategy

mechanisms (Theorem 1.1). The uniform shortest-path tree is largely responsi-

ble for the success of mechanism design in numerous applications across various

fields. Loosely speaking, the same features that make optimal mechanism

design tractable also provide maxmin and Bayesian foundations for the use

of dominant-strategy mechanisms. To prove this result, we adopt the linear

programming approach to mechanism design, which exposes the underlying

logic behind the existence of such foundations.3 In particular, this gives us a

recipe for constructing the assumption about (the distribution of) the agents’

beliefs for the Bayesian foundation.

The uniform shortest-path tree condition is of interest because a number of

resource allocation problems satisfy this condition. We examine its applicability

in prominent environments. First, the uniform shortest-path tree condition

is satisfied in environments with linear utilities and one-dimensional types.

This fits many classical applications of mechanism design, including single-unit

auction (e.g., Myerson (1981)), public good (e.g., Mailath and Postlewaite

(1990)), and standard bilateral trade (e.g., Myerson and Satterthwaite (1983)).

3We are indebted to Rakesh Vohra for bringing to our attention a closely related paper
by Sher and Vohra (2015), as well as for suggestions along this direction.
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The uniform shortest-path tree condition also holds in multi-unit auctions

with homogeneous or heterogeneous goods, combinatorial auctions and the

like, as long as the agents’ private values are one-dimensional and utilities

are linear. In such a case, the payo� types are linearly ordered via a single

path. Second, the uniform shortest-path tree condition can also be satisfied in

some multi-dimensional environments. In particular, we consider the multi-unit

auction with capacitated bidders (see Malakhov and Vohra (2009)). In this case,

the agent’s payo� types are located on di�erent paths and are only partially

ordered. For both applications, we provide primitive conditions for regularity.

When the uniform shortest-path tree condition is violated, maxmin/ Bayesian

foundations might not exist. If the optimal dominant-strategy mechanism ex-

hibits certain properties, we can construct a single Bayesian mechanism that

robustly achieves strictly higher expected revenue than the optimal dominant-

strategy mechanism, regardless of the agents’ beliefs (Theorem 1.2). We stress

that as a no-foundation result, this is remarkably strong. In addition to bilat-

eral trade with ex ante unidentified traders, we apply this result to auction

with type-dependent outside option.

The remainder of this introduction discusses some related literature. Section

2.2 presents the notations, concepts, and the model. Section 1.3 contrasts two

bilateral trade models. Section 1.4 formulates the notion of the uniform shortest-

5



path tree and presents the results. Section 1.5 studies three applications of the

results and Section 2.5 concludes with discussions.

1.1.1 Related literature

In a seminal paper, Bergemann and Morris (2005) ask whether a fixed so-

cial choice correspondence - mapping payo� type profiles to sets of possible

allocations - can or cannot be robustly partially implemented. Thus they

focus on a “yes or no” question. In contrast, we consider the objective of

revenue maximization for the mechanism designer (under her estimate about

the distribution of the agents’ payo� types), allowing all possible beliefs and

higher-order beliefs of the agents. The best mechanism from the point of view

of the mechanism designer will in general not be separable, and thus the results

of Bergemann and Morris (2005) do not apply.

This paper joins a growing literature exploring mechanism design with

worst case objectives. This includes the seminal work of Bergemann and

Morris (2005), Chung and Ely (2007), and more recently, Carroll (2015, 2016),

Yamashita (2014, 2016), and Du (2016), among others.

Another recent line of literature studies the equivalence of Bayesian and

dominant-strategy mechanisms; see, for example, Manelli and Vincent (2010),

Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013) and Goeree and Kushnir

(2015). Our paper di�ers from these in that the mechanism designer in our

6



model does not make any assumptions about the agents’ beliefs.

1.2 Preliminaries

1.2.1 Notation

There is a finite set I = {1, 2, ..., I} of risk-neutral agents and a finite set

K = {1, 2, ..., K} of social alternatives. Agent i’s payo� type v

i

œ RK represents

her gross utility under the K alternatives.4 The set of possible payo� types

of agent i is a finite set V

i

µ RK . The set of possible payo� type profiles is

V = �
iœIV

i

with generic payo� type profile v = (v1, v2, ..., v

I

). We write v≠i

for

a payo� type profile of agent i’s opponents, i.e., v≠i

œ V≠i

= �
j ”=i

V

j

. If Y is a

measurable space, then �Y is the set of all probability measures on Y . If Y is

a metric space, then we treat it as a measurable space with its Borel ‡-algebra.

1.2.2 Types

We follow the standard approach to model agents’ information using a type

space. A type space, denoted � = (�
i

, f

i

, g

i

)
iœI , is defined by a measurable

space of types �
i

for each agent, and a pair of measurable mappings f

i

: �
i

æ V

i

,

defining the payo� type of each type, and g

i

: �
i

æ �(�≠i

), defining each

type’s belief about the types of the other agents.

4We may represent the agent’s payo� types in di�erent ways. For instance, when studying
one-dimensional payo� types (Section 1.5.1), it is more convenient to represent agent i’s
payo� type by vi œ R.
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A type space encodes in a parsimonious way the beliefs and all higher-order

beliefs of the agents. One simple kind of type space is the naive type space

generated by a payo� type distribution fi œ � (V ). In the naive type space,

each agent believes that all agents’ payo� types are drawn from the distribution

fi, and this is common knowledge. Formally, a naive type space associated

with fi is a type space �fi = (�
i

, f

i

, g

i

)
iœI such that �

i

= V

i

, f

i

(v
i

) = v

i

, and

g

i

(v
i

)[v≠i

] = fi(v≠i

|v
i

) for every v

i

and v≠i

. The naive type space is used almost

without exception in auction theory and mechanism design. The cost of this

parsimonious model is that it implicitly embeds some strong assumptions about

the agents’ beliefs, and these assumptions are not innocuous. For example,

if the agents’ payo� types are independent under fi, then in the naive type

space, the agents’ beliefs are common knowledge. On the other hand, for a

generic fi, it is common knowledge that there is a one-to-one correspondence

between payo� types and beliefs. Myerson (1981) characterizes the optimal

auction in the independent case and Crémer and McLean (1988) in the other

case. Which of these cases holds makes a big di�erence for the structure and

welfare properties of the optimal auction. The spirit of the Wilson Doctrine is

to avoid making such assumptions.

To implement the Wilson Doctrine, the common approach is to maintain

the naive type space, but try to diminish its adverse e�ect by imposing stronger

8



solution concepts. To provide foundations for this methodology, we have to

return to the fundamentals. Formally, weaker assumptions about the agents’

beliefs are captured by larger type spaces. Indeed, we can remove these

assumptions altogether by allowing for every conceivable hierarchy of higher-

order beliefs. By the results of Mertens and Zamir (1985), there exists a

universal type space, �ú = (�ú
i

, f

ú
i

, g

ú
i

)
iœI , with the property that, for every

payo� type v

i

and every infinite hierarchy of beliefs ĥ

i

, there is a type Ê

i

œ �ú
i

of agent i with payo� type v

i

and whose hierarchy is ĥ

i

. Moreover, each �ú
i

is

a compact topological space.5

When we start with the universal type space, we remove any implicit

assumptions about the agents’ beliefs. We can now explicitly model any

such assumption as a probability distribution over the agents’ universal types.

Specifically, an assumption for the mechanism designer is a distribution µ over

�ú.

1.2.3 Mechanisms

A mechanism consists of a set of messages M

i

for each agent i, a decision rule

p : M æ �K and payment functions t

i

: M æ R. Each agent i selects a

message from M

i

. Based on the resulting profile of messages m, the decision

rule p specifies the outcome from �K (lotteries are allowed) and the payment

5Also see Heifetz and Neeman (2006).
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function t

i

specifies the transfer from agent i to the mechanism designer. Agent

i obtains utility p · v

i

≠ t

i

. We write p

k for the probability that alternative k is

chosen.

The mechanism defines a game form, which together with the type space

constitutes a game of incomplete information. The mechanism design problem

is to fix a solution concept and search for the mechanism that delivers the

maximum expected revenue for the mechanism designer in some outcome

consistent with the solution concept. To implement the Wilson Doctrine and

minimize the role of assumptions built into the naive type space, the common

approach is to adopt a strong solution concept which does not rely on these

assumptions. In practice, the solution concept that is often used for this

purpose is dominant-strategy equilibrium. The revelation principle holds, and

we can restrict attention to direct mechanisms.

Definition 1.1. A direct-relevation mechanism � for type space � is dominant-

strategy incentive compatible (dsIC) if for each agent i and type profile Ê œ �,

p(Ê) · f

i

(Ê
i

) ≠ t

i

(Ê) Ø 0, and

p(Ê) · f

i

(Ê
i

) ≠ t

i

(Ê) Ø p(ÊÕ
i

, Ê≠i

) · f

i

(Ê
i

) ≠ t

i

(ÊÕ
i

, Ê≠i

),

for any alternative type Ê

Õ
i

œ �
i

.

Definition 1.2. A dominant-strategy mechanism is a dsIC direct-revelation

10



mechanism for the naive type space �fi. We denote by � the class of all

dominant-strategy mechanisms.

To provide a foundation for using dominant-strategy mechanisms, we shall

compare it to the route of completely eliminating common knowledge assump-

tions about beliefs. We maintain the standard solution concept of Bayesian

equilibrium, but now we enlarge the type space all the way to the universal type

space. By the revelation principle, we restrict attention to direct mechanisms.

Definition 1.3. A direct-revelation mechanism � for type space � = (�
i

, f

i

, g

i

)

is Bayesian incentive compatible (BIC) if for each agent i and type Ê

i

œ �
i

,

⁄

�≠i

(p(Ê) · f

i

(Ê
i

) ≠ t

i

(Ê)) g

i

(Ê
i

)dÊ≠i

Ø 0, and
⁄

�≠i

(p(Ê) · f

i

(Ê
i

) ≠ t

i

(Ê)) g

i

(Ê
i

)dÊ≠i

Ø
⁄

�≠i

(p(ÊÕ
i

, Ê≠i

) · f

i

(Ê
i

) ≠ t

i

(ÊÕ
i

, Ê≠i

)) g

i

(Ê
i

)dÊ≠i

for any alternative type Ê

Õ
i

œ �
i

.

A mechanism, which does not rely on implicit assumptions about higher-

order beliefs, should be incentive compatible for all belief hierarchies. In other

words, it should be BIC relative to the universal type space.

Definition 1.4. Let � be the class of all BIC direct-revelation mechanism for

the universal type space. We say that such a mechanism is detail free.

For simplicity of exposition, we add a dummy type v0 for each agent i œ I

and set p(v0, v≠i

) · v

i

= t

i

(v0, v≠i

) = 0 for all v

i

œ V

i

, v≠i

œ V≠i

.
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1.2.4 The mechanism designer as a maxmin decision
maker

The mechanism designer has an estimate of the distribution of the agents’ payo�

types, fi. Following Chung and Ely (2007), we assume that fi has full support.

An assumption µ about the distribution of the payo� types and beliefs of the

agents is consistent with this estimate if the induced marginal distribution on

V is fi. Let M(fi) denote the compact subset of such assumptions. For any

mechanism �, the µ-expected revenue of � is

R

µ

(�) =
⁄

�ú

ÿ

iœI
t

i

(Ê)dµ(Ê).

We do not assume that the mechanism designer has confidence in the

naive type space as his model of agents’ beliefs. Rather he considers other

assumptions within the set M(fi) as possible as well. The mechanism designer

who chooses a mechanism that maximizes the worst-case performance solves

the maxmin problem of

sup
�œ�

inf
µœM(fi)

R

µ

(�).

If the mechanism designer used a dominant-strategy mechanism, then his

maximum revenue would be

�D(fi) = sup
�œ�

R

fi

(�),

12



where

R

fi

(�) =
ÿ

vœV

fi(v)
ÿ

iœI
t

i

(v)

for any dominant-strategy mechanism � œ �.

Definition 1.5. The use of dominant-strategy mechanisms has a maxmin

foundation if

�D(fi) = sup
�œ�

inf
µœM(fi)

R

µ

(�).

The use of dominant-strategy mechanisms has a Bayesian foundation if for

some belief µ

ú œ M(fi),

�D(fi) = sup
�œ�

R

µ

ú(�).

The Bayesian foundation is a stronger notion than the maxmin foundation.

The Bayesian foundation says that there exists an assumption about (the

distribution of) agents’ beliefs, against which the optimal dominant-strategy

mechanism achieves the highest expected revenue among all detail-free mecha-

nisms. It follows that the worse case expected revenue of an arbitrary detail-free

mechanism cannot exceed its expected revenue against this particular assump-

tion, which in turn cannot exceed the worst-case expected revenue of the

optimal dominant-strategy mechanism. We record this observation as the

following proposition.6

6Also see Chung and Ely (2007, Section 2.5).
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Proposition 1.1. If the use of dominant-strategy mechanisms has a Bayesian

foundation, then it has a maxmin foundation.

1.3 Motivating examples

Before we present the results, it is instructive to contrast two bilateral trade

models. In the standard bilateral trade model (see Myerson and Satterthwaite

(1983)), whether an agent is the buyer or the seller is exogenously given. Either

the seller sells some units to the buyer or no trade occurs. In the bilateral trade

model with ex ante unidentified traders (see Cramton, Gibbons, and Klemperer

(1987) and Lu and Robert (2001)), each agent may be either the buyer or

the seller, depending on the realization of the privately observed information

and the choice of the mechanism: the agent’s role as the buyer or the seller is

endogenously determined by her report and cannot be identified prior to trade.

The mechanism designer chooses a mechanism that maximizes the expected

profit in both models.

Section 1.3.1 presents the basics shared by both models. Section 1.3.2

studies the standard bilateral trade model. In this case, the use of dominant-

strategy mechanisms has maxmin and Bayesian foundations. Section 1.3.3

studies the bilateral trade model with ex ante unidentified traders. We show

that there is neither a Bayesian foundation nor a maxmin foundation.
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1.3.1 Setup

Consider a broker who chooses trading mechanisms that maximize the expected

profit; see for example, Myerson and Satterthwaite (1983, Section 5), Lu and

Robert (2001) and Börgers (2015). Each agent is endowed with 1
2 unit of a

good to be traded and has private information about her valuation for the

good. Agent 1’s valuation for the good could be either 18 or 38. Agent 2’s

valuation for the good could be either 10 or 30. The broker has the following

estimate of the distribution of the agents’ valuations:

v1 = 18 v1 = 38
v2 = 10 3

8
1
8

v2 = 30 1
8

3
8

(1.1)

1.3.2 Standard bilateral trade

In the standard bilateral trade model, agent 1 is the buyer and agent 2 is the

seller. The trading mechanism is characterized by three outcome functions

(p, t1, t2), where p (v1, v2) is the expected trading amount, t1 (v1, v2) is the

expected payment from agent 1 to the broker and t2 (v1, v2) is the expected

payment from agent 2 to the broker, if v1 and v2 are the reported valuations of

agent 1 and agent 2. Agent 1’s utility from purchasing p units of the good and

paying a transfer t1 is pv1 ≠ t1 and agent 2’s utility from selling p unit of the

good and paying a transfer t2 is ≠pv2 ≠ t2, where 0 Æ p Æ 1
2 .
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Clearly, this model belongs to the class of environments with linear utilities

and one-dimensional payo� types; see Section 1.5.1. Following Corollary 1.1, the

use of dominant-strategy mechanisms has maxmin and Bayesian foundations.

1.3.3 Bilateral trade with ex ante unidentified traders

In this section, we study the bilateral trade model with ex ante unidentified

traders. Each agent may be either the buyer or the seller. The trading

mechanism is characterized by three outcomes functions (p, t

B

, t

S

), where

p (v1, v2) is the expected trading amount, t

B

(v1, v2) is the expected payment

from the buyer to the broker and t

S

(v1, v2) is the expected payment from the

seller to the broker, if v1 and v2 are the reported valuations of agent 1 and

agent 2. The buyer’s utility from purchasing p units of the good and paying a

transfer t

B

is pv

B

≠ t

B

and the seller’s utility from selling p unit of the good

and paying a transfer t

S

is ≠pv

S

≠ t

S

, where 0 Æ p Æ 1
2 .

In the context of this economic environment, this example illustrates that,

maxmin/ Bayesian foundations might not exist. Section 1.3.3 calculates the

maximum expected revenue that could be achieved by a dominant-strategy

mechanism, and Section 1.3.3 explicitly constructs a single Bayesian mechanism

that achieves a strictly higher expected revenue, regardless of the assumption

about (the distribution of) the agents’ beliefs. It should be obvious from the

exposition below that this example is robust to small perturbations in the
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agents’ valuations or the broker’s estimate of the distribution of the payo�

types.

Optimal dominant-strategy mechanism

Using a linear programming solver, we have the optimal dominant-strategy

mechanism � as follows, where the first number in each cell indicates the

amount of good agent 1 buys from agent 2, the second number is the transfer

from agent 1 and the third number is the transfer from agent 2. The maximum

expected revenue the mechanism designer can generate from a dominant-

strategy mechanism is 3.

v1 = 18 v1 = 38
v2 = 10 1

2 , 9, ≠5 1
2 , 9, ≠15

v2 = 30 ≠1
2 , ≠9, 15 1

2 , 19, ≠15
(1.2)

Neither a Bayesian foundation nor a maxmin foundation

To show that there is no maxmin foundation, it su�ces to construct a single

Bayesian mechanism and achieve a strictly higher expected revenue than he does

using the optimal dominant-strategy mechanism, regardless of the assumption

about (the distribution of) the agents’ beliefs. Since Bayesian foundation is a

stronger notion than maxmin foundation, this further implies that there is no

Bayesian foundation.
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The construction of the mechanism �Õ follows immediately from Theorem

1.2. We shall save the arguments in Section 1.4. Following Chung and Ely

(2007), we use a to denote the first-order belief of a low-valuation type of

agent 2 that agent 1 has low valuation. In this mechanism, the mechanism

designer elicits agent 2’s first-order belief about agent 1’s valuation. To see

that �Õ is expected revenue improving, note that �Õ achieves revenue of at least

4 everywhere and hence the expected revenue is at least 4, regardless of the

agents’ beliefs.

v1 = 18 v1 = 38
a œ [0,

1
2) ≠1

2 , ≠9, 15 1
2 , 19, ≠15

a œ [1
2 , 1] 1

2 , 9, ≠5 1
2 , 9, ≠5

v2 = 30 ≠1
2 , ≠9, 15 1

2 , 19, ≠15

1.4 Results

We can formulate the optimal dominant-strategy mechanism design problem

as follows:

max
p

k(·)Ø0,ti(·)

ÿ

vœV

fi(v)
ÿ

iœI
t

i

(v) (DIC ≠ P )

subject to ’i œ I, ’v

i

œ V

i

, ’v

Õ
i

œ {V

i

\{v

i

}} fi {v0}, ’v≠i

œ V≠i

,

p(v
i

, v≠i

) · v

i

≠ t

i

(v
i

, v≠i

) Ø p(vÕ
i

, v≠i

) · v

i

≠ t

i

(vÕ
i

, v≠i

), (1.3)

’v œ V,

ÿ

kœK
p

k(v) = 1. (1.4)
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By compactness arguments, the maximization problem (DIC ≠ P ) has a

finite optimal value. Denote by V

DIC≠P

the value of the objective function of

the program (DIC ≠ P ) at an optimum.

Say that a decision rule p is dsIC if there exists transfer scheme t such that

the mechanism (p, t) satisfies the incentive constraints (1.3). We omit the proof

of the following standard lemma, due to Rochet (1987).

Lemma 1.1. A necessary and su�cient condition for a decision rule p to be

dsIC is the following cyclical monotonicity condition: ’i œ I, ’v≠i

œ V≠i

and

every sequence of payo� types of agent i, (v
i,1, v

i,2, ..., v

i,k

) with v

i,k

= v

i,1, we

have
k≠1
ÿ

Ÿ=1
[p(v

i,Ÿ

, v≠i

) · v

i,Ÿ+1 ≠ p(v
i,Ÿ

, v≠i

) · v

i,Ÿ

] Æ 0. (1.5)

1.4.1 Uniform shortest-path tree

We first collect some graph-theoretic terminology used in the sequal.

Definition 1.6. Fix a decision rule p that is dsIC and other agents’ reports

v≠i

.7 (1) The set of nodes for agent i is V

i

fi {v0}; (2) For any v

i

œ V

i

and v

Õ
i

œ

V

i

\{v

i

}fi{v0}, v

Õ
i

æ v

i

is a directed edge with length p(v
i

, v≠i

) ·v
i

≠p(vÕ
i

, v≠i

) ·v
i

;

and (3) A path from the dummy type v0 to payo� type v

i,k

œ V

i

is a sequence

P = (v0, v

i,1, v

i,2, ..., v

i,k

) where (i) v

i,j

œ V

i

, ’j = 1, 2, ..., k; (ii) v0 æ v

i,1; (iii)

7In the remainder of this section, whenever we fix a decision rule p, we mean a decision
rule p that is dsIC.
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v

i,j≠1 æ v

i,j

, ’j = 2, ..., k and (iv) j ”= j

Õ =∆ v

i,j

”= v

i,j

Õ.

To understand the maximization problem (DIC ≠ P ) and in particular

the associated incentive constraints (1.3), it helps to flip to its dual. The

dual is a network flow problem that can be described in the following way.

Fix a decision rule p and other agents’ reports v≠i

. Introduce one node for

each type v

i

œ V

i

fi {v0} (the node corresponding to the dummy type v0

will be the source) and to each directed edge v

Õ
i

æ v

i

, assign a length of

p(v
i

, v≠i

) · v

i

≠ p(vÕ
i

, v≠i

) · v

i

. The optimization problem reduces to determining

the shortest-path tree (the union of all shortest-paths from the source to all

nodes) in this network. Edges on the shortest-path tree correspond to binding

dominant-strategy incentive constraints. Readers unfamiliar with network flows

may consult Ahuja, Magnanti, and Orlin (1993) and Vohra (2011).

Definition 1.7. Fix a decision rule p and other agents’ reports v≠i

. A shortest-

path tree is the union of all shortest-paths from the source to all nodes.

Note that if v

Õ
i

belongs to the shortest-path from the source v0 to some v

i

œ

V

i

, the truncation of the path from v0 to v

Õ
i

defines the shortest-path from v0

to v

Õ
i

.

Definition 1.8. There is uniform shortest-path tree if for each agent i œ I,

there is the same shortest-path tree for all decision rules p and other agents’
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reports v≠i

.

When the uniform shortest-path tree condition is satisfied, we drop the

dependence on p, v≠i

. Uniform shortest-path tree induces an order on the

agents’ payo� types. For a typical shortest-path (v0, v

i,1, v

i,2, ..., v

i,k

) of the

shortest-path tree, we write v

i,k

º
i

v

i,k≠1 º
i

. . . º
i

v

i,1 º
i

v0. It is convenient

to represent the uniform shortest-path tree of agent i using º
i

and its transitive

closure by º+
i

. For notational convenience, write v

Õ
i

≤+
i

v

i

if v

Õ
i

º+
i

v

i

or v

Õ
i

= v

i

.

If v

i

º
i

v

Õ
i

, we sometimes write v

≠
i

= v

Õ
i

.

With the uniform shortest-path tree, the rent of any payo� type can be

easily calculated and all incentive constraints can be replaced by the cyclical

monotonicity constraints on the decision rule. We record this as the following

proposition.

Proposition 1.2. With the uniform shortest-path tree º
i

, the maximization

problem (DIC ≠ P ) is equivalent to

max
p(·)

ÿ

iœI

ÿ

viœVi

ÿ

v≠iœV≠i

fi(v
i

, v≠i

)

S

W

U

p(v
i

, v≠i

) · v

i

≠
ÿ

v

Õ
iœVi:vi≤+

i v

Õ
i

p((vÕ
i

)≠
, v≠i

) · (vÕ
i

≠ (vÕ
i

)≠)

T

X

V

,

(1.6)

subject to p(·) satisfies the cyclical monotonicity constraint (1.5).

Proof. With the uniform shortest-path tree º
i

, for any p and v≠i

, the rent of
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payo� type v

i

of agent i can be calculated as follows:

U

i

(v
i

, v≠i

) = p(v
i

, v≠i

) · v

i

≠ t

i

(v
i

, v≠i

)

= p(v≠
i

, v≠i

) · v

i

≠ t

i

(v≠
i

, v≠i

)

= p(v≠
i

, v≠i

) · v

≠
i

≠ t

i

(v≠
i

, v≠i

) + p(v≠
i

, v≠i

) · (v
i

≠ v

≠
i

)

= U

i

(v≠
i

, v≠i

) + p(v≠
i

, v≠i

) · (v
i

≠ v

≠
i

).

By induction,

U

i

(v
i

, v≠i

) =
ÿ

v

Õ
iœVi:vi≤+

i v

Õ
i

p((vÕ
i

)≠
, v≠i

) · (vÕ
i

≠ (vÕ
i

)≠).

Therefore,

t

i

(v
i

, v≠i

) = p(v
i

, v≠i

) · v

i

≠ U

i

(v
i

, v≠i

)

= p(v
i

, v≠i

) · v

i

≠
ÿ

v

Õ
iœVi:vi≤+

i v

Õ
i

p((vÕ
i

)≠
, v≠i

) · (vÕ
i

≠ (vÕ
i

)≠).

The maximization problem (DIC ≠ P ) is equivalent to

max
p(·)

ÿ

iœI

ÿ

viœVi

ÿ

v≠iœV≠i

fi(v
i

, v≠i

)

S

W

U

p(v
i

, v≠i

) · v

i

≠
ÿ

v

Õ
iœVi:vi≤+

i v

Õ
i

p((vÕ
i

)≠
, v≠i

) · (vÕ
i

≠ (vÕ
i

)≠)

T

X

V

.

By Lemma 1.1, p(·) is subject to the cyclical monotonicity constraint

(1.5).

Definition 1.9. Say fi is regular if the cyclical monotonicity constraint (1.5)

is automatically satisfied for p

ú that maximizes the reduced objective function

(1.6).
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To the best of our knowledge, there is no formal definition of regularity in

the general environments. Our definition of regularity captures how it has been

used in the literature; see for example, Myerson (1981).8 In the applications

we study in Section 1.5.1 and Section 1.5.2, additional structure is imposed

and we provide primitive condition for regularity.

1.4.2 Foundations of dominant-strategy mechanisms

Theorem 1.1. In environments in which the uniform shortest-path tree condi-

tion holds, if fi is regular, then the use of dominant-strategy mechanisms has

maxmin and Bayesian foundations.

Proof. The structure of the proof is as follows. Step 1) considers the optimal

dominant-strategy mechanism design problem (DIC ≠ P ) and derives its

dual (DIC ≠ D). Step 2) restricts attention to a subclass of type spaces,

formulates the Bayesian mechanism design problem (BIC ≠ P ) and derives

its dual (BIC ≠ D). Denote by V

DIC≠D

(resp. V

BIC≠P

and V

BIC≠D

) the value

of the objective function of the program (DIC ≠ D) (resp. (BIC ≠ P ) and

(BIC ≠ D)) at an optimum. Step 3) then explicitly constructs an assumption

about (the distribution of) the agents’ beliefs, against which we show in Step

8That is, we first ask which decision rule p the mechanism designer would choose if
she does not have to make sure that the decision rule p satisfies the cyclical monotonicity
constraint. The regularity condition is then imposed to make sure that such optimal decision
rule p automatically satisfies the cyclical monotonicity constraint.
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4) that, V

DIC≠D

Ø V

BIC≠D

. It follows from the duality theorem in linear

programming (see for example, Bradley, Hax, and Magnanti (1977, Chapter

4)) that V

DIC≠P

= V

DIC≠D

Ø V

BIC≠D

Ø V

BIC≠P

.

Step 1) First consider the optimal dominant-strategy mechanism design

problem (DIC ≠ P ). We derive its dual (DIC ≠ D), where ⁄

DIC(vÕ
i

; v

i

, v≠i

) is

the multiplier associated with the incentive constraint (1.3) and µ

DIC(v) is the

multiplier associated with the feasibility constraint (1.4).

min
⁄

DIC(vÕ
i;vi,v≠i),µDIC(v)

ÿ

vœV

µ

DIC(v) (DIC ≠ D)

subject to ’i œ I, ’v

i

œ V

i

, ’v≠i

œ V≠i

,

ÿ

v

Õ
iœ{Vi\{vi}}fi{v0}

⁄

DIC(vÕ
i

; v

i

, v≠i

) ≠
ÿ

v

Õ
iœVi\{vi}

⁄

DIC(v
i

; v

Õ
i

, v≠i

) = fi(v
i

, v≠i

), (1.7)

’v œ V, ’k œ K,

fi(v)
ÿ

iœI
v

i

(k) +
ÿ

iœI

ÿ

v

Õ
iœVi\{vi}

⁄

DIC(v
i

; v

Õ
i

, v≠i

)(v
i

(k) ≠ v

Õ
i

(k)) Æ µ

DIC(v), (1.8)

’i œ I, ’v

i

œ V

i

, ’v

Õ
i

œ {V

i

\{v

i

}} fi {v0}, ’v≠i

œ V≠i

,

⁄

DIC(vÕ
i

; v

i

, v≠i

) Ø 0. (1.9)

As ⁄

DIC(vÕ
i

; v

i

, v≠i

) is the multiplier for the incentive constraint (1.3), by the

uniform shortest-path tree and regularity, there is a dual optimum satisfying

⁄

DIC(vÕ
i

; v

i

, v≠i

) > 0 only if v

i

º
i

v

Õ
i

,
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and (1.7) simplifies to

⁄

DIC(v≠
i

; v

i

, v≠i

) ≠
ÿ

v

Õ
i:vÕ

iºivi

⁄

DIC(v
i

; v

Õ
i

, v≠i

) = fi(v
i

, v≠i

).

By induction,

⁄

DIC(vÕ
i

; v

i

, v≠i

) =
Y

]

[

q

v̂i:v̂i≤+
i vi

fi(v̂
i

, v≠i

); if v

i

º
i

v

Õ
i

;
0; otherwise.

(1.10)

Step 2) Say that a type space is simple if for each agent i œ I and payo�

type v

i

œ V

i

, there is a unique type for agent i with valuation v

i

. Let the set of

types for agent i be equal to the set of possible valuations, i.e. �
i

= V

i

. We

take f

i

to be the identity, and for notational ease, we will write ·

i

(·|v
i

) = g

i

(v
i

)

for the belief of type v

i

of agent i about the types of the other agents. From

now on, we restrict attention to such type spaces.

We can formulate the optimal Bayesian mechanism design problem as

follows.

max
p

k(·)Ø0,ti(·)

ÿ

vœV

fi(v)
ÿ

iœI
t

i

(v) (BIC ≠ P )

subject to ’i œ I, ’v

i

œ V

i

, ’v

Õ
i

œ {V

i

\{v

i

}} fi {v0},

ÿ

v≠iœV≠i

·

i

(v≠i

|v
i

)(p(v
i

, v≠i

) · v

i

≠ t

i

(v
i

, v≠i

))

Ø
ÿ

v≠iœV≠i

·

i

(v≠i

|v
i

)(p(vÕ
i

, v≠i

) · v

i

≠ t

i

(vÕ
i

, v≠i

)), (1.11)

’v œ V,

ÿ

kœK
p

k(v) = 1. (1.12)
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We derive the dual minimization problem (BIC ≠ D), where ⁄

BIC(vÕ
i

; v

i

) is

the multiplier for the incentive constraint (1.11) and µ

BIC(v) is the multiplier

for the feasibility constraint (1.12).

min
⁄

BIC(vÕ
i;vi),µBIC(v)

ÿ

vœV

µ

BIC(v) (BIC ≠ D)

subject to ’i œ I, ’v

i

œ V

i

, ’v≠i

œ V≠i

,

ÿ

v

Õ
iœ{Vi\{vi}}fi{v0}

⁄

BIC(vÕ
i

; v

i

)·
i

(v≠i

|v
i

) ≠
ÿ

v

Õ
iœVi\{vi}

⁄

BIC(v
i

; v

Õ
i

)·
i

(v≠i

|vÕ
i

) = fi(v
i

, v≠i

),

(1.13)
’v œ V, ’k œ K,

fi(v)
ÿ

iœI
v

i

(k) +
ÿ

iœI

ÿ

v

Õ
iœVi\{vi}

⁄

BIC(v
i

; v

Õ
i

)·
i

(v≠i

|vÕ
i

)(v
i

(k) ≠ v

Õ
i

(k)) Æ µ

BIC(v),

(1.14)
’i œ I, ’v

i

œ V

i

, ’v

Õ
i

œ {V

i

\{v

i

}} fi {v0},

⁄

BIC(vÕ
i

; v

i

) Ø 0. (1.15)

Step 3) Now we construct a particular assumption about (the distribution

of) agents’ beliefs. Given fi, for any v

i

œ V

i

, write

fi

i

(v
i

) =
ÿ

v≠iœV≠i

fi(v
i

, v≠i

)

for the marginal probability of v

i

and write

G

i

(v
i

) =
ÿ

v̂i:v̂i≤+
i vi

fi

i

(v̂
i

) (1.16)

for the associated distribution function. We define agent i’s beliefs as follows:

·

i

(v≠i

|v
i

) = 1
G

i

(v
i

)
ÿ

v̂i:v̂i≤+
i vi

fi(v̂
i

, v≠i

). (1.17)
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Step 4) Fix any feasible dual variables ⁄

DIC(vÕ
i

; v

i

, v≠i

) and µ

DIC(v) of the

minimization problem (DIC ≠ D) that satisfy (1.10), let

⁄

BIC(vÕ
i

; v

i

) =
ÿ

v≠iœV≠i

⁄

DIC(vÕ
i

; v

i

, v≠i

)

and µ

BIC(v) = µ

DIC(v).

If v

i

º
i

v

Õ
i

, we have

⁄

BIC(vÕ
i

; v

i

)·
i

(v≠i

|v
i

) =
S

U

ÿ

v≠iœV≠i

⁄

DIC(vÕ
i

; v

i

, v≠i

)
T

V

·

i

(v≠i

|v
i

)

=

S

W

U

ÿ

v≠iœV≠i

ÿ

v̂i:v̂i≤+
i vi

fi(v̂
i

, v≠i

)

T

X

V

·

i

(v≠i

|v
i

)

= G

i

(v
i

)·
i

(v≠i

|v
i

)

=
ÿ

v̂i:v̂i≤+
i vi

fi(v̂
i

, v≠i

),

where the second equality follows from (1.10), the third equality follows from

(1.16), and the last equality follows from (1.17). Otherwise,

⁄

BIC(vÕ
i

; v

i

)·
i

(v≠i

|v
i

) = 0.

In either case, we have

⁄

BIC(vÕ
i

; v

i

)·
i

(v≠i

|v
i

) = ⁄

DIC(vÕ
i

; v

i

, v≠i

). (1.18)

We now show that the dual variables ⁄

BIC(vÕ
i

; v

i

) and µ

BIC(v) are feasible

under the minimization problem (BIC ≠ D). (1.15) are trivially satisfied. It

follows from (1.18) that (1.13) reduces to (1.7), and (1.14) reduces to (1.8).
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Since ⁄

DIC(vÕ
i

; v

i

, v≠i

) and µ

DIC(v) are feasible under the problem (DIC ≠ D),

⁄

BIC(vÕ
i

; v

i

) and µ

BIC(v) are feasible under the minimization problem (BIC ≠

D). Furthermore, the value of the objective function of the minimization

problem (BIC ≠ D) is q

vœV

µ

BIC(v) = q

vœV

µ

DIC(v). We conclude that

V

DIC≠D

Ø V

BIC≠D

.

1.4.3 No foundations of dominant-strategy mechanisms

This subsection considers violations of the uniform shortest-path tree condition.

When the uniform shortest-path tree condition is not satisfied, as illustrated

in the bilateral trade model with ex ante unidentified traders (Section 1.3.3),

maxmin/ Bayesian foundations might not exist. In particular, we explicitly

construct a single Bayesian mechanism that does strictly better than the

optimal dominant-strategy mechanism, regardless of the assumption about (the

distribution of) the agents’ beliefs.

In environments where the uniform shortest path is violated, it is di�-

cult to find the optimal dominant-strategy mechanisms, not to mention the

construction of the superior Bayesian mechanism. To have a meaningful dis-

cussion, we shall take the optimal dominant-strategy mechanisms (the binding

structure, and payments of the agents) as primitives. While the conditions

of the theorem may be restrictive, the conditions can be verified whenever

the optimal dominant-strategy mechanism can be solved (possibly by a linear
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programming solver). In addition to bilateral trade with ex ante unidentified

traders, the result can also be applied to auction with type-dependent outside

option (Section 1.5.3).

Theorem 1.2. In environments with two agents and binary payo� types for

each agent, for the optimal dominant-strategy mechanism, if

v1 v

Õ
1

v2 p(v1, v2), t1(v1, v2), t2(v1, v2) p(v1, v2), t1(vÕ
1, v2), t2(vÕ

1, v2)
v

Õ
2 p(v1, v

Õ
2), t1(v1, v

Õ
2), t2(v1, v

Õ
2) p(v1, v2), t1(vÕ

1, v

Õ
2), t2(vÕ

1, v

Õ
2)

1) binding structure:

p(v1, v

Õ
2) · v2 ≠ t2(v1, v

Õ
2) < 0,

and p(vÕ
1, v

Õ
2) · v2 ≠ t2(vÕ

1, v

Õ
2) > 0;

2) payment dominance:

t1(v1, v

Õ
2) + t2(v1, v

Õ
2) Ø t1(v1, v2) + t2(v1, v2),

and t1(vÕ
1, v

Õ
2) + t2(vÕ

1, v

Õ
2) > t1(vÕ

1, v2) + t2(vÕ
1, v2),

then there is neither a Bayesian foundation nor a maxmin foundation.

Remark 1.1. For ease of exposition, we state Theorem 1.2 in environments

with two agents and binary payo� types for each agent. The argument extends
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to environments with multiple agents and each agent has multiple payo� types,

as long as there are two agents and two payo� types for each agent, where the

structure as stated in Theorem 1.2 exists.

Proof. Let

x = p(v1, v2) · v2 ≠ t2(v1, v2);

y = p(vÕ
1, v2) · v2 ≠ t2(vÕ

1, v2);

z = p(v1, v

Õ
2) · v2 ≠ t2(v1, v

Õ
2) < 0;

w = p(vÕ
1, v

Õ
2) · v2 ≠ t2(vÕ

1, v

Õ
2) > 0.

Since the optimal dominant-strategy mechanism necessarily satisfy the incentive

constraints, we have x Ø 0, y Ø w > 0.9

We show that there is no maxmin foundation. That is, the mechanism

designer could employ a single Bayesian mechanism and achieve a strictly higher

expected revenue than he does using the optimal dominant-strategy mechanism,

regardless of the agents’ beliefs. To do this, we first explicitly identify one

such mechanism and proceed by verifying i) the mechanism is BIC for the

universal type space; and ii) this mechanism achieves a strictly higher expected

revenue regardless of the agents’ beliefs. Since the Bayesian foundation is a

9As a matter of fact, it must be that x = 0, and y = w. Otherwise, the dominant-strategy
mechanism would not have been optimal. Note that the uniform shortest-path tree condition
is violated.
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stronger notion than the maxmin foundation, this further implies that there is

no Bayesian foundation.

We use a to denote the first-order belief of payo� type v2 of agent 2 that

agent 1 has payo� type v1. In this mechanism, the mechanism designer elicits

agent 2’s first-order belief about agent 1’s payo� type. Consider the following

Bayesian mechanism �Õ:
v1 v

Õ
1

v2, a œ [0,

w

w≠z

) p(v1, v

Õ
2), t1(v1, v

Õ
2), t2(v1, v

Õ
2) p(vÕ

1, v

Õ
2), t1(vÕ

1, v

Õ
2), t2(vÕ

1, v

Õ
2)

v2, a œ [ w

w≠z

, 1] p(v1, v2), t1(v1, v2), t2(v1, v2) + x p(vÕ
1, v2), t1(vÕ

1, v2), t2(vÕ
1, v2) + y

v

Õ
2 p(v1, v

Õ
2), t1(v1, v

Õ
2), t2(v1, v

Õ
2) p(vÕ

1, v

Õ
2), t1(vÕ

1, v

Õ
2), t2(vÕ

1, v

Õ
2)

To see that �Õ is BIC for the universal type space, note that

i truth telling continues to be a dominant strategy for agent 1;

ii truth telling continues to be a dominant strategy for payo� type v

Õ
2 of agent

2;

iii a œ [0,

w

w≠z

) will not announce v

Õ
2 as utility is unchanged;

iv a œ [ w

w≠z

, 1] will not announce v

Õ
2 as expected utility is lower; and

v between a œ [0,

w

w≠z

) and a œ [ w

w≠z

, 1], payo� type v2 of agent 2 will announce

a œ [ w

w≠z

, 1] if and only if a œ [ w

w≠z

, 1].

To see that the mechanism achieves a strictly higher expected revenue than

the optimal dominant-strategy mechanism, regardless of the assumption about

(the distribution of) the agents’ belief, note that
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vi t1(v1, v

Õ
2) + t2(v1, v

Õ
2) Ø t1(v1, v2) + t2(v1, v2);

vii t1(vÕ
1, v

Õ
2) + t2(vÕ

1, v

Õ
2) > t1(vÕ

1, v2) + t2(vÕ
1, v2);

viii x Ø 0 and y Ø w > 0.

1.5 Applications

This section is devoted to the applications of the results. The uniform shortest-

path tree condition holds in the standard social choice environment with linear

utilities and one-dimensional payo� types as well as some multi-dimensional

environments. Section 1.5.1 applies our result to environments with linear utili-

ties and one-dimensional types, and Section 1.5.2 considers a multi-dimensional

environment. For both applications, we provide primitive conditions for regu-

larity. As we illustrated in Section 1.3, Theorem 1.2 can be applied to bilateral

trade with ex ante unidentified traders. Section 1.5.3 applies Theorem 1.2 to

another environment, namely, auction with type-dependent outside option.

1.5.1 Linear utilities and one-dimensional payo� types

In this subsection, we consider the standard social choice environment with

linear utilities and one-dimensional payo� types.10 This fits many classical
10This set-up covers the environment studied in Gershkov, Goeree, Kushnir, Moldovanu,

and Shi (2013, Section 2).
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applications of mechanism design, including single-unit auction (e.g., Myerson

(1981)), public good (e.g., Mailath and Postlewaite (1990)) and standard

bilateral trade (e.g., Myerson and Satterthwaite (1983)).

There is a finite set I = {1, 2, ..., I} of risk neutral agents and a finite set

K = {1, 2, ..., K} of social alternatives. Agent i’s gross utility in alternative k

equals u

k

i

(v
i

) = a

k

i

v

i

, where v

i

œ R is agent i’s payo� type, a

k

i

œ R are constants

and a

k

i

Ø 0 for all k. Agent i obtains utility

p(v) · A

i

v

i

≠ t

i

(v)

for decision rule p œ �K and transfer t

i

, where A

i

= (a1
i

, a

2
i

, ..., a

K

i

). For

notational simplicity, we assume that each agent has M possible payo� types

and that the set V

i

is the same for each agent: V

i

= {v

1
, v

2
, ..., v

M}, where

v

m ≠ v

m≠1 = “ for each m and some “ > 0.

We can formulate the optimal dominant-strategy mechanism design problem

as follows:

max
p(·),t(·)

ÿ

vœV

fi(v)
ÿ

iœI
t

i

(v)

subject to ’i œ I, ’m, l = 1, 2, ..., M, ’v≠i

œ V≠i

,

p(vm

, v≠i

) · A

i

v

m ≠ t

i

(vm

, v≠i

) Ø 0, (1.19)

p(vm

, v≠i

) · A

i

v

m ≠ t

i

(vm

, v≠i

) Ø p(vl

, v≠i

) · A

i

v

m ≠ t

i

(vl

, v≠i

). (1.20)

In the environment with linear utilities and one-dimensional payo� types,
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we say that a decision rule p is dsIC if there exists transfer scheme t such that

the mechanism (p, t) satisfies the constraints (1.19) and (1.20).

Uniform shortest-path tree condition is naturally satisfied in such settings.

In particular, for any agent i œ I, the payo� types are completely ordered via

a single path. We omit the proof of the following standard lemma.

Lemma 1.2. Fix any decision rule p that is dsIC, the shortest path from the

source v0 to any payo� type v

m œ V

i

is P = (v0, v

1
, v

2
, ..., v

m) and

t

i

(vm

, v≠i

) = p(vm

, v≠i

) · A

i

v

m ≠ “

m≠1
ÿ

m

Õ=1
p(vm

Õ
, v≠i

) · A

i

.

Next, we present the primitive condition for regularity. It is well known

that an equivalent formulation of the problem is

max
p(·),t(·)

ÿ

vœV

fi(v)
ÿ

iœI
t

i

(v)

subject to ’i œ I, ’m, l = 1, 2, ..., M, ’v≠i

œ V≠i

,

p(v1
, v≠i

) · A

i

v

1 ≠ t

i

(v1
, v≠i

) = 0,

p(vm

, v≠i

) · A

i

v

m ≠ t

i

(vm

, v≠i

) = p(vm≠1
, v≠i

) · A

i

v

m ≠ t

i

(vm≠1
, v≠i

),

p(vm

, v≠i

) · A

i

Ø p(vl

, v≠i

) · A

i

, for m Ø l.

Let F

i

(v
i

, v≠i

) = q

v̂iÆvi
fi(v̂

i

, v≠i

) denote the cumulative distribution func-

tion of i’s valuation conditional on the other agents having payo� type profile
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v≠i

. Define the virtual valuation of agent i as

r

i

(v) = v

i

≠ “

1 ≠ F

i

(v)
fi(v) ,

and rewrite the objective function as

ÿ

vœV

fi(v)
ÿ

iœI
t

i

(v) =
ÿ

vœV

ÿ

iœI
fi(v)p(v) · A

i

r

i

(v)

=
ÿ

vœV

fi(v)p(v) ·
ÿ

iœI
A

i

r

i

(v). (1.21)

For each alternative k, let K

k,inf
i

= {k

Õ œ K : a

k

Õ
i

< a

k

i

}. That is, K

k,inf
i

is

the collection of alternatives that agent i considers inferior to alternative k.

Definition 1.10. We say that fi is regular if the virtual valuations satisfy the

following condition: for each v œ V, j œ I,

k œ arg max
k

ÿ

iœI
a

k

i

r

i

(v) ∆ K

k,inf
j

fl arg max
k

ÿ

iœI
a

k

i

r

i

(v̂
j

, v≠j

) = ÿ (1.22)

for every v̂

j

> v

j

.

We establish the foundations of dominant-strategy mechanisms in Corollary

1.1.

Corollary 1.1. If fi satisfies the regularity condition (1.22), the use of dominant-

strategy mechanisms has a Bayesian/ maxmin foundation.

Proof. By (1.21), the objective function becomes

ÿ

vœV

fi(v)p(v) ·
ÿ

iœI
A

i

r

i

(v).
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Regularity condition (1.22) ensures that for any alternative k chosen with

positive probability for payo� type profile (vl

, v≠i

), when agent i’s payo� type

increases say from v

l to v

m

, alternatives that are inferior than alternative k

from agent i’s point of view will not be chosen. It must be that p(vm

, v≠i

) ·A
i

Ø

p(vl

, v≠i

) · A

i

, for m Ø l. It is well known that this is equivalent to cyclical

monotonicity in environments with linear utilities and one-dimensional payo�

types. The uniform shortest-path tree condition follows from Lemma 1.2. The

result then follows from Theorem 1.1.

1.5.2 Multi-unit auction with capacity-constrained bid-
ders

In addition to environments with linear utilities and one-dimensional payo�

types, the uniform shortest-path tree condition is also satisfied in some multi-

dimensional environments. Solving for the optimal mechanism in a multi-

dimensional environment is in general a daunting task. In this section, we

examine a specific case where the multi-dimensional analysis can be simplified.

Consider the problem of finding the revenue maximizing auction when

bidders have constant marginal valuations as well as capacity constraints.11

Both the marginal values and capacity constraints are private information to

the bidders. Bidder i’s payo� type is represented by v

i

= (a, b), where a is

11Malakhov and Vohra (2009) studies the optimal Bayesian mechanism in such an envi-
ronment, assuming independent types.
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the maximum amount she is willing to pay for each unit and b is the largest

number of units she seeks. Units beyond the b

th unit are worthless. Let the

range of a be A = {1, 2, ..., A} and the range of b be B = {1, 2, ..., B}. The

seller has Q units to sell.

A crucial assumption is that bidders cannot inflate the capacity but can

shade it down. In other words, the auctioneer can verify, partially, the claims

made by a bidder. Although this assumption seems odd in the selling context,

it is natural in a procurement setting. Consider a procurement auction where

the auctioneer wishes to procure Q units from bidders with constant marginal

costs and limited capacity. No bidder will inflate his capacity when bidding

because of the huge penalties associated with not being able to fulfill the order.

Equivalently, we may suppose that the mechanism designer can verify that

claims that exceed capacity are false.

Lemma 1.3. Fix any decision rule p that is dsIC, the shortest-path from the

source v0 to any payo� type (a, b) is

(a, b) º
i

(a ≠ 1, b) º
i

... º
i

(1, b) º
i

(1, b ≠ 1) º
i

... º
i

(1, 1) º
i

v0.

Let F

b,v≠i(a) = q

a

x=1 fi((x, b), v≠i

).

Corollary 1.2. If fi satisfies the following regularity condition: ’v≠i

, ’(a, b) Ø
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3,3 2,3 1,3

3,2 2,2 1,2

3,1 2,1 1,1 v0

Figure 1.1: (a, b) º
i

(a ≠ 1, b) º
i

... º
i

(1, b) º
i

(1, b ≠ 1) º
i

... º
i

(1, 1).

(aÕ
, b

Õ),

a ≠ 1 ≠ F

b,v≠i(a)
fi((a, b), v≠i

) Ø a

Õ ≠ 1 ≠ F

b

Õ
,v≠i(aÕ)

fi((aÕ
, b

Õ), v≠i

) , (1.23)

then the use of dominant-strategy mechanisms has maxmin and Bayesian

foundations.

The proof of Lemma 1.3 and the derivation of the regularity condition (1.23)

is a straightforward extension of Malakhov and Vohra (2009) and omitted.

When fi is independent, the regularity condition (1.23) reduces to the regularity

condition in Malakhov and Vohra (2009). Corollary 1.2 then follows from

Theorem 1.1.

1.5.3 Auction with type-dependent outside option

Besides the bilateral trade model with ex ante unidentified traders (Section 1.3),

we present here another environment to illustrate the usefulness of Theorem 1.2.

A single unit of an indivisible object is up for sale. There are two risk-neutral
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bidders. Each bidder’s payo� type is represented by (a, b) œ R2
+ where a is

the maximum amount she is willing to pay and b is the value of her outside

option. Bidder 1’s private information could be either (20, 0) or (40, 5). Bidder

2’s private information could be either (10, 0) or (30, 5). The auctioneer has

the following estimate of the distribution of the agents’ valuations:

v1 = (20, 0) v1 = (40, 5)
v2 = (10, 0) 3

8
1
8

v2 = (30, 5) 1
8

3
8

(1.24)

The optimal dominant-strategy mechanism � is as follows, where the first

number in each cell indicates the probability that agent 1 gets the object, the

second number is the probability that agent 2 gets the object, the third number

is the transfer from agent 1 to the auctioneer and the fourth number is the

transfer from agent 2 to the auctioneer. Following Theorem 1.2, there is neither

a Bayesian foundation nor a maxmin foundation.

v1 = (20, 0) v1 = (40, 5)
v2 = (10, 0) 1, 0, 20, 0 1, 0, 20, ≠5
v2 = (30, 5) 0, 1, 0, 25 1, 0, 35, ≠5

(1.25)
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1.6 Discussion

1.6.1 Foundations of ex post incentive-compatible mech-
anisms

Our paper focuses on the private-value setting. The uniform shortest-path tree

condition has a natural counterpart in the interdependent-value setting that,

under an additional regularity condition, ensures the maxmin and Bayesian

foundations of ex post incentive-compatible mechanisms. Indeed, in an inde-

pendent and contemporaneous work, Yamashita and Zhu (2014) study the

so-called “digital-goods” auctions in the interdependent-value setting. They

show that under “ordinal invariability” (which entails that each agent has a

stable preference ordering over all her payo� types, regardless of what payo�

type profile the other agents have) and additional assumptions, the use of ex

post incentive-compatible mechanisms has maxmin and Bayesian foundations.

1.6.2 On the notion of the maxmin foundation

Börgers (2013) argues that the maxmin foundation requires too little of an

optimal mechanism. For every dominant-strategy mechanism, Börgers con-

structs another mechanism which never yields lower revenue and sometimes

yields strictly higher revenue. The construction builds on the possibility of side

bets among agents, and the mechanism designer charges a small fee for each

bet. As Börgers points out, the argument would not be valid i) if agents could
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arrange side bets without requiring the mechanism designer as an intermediary;

and ii) if the mechanism designer restricts her attention to the type spaces

characterized by Morris (1994), which do not allow speculative trade.

We view the maxmin foundation as the minimum requirement that the

optimal mechanism needs to satisfy. Indeed, if the use of dominant-strategy

mechanisms does not have a maxmin foundation, then by definition, there exists

a single Bayesian mechanism that achieves strictly higher expected revenue

for every assumption about the agents’ beliefs. Consequently, it becomes

problematic to rationalize the use of dominant-strategy mechanisms. In settings

in which the uniform shortest-path tree condition is violated, dominant-strategy

mechanisms may not even satisfy the minimum requirement of the maxmin

foundation.
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Chapter 2

Equivalence of Stochastic and
Deterministic Mechanisms

2.1 Introduction

Myerson (1981) provides the framework that has become the paradigm for the

study of optimal auction design. Under a “regularity” condition, the optimal

auction allocates the object to the bidder with the highest “virtual value”,

provided that this virtual value is above the seller’s opportunity cost. In other

words, the optimal auction in Myerson’s setting is deterministic.1

A natural conjecture is that the optimality of deterministic mechanisms

generalizes beyond Myerson’s setting. McAfee and McMillan (1988, Section

4) claim that under a general regularity condition on consumers’ demand,

stochastic delivery was not optimal for a multi-product monopolist. However,

1Also see Riley and Zeckhauser (1983) who consider a one-good monopolist selling to a
population of consumers with unit demand and show that lotteries do not help the one-good
monopolist.
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this result has been proven to be incorrect with a single agent. Several papers

have shown that a multi-product monopolist may find it beneficial to include

lotteries as part of the selling mechanism; see for example, Thanassoulis (2004),

Manelli and Vincent (2006, 2007), Pycia (2006), Pavlov (2011), and more

recently, Hart and Reny (2015), and Rochet and Thanassoulis (2015).2 In this

paper, we restore the optimality of deterministic mechanisms in remarkably

general environments with multiple agents.

We consider a general social choice environment that has multiple agents,

a finite set of alternatives, and independent and dispersed information.3 We

show that for any Bayesian incentive compatible mechanism, there exists an

equivalent deterministic mechanism that i) is Bayesian incentive compatible; ii)

delivers the same interim expected allocation probabilities and the same interim

expected utilities for all agents; and iii) delivers the same ex ante expected

social surplus. In addition to the standard social choice environments with

linear utilities and one-dimensional, private types, our result holds in settings

with a rich class of utility functions, multi-dimensional types, interdependent

valuations, and non-transferable utilities.

2In environments in which di�erent types are associated with di�erent risk attitudes,
it is known that stochastic mechanisms may perform better; see for example, La�ont and
Martimort (2002, p. 67) and Strausz (2006).

3Throughout this paper, we say that an agent has “dispersed information” if her type
distribution is atomless.
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Our result implies that any mechanism, including the optimal mechanisms

(whether in terms of revenue or e�ciency), can be implemented using a deter-

ministic mechanism and nothing can be gained from designing more intricate

mechanisms with possibly more complex randomization. As pointed out in

Hart and Reny (2015, p. 912), Aumann commented that it is surprising that

randomization can not increase revenue when there is only one good. Indeed,

aforementioned papers in the screening literature establish that randomization

helps when there are multiple goods. Nevertheless, we show that in general

social choice environment with multiple agents, the revenue maximizing mech-

anism can always be deterministically implemented. This is in sharp contrast

with the results in the screening literature.

Our result also has important implications beyond the revenue contrast.

The mechanism design literature essentially builds on the assumption that a

mechanism designer can credibly commit to any outcome of a mechanism. This

requirement implies that any outcome of the mechanism must be verifiable

before it can be employed. In this vein, a stochastic mechanism demands not

only that a randomization device be available to the mechanism designer, but

also that the outcome of the randomization device be objectively verified. As

noted in La�ont and Martimort (2002, p. 67), “Ensuring this verifiability

is a more di�cult problem than ensuring that a deterministic mechanism is
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enforced, because any deviation away from a given randomization can only

be statistically detected once su�ciently many realizations of the contracts

have been observed. ... The enforcement of such stochastic mechanisms is

thus particularly problematic. This has led scholars to give up those random

mechanisms or, at least, to focus on economic settings where they are not opti-

mal.”4 Our result implies that every mechanism can in fact be deterministically

implemented, and thereby irons out the conceptual di�culties associated with

stochastic mechanisms.

This paper joins the strand of literature that studies mechanism equivalence.

Though motivations vary, these results show that it is without loss of generality

to consider the various subclasses of mechanisms. As in the case of dominant-

strategy mechanisms (see Manelli and Vincent (2010) and Gershkov, Goeree,

Kushnir, Moldovanu, and Shi (2013)) and symmetric auctions (see Deb and Pai

(2015)), our findings imply that the requirement of deterministic mechanisms is

not restrictive in itself.5 In this sense, our result provides a foundation for the

use of deterministic allocations in mechanism design settings such as auctions,

4Also see Bester and Strausz (2001) and Strausz (2003).
5Manelli and Vincent (2010) show that for any Bayesian incentive compatible auction,

there exists an equivalent dominant-strategy incentive compatible auction that yields the
same interim expected utilities for all agents. Gershkov, Goeree, Kushnir, Moldovanu, and
Shi (2013) extend this equivalence result to social choice environments with linear utilities
and independent, one-dimensional, private types; also see Footnote 12 for related discussion.
Deb and Pai (2015) show that restricting the seller to a using symmetric auction imposes
virtually no restriction on her ability to achieve discriminatory outcomes.
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bilateral trades, and so on.

In order to prove the existence of an equivalent deterministic mechanism,

we develop a new methodology of “mutual purification”, and establish its link

with the literature of mechanism design.6 The notion of mutual purification is

both conceptually and technically di�erent from the usual purification principle

in the literature related to Bayesian games. We shall clarify these two di�erent

notions of purification in the next three paragraphs.

It follows from the general purification principle in Dvoretzky, Wald, and

Wolfowitz (1950) that any behavioral-strategy Nash equilibrium in a finite-

action Bayesian game with independent and dispersed information corresponds

to some pure-strategy Bayesian Nash equilibrium with the same payo�.7 In

particular, independent and dispersed information allows the agents to replace

their behavioral strategies by some equivalent pure strategies one-by-one.8 The

point is that under the independent information assumption, any agent who

has dispersed information could purify her own behavioral strategy regardless

whether other agents have dispersed information. Example 2.2 illustrates this

6Some of our technical results extend the corresponding mathematical results in Arkin
and Levin (1972); see the Appendices for more detailed discussion.

7See Radner and Rosenthal (1982), Milgrom and Weber (1985) and Khan, Rath, and
Sun (2006). Furthermore, by applying the purification idea to a sequence of Bayesian
games, Harsanyi (1973) provided an interpretation of mixed-strategy equilibrium in complete
information games; see Govindan, Reny, and Robson (2003) and Morris (2008) for more
discussion.

8See the proof of Theorem 1 in Khan, Rath, and Sun (2006).
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idea of “self purification”. Given a behavioral-strategy Nash equilibrium in a

2-agent Bayesian game with independent information, there is an equivalent

pure strategy for the agent with dispersed information, while the other agent

with an atom in her type space could not purify her behavioral strategy.

In contrast, the purification result of this paper is based on the dispersed

information associated with the other agents. Example 2.3 partially illustrates

this idea of “mutual purification”. For a given randomized mechanism in

a 2-agent setting with independent information, the agent with an atom in

her type space can achieve the same interim payo� by some deterministic

mechanism, while there does not exist such a deterministic mechanism for the

other agent with dispersed information. In other words, our result becomes

possible because each agent relies on the dispersed information of the other

agents rather than her own. This also explains why a similar result does not

hold in the one-agent setting since there is no dispersed information from other

agents for such a single agent to purify the relevant randomized mechanism.

In addition, we emphasize that in the multiple-agent setting, the notion of

“mutual purification” requires not only that each agent obtain the same interim

payo� under some deterministic mechanism, but also that a single deterministic

mechanism deliver the same interim payo�s for all the agents simultaneously.

From a methodological point of view, the general purification principle in
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Dvoretzky, Wald, and Wolfowitz (1950) is simply a version of the classical

Lyapunov Theorem about the convex range of an atomless finite-dimensional

vector measure. Our purification result is technically di�erent. First, the

problem we consider is infinite-dimensional because we require the same ex-

pected allocation probabilities/ utilities for the equivalent mechanism at the

interim level with a continuum of types. Note that Lyapunov’s Theorem fails

in an infinite-dimensional setting.9 Second, it is clearly impossible to obtain a

purified deterministic mechanism that delivers the same expected allocation

probabilities as the original stochastic mechanism, conditioned on the joint

types of all the agents.10 However, our result on mutual purification shows

that such an equivalence becomes possible when the conditioning operation

is imposed on the individual types of every agent simultaneously, although

the combination of the individual types of every agent is the joint types of all

the agents. To the best of our knowledge, this paper is the first to consider

the purification of a randomized decision rule that retains the same expected

payo�s conditioned on the individual types of every agent in an economic

model.

Our paper contributes to the Bayesian mechanism design literature in relying

9See, for example, Diestel and Uhl (1977, p. 261).
10Since the joint types of all the agents carry the full information, the expected allocation

probability of a stochastic mechanism conditioned on the joint types is simply the stochastic
mechanism itself.
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on specific aspects of agents’ private information. These information aspects are

often crucial in pinning down di�erent properties of the optimal mechanism. For

instance, agents with independent types retain information rents (see Myerson

(1981)), whereas the mechanism designer can fully extract the surplus when

the agents’ types are correlated (see Crémer and McLean (1988)). Our result

builds on the assumption that the agents’ private information is independent

and dispersed. This assumption facilitates the development of the novel

methodology of “mutual purification”, which lies at the core of our arguments.

The rest of the paper is organized as follows. Section 2.2 introduces the

basics. Section 2.3 illustrates our equivalence notion and the idea of “mutual

purification” through examples. Section 2.4 presents the equivalence result.

Section 2.5 discusses the benefit of randomness, an implementation perspective

of our result, and various assumptions of our result. Section 2.6 concludes. The

appendix contains proofs omitted from the main body of the paper.

2.2 Preliminaries

2.2.1 Notation

There is a finite set I = {1, 2, . . . , I} of risk neutral agents with I Ø 2 and

a finite set K = {1, 2, ..., K} of social alternatives. The set of possible types

V

i

of agent i is a closed subset of finite dimensional Euclidean space Rl with
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generic element v

i

. The set of possible type profiles is V © V1 ◊ V2 ◊ · · · ◊ V

I

with generic element v = (v1, v2, . . . , v

I

). Write v≠i

for a type profile of agent

i’s opponents; that is, v≠i

œ V≠i

= �
j ”=i

V

j

. Denote by ⁄ the common prior

distribution on V . For each i œ I, ⁄

i

is the marginal distribution of ⁄ on V

i

and is assumed to be atomless. Throughout this paper, types are assumed to

be independent.11 If (Y, Y) is a measurable space, then �Y is the set of all

probability measures on (Y, Y). If Y is a metric space, then we treat it as a

measurable space with its Borel ‡-algebra.

2.2.2 Mechanism

The revelation principle applies, and we restrict attention to direct mechanisms

characterized by K + I functions, {q

k(v)}
kœK and {t

i

(v)}
iœI , where v is the

profile of reports, q

k(v) Ø 0 is the probability that alternative k is implemented

with q

kœK q

k(v) = 1, and t

i

(v) is the monetary transfer that agent i makes to

the mechanism designer. Agent i’s gross utility in alternative k is u

k

i

(v
i

, v≠i

).

For simplicity of exposition, we denote

Q

k

i

(v
i

) =
⁄

V≠i

q

k(v
i

, v≠i

)⁄≠i

(dv≠i

)

for the interim expected allocation probability (from agent i’s perspective) that

11Note that we do not make any assumption regarding the correlation of the di�erent
coordinates of type vi for any i œ I.
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alternative k is implemented. Also write

T

i

(v
i

) =
⁄

V≠i

t

i

(v
i

, v≠i

)⁄≠i

(dv≠i

)

for the interim expected transfer from agent i to the mechanism designer. Agent

i’s interim expected utility is

U

i

(v
i

) =
⁄

V≠i

S

U

ÿ

1ÆkÆK

u

k

i

(v
i

, v≠i

)qk(v
i

, v≠i

) ≠ t

i

(v
i

, v≠i

)
T

V

⁄≠i

(dv≠i

)

=
⁄

V≠i

S

U

ÿ

1ÆkÆK

u

k

i

(v
i

, v≠i

)qk(v
i

, v≠i

)
T

V

⁄≠i

(dv≠i

) ≠ T

i

(v
i

).

A mechanism is Bayesian incentive compatible (BIC) if for each agent i œ I

and each type v

i

œ V

i

,

U

i

(v
i

) Ø 0, and

U

i

(v
i

) Ø
⁄

V≠i

S

U

ÿ

1ÆkÆK

u

k

i

(v
i

, v≠i

)qk(vÕ
i

, v≠i

) ≠ t

i

(vÕ
i

, v≠i

)
T

V

⁄≠i

(dv≠i

)

for any alternative type v

Õ
i

œ V

i

.

A mechanism (q, t) is said to be “deterministic” if for almost all type profiles,

the mechanism implements some alternative k for sure. That is, for ⁄-almost

all v œ V, q

k (v) = 1 for some 1 Æ k Æ K.

2.2.3 Mechanism equivalence

We shall employ the following notion of mechanism equivalence.

Definition 2.1. Two mechanisms (q, t) and (q̃, t̃) are equivalent if and only

if they deliver the same interim expected allocation probabilities and the same
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interim expected utilities for all agents, and the same ex ante expected social

surplus.

Remark 2.1. Our equivalence is stronger than the prevailing mechanism

equivalence notion. For example, Manelli and Vincent (2010) and Gershkov,

Goeree, Kushnir, Moldovanu, and Shi (2013) define two mechanisms to be

equivalent if they deliver the same interim expected utilities for all agents and

the same ex ante expected social surplus.12

Remark 2.2. The equivalent deterministic mechanism also guarantees the

same ex post monetary transfers, and hence the same expected revenue; see

Theorem 2.1.

2.3 Examples
2.3.1 An illustration of equivalent deterministic mecha-

nism

In the first example, we illustrate our mechanism equivalence notion in a

single-unit auction environment.13 The example is kept deliberately simple

and its only purpose is to illustrate what we mean by equivalent deterministic

12Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013, Section 4.1) show that the
BIC-DIC equivalence breaks down when requiring the same interim expected allocation
probability. They also note that “this notion (of interim expected allocation probabilities)
becomes relevant when, for instance, the designer is not utilitarian or when preferences of
agents outside the mechanism play a role”.

13With slight adjustments, this example applies to the irregular case in Myerson’s setting
where the agents’ ironed virtual values are the same in some interval.
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mechanism. Our main result is far more general and the proof is much more

complex.

Example 2.1. There are two bidders, whose valuations are uniformly dis-

tributed in [0, 1]. Consider the following mechanism. Types are divided into

intervals of equal probability and types in the same interval are treated equally.

If agents’ types belong to the same interval, each agent receives the object

with probability 1
2 and if agents’ types belong to di�erent intervals, the agent

whose type belongs to [1
2 , 1] gets the object. In each cell, the first number is the

probability that agent 1 gets the object and the second number is the probability

that agent 2 gets the object.

[1
2 , 1] [0,

1
2)

[1
2 , 1] 1

2 ,

1
2 1, 0

[0,

1
2) 0, 1 1

2 ,

1
2

It is immediate that, the following deterministic mechanism is equivalent

in terms of interim expected allocation probabilities. Keeping the transfers

unchanged, it is also easy to see the deterministic mechanism is equivalent in

terms of interim expected utilities and ex ante social welfare.
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[3
4 , 1] [2

4 ,

3
4) [1

4 ,

2
4) [0,

1
4)

[3
4 , 1] 1, 0 0, 1 1, 0 1, 0

[2
4 ,

3
4) 0, 1 1, 0 1, 0 1, 0

[1
4 ,

2
4) 0, 1 0, 1 1, 0 0, 1

[0,

1
4) 0, 1 0, 1 0, 1 1, 0

In Section 2.4, we show that for whatever randomized mechanism that

the mechanism designer may choose to use, however complicated, there exists

an equivalent mechanism that is deterministic. In other words, going from

mechanisms that are deterministic to randomized mechanisms in general does

not enlarge the set of obtainable outcomes.

2.3.2 Self purification and mutual purification

In this section, we provide two examples to demonstrate the conceptual di�er-

ence between the existing approach of “self purification” and our approach of

“mutual purification”.

The first example is motivated by the game of matching pennies, while the

second example is a single unit auction. Both games have two agents, and

share the same information structure as follows.

1. Agent 1’s type is uniformly distributed on (0, 1] with the total probability

1 ≠ ⁄1(0), and has an atom at the point 0 with ⁄1(0) > 0.

2. Agent 2’s type is uniformly distributed on [0, 1].
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3. Agents’ types are independently distributed.

Example 2.2 below illustrates the idea of “self purification”. The behavioral

strategy of agent 2 can be purified since the distribution of agent 2’s type is

atomless, while the behavioral strategy of agent 1 cannot be purified since

agent 1’s type has an atom.

Example 2.2. Consider an m ◊ m zero-sum generalized “matching pennies”

game with incomplete information, where the positive integer m is su�ciently

large such that 1
m

< ⁄1(0). The information structure is described in the

beginning of this subsection. The action space for both agents is A1 = A2 =

{a1, a2, . . . , a

m

}. The payo� matrix for agent 1 is given below. Notice that the

payo�s of both agents do not depend on the type profile.

Agent 1

Agent 2
a1 a2 a3 · · · a

m

a1 1 ≠1 0 · · · 0
a2 0 1 ≠1 · · · 0
a3 0 0 1 · · · 0

... ... ... ... ... ...
a

m

≠1 0 · · · 0 1

Suppose that both agents adopt the behavioral strategy f1(v) = f2(v) =

1
m

q

1ÆsÆm

”

as, where ”

as is the Dirac measure at the point a

s

. It is easy to see

that (f1, f2) is a Bayesian Nash equilibrium and the expected payo�s of both

agents are 0.
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Claim 2.1. Agent 2 has a pure strategy f

Õ
2 such that (f1, f

Õ
2) is still a behavioral-

strategy equilibrium and provides both agents the same expected payo�s, while

agent 1 does not have such a pure strategy.

Proof. It is easy to see that the following pure strategy f

Õ
2 gives agent 2 the

same expected payo� and (f1, f

Õ
2) is still a Bayesian Nash equilibrium, where

f

Õ
2(v) =

Y

]

[

a

s

, v œ [ s≠1
m

,

s

m

), 1 Æ s Æ m ≠ 1;
a

m

, v œ [m≠1
m

, 1].

We next show that there does not exist a pure strategy g1 of agent 1 such

that g1 is a component of a Bayesian Nash equilibrium with each agent’s

expected payo� being 0. Suppose that (g1, g2) is a Bayesian Nash equilibrium

such that g1 is a pure strategy of agent 1. Let D

s

= {v1 œ V1 : g1(v1) = a

s

}

for 1 Æ s Æ m. Without loss of generality, we assume that 0 œ D1. Let

S = arg max1ÆsÆm

⁄1(D
s

). Since ⁄1(D
s

) Ø ⁄1(D1) Ø ⁄1(0) >

1
m

for each s œ S,

S must be a strict subset of {1, . . . , m}. Without loss of generality, we assume

that s

ú œ S and s

ú + 1 /œ S. Given agent 1’s strategy g1, agent 2 can adopt

the pure strategy g

Õ
2(v2) = a

s

ú+1 for any v2 œ V2. Then the expected payo�

of agent 2 is ⁄1(Ds

ú) ≠ ⁄1(Ds

ú+1) > 0 with the strategy profile (g1, g

Õ
2). Since

(g1, g2) is a Bayesian Nash equilibrium, the expected payo� of agent 2 must be

at least ⁄1(D
s

ú) ≠ ⁄1(D
s

ú+1) with the strategy profile (g1, g2), which is strictly

positive. This is a contradiction.
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Example 2.3 below shows how a purification for an agent relies on the

dispersed information of the other agent, which partially illustrates the idea

of “mutual purification”. In particular, for some given randomized mechanism

in the 2-agent setting with independent information as specified above, agent

1 who has an atom in her type space can achieve the same interim expected

payo� by some deterministic mechanism,14 while there does not exist such a

deterministic mechanism for agent 2 who has dispersed information.

Example 2.3. Consider a single unit auction with two agents. The information

structure is described as above. The payo� function of agent i is ‘v

i

+ (1 ≠ v

j

)m

for i, j = 1, 2 and i ”= j, where m is su�ciently large and ‘ is su�ciently small

such that
⁄1(0)

2 > ‘ + 1
m + 1 .

The allocation rule q is defined as follows. Let q

i(v) be the probability that

agent i gets the object, and q

1(v1, v2) = q

2(v1, v2) = 1
2 for any (v1, v2). The

interim expected payo� of agent 1 with value v1 is

⁄

V2
(‘v1 + (1 ≠ v2)m)q1(v1, v2)⁄2(dv2) = ‘v1

2 + 1
2(m + 1) .

The interim expected payo� of agent 2 with value v2 is

⁄

V1
(‘v2 + (1 ≠ v1)m)q2(v1, v2)⁄1(dv1) = ‘v2

2 + ⁄1(0)
2 + (1 ≠ ⁄1(0)) 1

2(m + 1) .

14For simplicity, we only consider such an equivalence in terms of interim expected payo�s.

57



Claim 2.2. There exists a deterministic mechanism which gives agent 1 the

same interim expected payo�; but there does not exist such a deterministic

mechanism for agent 2.

Proof. We first construct a deterministic mechanism which gives agent 1 the

same interim expected payo�. Define a function G on V1 ◊ V2 = [0, 1]2 by

letting

G(v1, v2) =
⁄

v2

0
[‘v1 + (1 ≠ v

Õ
2)m] ⁄2(dv

Õ
2) ≠

C

‘v1
2 + 1

2(m + 1)

D

,

for any (v1, v2) œ V1 ◊ V2. It is clear that for any v1 œ [0, 1], G(v1, 0) < 0 <

G(v1, 1) = ‘v1
2 + 1

2(m+1) . One can also check that ˆG

ˆv2
= ‘v1 + (1 ≠ v2)m

> 0

for any v1 œ [0, 1] and v2 œ [0, 1). Hence, for each v1 œ [0, 1], there exists

a unique number g(v1) œ (0, 1) such that G (v1, g(v1)) = 0. By the usual

implicit function theorem, g must be di�erentiable, and hence measurable. Let

q̂

1(v1, v2) = 1 if 0 Æ v2 Æ g(v1) and 0 otherwise, and q̂

2(v1, v2) = 1 ≠ q̂

1(v1, v2).

Then the mechanism q̂ gives agent 1 the same interim expected payo�.

We next show that there does not exist any deterministic mechanism that

gives agent 2 the same interim expected payo�. Suppose that there exists a

deterministic mechanism q̃ that gives agent 2 the same interim expected payo�.

Fix value v2 œ V2 = [0, 1].

Suppose that q̃

2(0, v2) = 1. Then the interim expected payo� of agent 2
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with value v2 is
⁄

V1
(‘v2 + (1 ≠ v1)m)q̃2(v1, v2)⁄1(dv1) Ø (‘v2 + 1)⁄1(0).

Recall that ⁄1(0)
2 > ‘ + 1

m+1 . Hence we have

(‘v2+1)⁄1(0) Ø ⁄1(0) >

⁄1(0)
2 +‘+ 1

m + 1 >

‘v2
2 +⁄1(0)

2 +(1≠⁄1(0)) 1
2(m + 1) .

Thus, the interim expected payo� of agent 2 under the mechanism q̃ is strictly

greater than the interim expected payo� of agent 2 under the mechanism q.

This is a contradiction. Therefore, we must have q̃

2(0, v2) = 0 since q̃ is a

deterministic mechanism.

Next, since q̃

2(0, v2) = 0, the interim expected payo� of agent 2 is
⁄

V1
(‘v2 + (1 ≠ v1)m)q̃2(v1, v2)⁄1(dv1) =

⁄

(0,1]
(‘v2 + (1 ≠ v1)m)q̃2(v1, v2)⁄1(dv1)

Æ (1 ≠ ⁄1(0))
⁄ 1

0
(‘v2 + (1 ≠ v1)m) dv1 = (1 ≠ ⁄1(0))‘v2 + 1 ≠ ⁄1(0)

m + 1

< ‘ + 1
m + 1 <

⁄1(0)
2

<

‘v2
2 + ⁄1(0)

2 + (1 ≠ ⁄1(0)) 1
2(m + 1) .

That is, the interim expected payo� of agent 2 under the mechanism q̃ is

strictly less than the interim expected payo� of agent 2 under the mechanism q.

This is also a contradiction. Therefore, there does not exist any deterministic

mechanism that gives agent 2 the same interim expected payo�.

We hasten to emphasize the key di�erence between our approach and the

purification method used in the literature. With the classical purification
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method, each agent uses her own dispersed information to purify her behavioral

strategy, which we call “self purification”. In contrast, the purification approach

we adopt to achieve our main result is to purify the randomized mechanism via

other agents’ dispersed information while keeping each agent’s interim expected

allocation probability and interim expected payo� unchanged simultaneously,

which we call “mutual purification”.

2.4 Results

This section establishes the main result of this paper. We consider a general

environment in which agents could have nonlinear and interdependent payo�s.

In particular, we assume that all agents have “separable payo�s” in the following

sense.

Definition 2.1. For each i œ I, agent i is said to have separable payo� if

for any outcome k œ K and type profile v = (v1, v2, . . . , v

I

) œ V , her payo�

function can be written as follows:

u

k

i

(v1, . . . , v

I

) =
ÿ

1ÆmÆM

w

k

im

(v
i

)rk

im

(v≠i

),

where M is a positive integer, and w

k

im

(resp. r

k

im

) is ⁄

i

-integrable (resp.

⁄≠i

-integrable) on V

i

(resp. on V≠i

) for 1 Æ m Æ M .

That is, the payo� of each agent i is a summation of finite terms, where

each term is a product of two components: the first component only depends on
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agent i’s own type, while the second component depends on other agents’ types.

This setup is su�ciently general to cover most applications. In particular, it

includes the interdependent payo� function as in Jehiel and Moldovanu (2001),

and obviously covers the widely adopted private value payo�s as a special case.

Theorem 2.1. Suppose that for each agent i œ I, his payo� function is

separable. Then for any mechanism (q, t), there exists a deterministic allocation

rule q̃ such that

1. q and q̃ induce the same interim expected allocation probability;

2. (q̃, t) delivers the same interim expected utility with (q, t) for each agent

i œ I.

Thus, if (q, t) is BIC, then (q̃, t) is also BIC.

Remark 2.3. We prove a stronger result. First, it is clear from the proof of

Theorem 2.1 that the equivalent deterministic mechanism (q̃, t) also guarantees

the same ex post monetary transfers. Therefore, our deterministic mechanism

equivalence result does not require transferable utility. Second, the equivalence

result is immune against coalitions; that is, when there is sharing of information

between the coalition members (except for the grand coalition).15 The second

15Jackson and Sonnenschein (2007) also consider the issue of coalitional incentive com-
patibility. They show that the “linking mechanisms” are immune to manipulations by
coalitions.
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point is proved explicitly.

2.5 Discussions
2.5.1 Benefit of randomness revisited

Chawla, Malec, and Sivan (2015) consider multi-agent setting and focus on

the case where the agents’ values are independent both across di�erent agents’

types and di�erent coordinates of an agent’s type. In particular, Chawla, Malec,

and Sivan (2015, Theorem13) establish a constant factor upper bound for the

benefit of randomness when the agents’ values are independent. In the special

case of multi-unit multi-item auctions, they show that the revenue of any

Bayesian incentive compatible, individually rational randomized mechanism

is at most 33.75 times the revenue of the optimal deterministic mechanism.

In this paper, we push this result to the extreme and show that the revenue

maximizing auction can be deterministically implemented.16

2.5.2 An implementation perspective

We have motivated our result broadly, in terms of revenue, social surplus,

interim expected allocation probabilities, interim expected utilities and even ex

post payments. Alternatively, we may take an implementation perspective to

formulate our result. Beyond the equivalence notion discussed throughout the

16Chawla, Malec, and Sivan (2015, p. 316) remarked that “our bounds on the benefit of
randomness are in some cases quite large and we believe they can be improved”.
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paper, the deterministic allocation rule can also be required to pick some alloca-

tion in the support of the randomized allocation in the stochastic mechanism for

each type profile v. Therefore, when a stochastic mechanism implements some

social goal (i.e., at every type profile v, every realized allocation is consistent

with the social goal), our equivalent deterministic mechanism also has the same

property. We shall explain this point in the following paragraph.

Suppose that q is a random allocation rule. Given the K alternatives, the

set of all nonempty subsets of {1, . . . , K} can have at most 2K ≠ 1 elements

{C

j

}1ÆjÆ2K≠1. As a result, the set of type profiles V can be divided into 2K ≠ 1

disjoint subsets {D

j

}1ÆjÆ2K≠1 such that

1. the support of q(v) is C

j

for all v œ D

j

;

2. ⁄(fi1ÆjÆ2K≠1Dj

) = 1.

We define 2K ≠ 1 functions {—

j

}1ÆjÆ2K≠1 such that —

j

= 1 + 1
Dj for each

j; that is, —

j

is the summation of 1 and the indicator function of the set D

j

.

Instead of working with the function h, we can work with the new function

h

Õ = (h, —1, . . . , —2K≠1). Lemma A.4 and Proposition A.1 (in the Appendix)

still hold, and we can obtain a deterministic mechanism q̃ such that

⁄

V

q—

j

d⁄ =
⁄

V

q̃—

j

d⁄
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for each j, and
⁄

V

q d⁄ =
⁄

V

q̃ d⁄.

That is,
s

Dj
q d⁄ =

s

Dj
q̃ d⁄ for each j. Since q

kœCj
q

k(v) = 1 for ⁄-almost all

v œ D

j

,
s

Dj

q

kœCj
q

k(v)⁄(dv) = ⁄(D
j

), which implies that
s

Dj

q

kœCj
q̃

k(v)⁄(dv) =

⁄(D
j

). As a result, for ⁄-almost all v œ D

j

, q̃

k = 1 for some k œ C

j

. This

proves our claim that the deterministic allocation rule lies in the support of

the random allocation rule.

2.5.3 Assumptions

This subsection discusses the assumptions behind our equivalence result. The

requirement of multiple agents needs no further explanation. Atomless distri-

bution is an indispensable requirement for almost all purification results. See

Example 2.3 where we cannot purify the allocation for agent 2 while keeping her

interim expected utility unchanged because agent 1’s type distribution has an

atom, let alone the stronger requirement that the deterministic mechanism re-

quires such purification for all agents simultaneously. While our result requires

independence, it is worth mentioning that we only require independence across

agents and we do not make any assumption regarding the correlation of the

di�erent coordinates of type v

i

for any agent i œ I. Though separable payo� is

a restriction, this setup is su�ciently general to cover most applications; see
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Section 2.4 for details.

2.6 Conclusion

We prove the following mechanism equivalence result: in a general social choice

environment with multiple agents, for any stochastic mechanism, there exists an

equivalent deterministic mechanism. On the one hand, our result implies that

it is without loss of generality to work with stochastic mechanisms, even if the

mechanism designer does not have access to a randomization device, or cannot

fully commit to the outcomes induced by a randomization device. On the other

hand, our result implies that the requirement of deterministic mechanisms is

not restrictive in itself. Even if one is constrained to employ only deterministic

mechanisms, there is no loss of revenue or social welfare. Therefore, our result

provides a foundation for the use of deterministic mechanisms in mechanism

design settings, such as auctions, bilateral trades, etc.
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Chapter 3

E�cient Dynamic Mechanisms
with Interdependent Valuations

3.1 Introduction

An important strand of mechanism design theory is concerned with the design

of e�cient mechanisms. The mechanism designer would like to allocate the

good to the bidder with the highest valuation,1 provide the public good if and

only if the sum of the agents’ valuations is greater than the cost, and facilitate

trading if and only if the buyer’s valuation is higher than the seller’s valuation,

etc.2

The renowned Vickrey-Clarke-Groves (VCG) mechanism established the

1A leading rationale for the widespread privatization of state-owned assets is to enhance
e�ciency; see Dasgupta and Maskin (2000). For example, the U. S. Congress explicitly
mandated the Federal Communications Commission to promote e�ciency in its auctions of
frequency bands for telecommunications.

2The problem of implementing socially e�cient outcomes has also been extensively
studied in the dynamic setting; see, for example, Bergemann and Välimäki (2010), Athey and
Segal (2013), and Guo and Hörner (2015). Pavan, Segal, and Toikka (2014) provide a general
treatment of the dynamic mechanism design problem in the independent private-value setting
(see also references therein).
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existence of an e�cient, incentive-compatible mechanism for a general class of

static mechanism design problems with private values and quasilinear prefer-

ences; see Clarke (1971), Groves (1973) and Vickrey (1961). Subsequently, a

pair of classic papers, Arrow (1979) and d’Aspremont and Gérard-Varet (1979)

(AGV), constructed an e�cient, incentive-compatible mechanism in which the

transfers were also budget-balanced, using the solution concept of Bayesian-

Nash equilibrium, under the additional assumption that private information is

independent across agents.

In dynamic mechanism design problems with private values, Bergemann and

Välimäki (2010) and Athey and Segal (2013) have successfully addressed this

question, by means of dynamic extensions of the VCG and AGV mechanisms.

However, it is well known that VCG and AGV mechanisms no longer work

in settings with interdependent valuations. Indeed, Maskin (1992), Dasgupta

and Maskin (2000) and Jehiel and Moldovanu (2001) have demonstrated, in

increasing generality, that if information signals are statistically independent,

multidimensional (or, if they are single dimensional, but a single crossing

condition is violated), and interdependent, then the implementation of e�cient

mechanisms is generically impossible.

In this paper, we study e�cient mechanism design in a dynamic environment

with interdependent valuations and evolving private information. Our aim is
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to construct an e�cient, incentive-compatible dynamic mechanism that is also

budget-balanced in every period of the game. As in the AGV mechanism and

Athey and Segal (2013), we place emphasis on budget balance.

As discussed above, implementation of e�cient mechanisms with interde-

pendent valuations runs into di�culties even in the static setting. To overcome

such di�culties, we extend the following insight from Mezzetti (2004) to the

dynamic setting. In a static mechanism design problem, Mezzetti (2004) con-

structs a novel and elegant “generalized (or two-stage) Groves mechanism” that

bypasses the above di�culties, with the assumption that each agent observes

her own realized outcome-decision payo� after the final outcome decision, but

before final transfers, are made.3 While Mezzetti (2004) resolves incentive

compatibility, requiring agents to be able to observe their own payo�s before

the mechanism ends is a strong assumption in the static setting from an applied

perspective. In the dynamic setting, it may seem natural to assume that in

each period, each agent could observe her own realized outcome-decision payo�

from the previous period.

This assumption is related to the literature on contingent payments; see

Hansen (1985), Crémer (1987), Samuelson (1987) and more recently, DeMarzo,

3Two-stage mechanisms can also be used to achieve goals other than e�ciency (e.g.,
surplus extraction); see Mezzetti (2007).
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Kremer, and Skrzypacz (2005) and Che and Kim (2010) among others.4 In

this paper, we do not require that the realized outcome-decision payo�s are

observable to the mechanism designer, but we rely instead on the agents’ reports

of their own realized payo�s.

This paper places emphasis on budget balance in every period of the game.

Indeed, the construction of an e�cient, incentive-compatible mechanism is

straightforward. In each period, the mechanism designer makes a transfer to

each agent that is an adjusted amount of the sum of the other agents’ outcome-

decision payo�s from the previous period. This su�ces to make each agent the

residual claimant of the social surplus and provide the agents with the incentive

to be truthful as long as the mechanism prescribes an e�cient decision rule.

Under the assumption of independent types, we show that dynamic e�ciency

can be achieved with balanced budget. As in the AGV mechanism and Athey

and Segal (2013), our construction of the budget-balanced mechanism requires

all the other agents to pitch in to pay each agent’s incentive term. This ensures

that the budget is balanced in every period of the game. The key di�erence

between our mechanism and the “balanced team mechanism” in Athey and

Segal (2013) is as follows. In their paper, only the transfers of the most recent

two periods are relevant for each agent’s incentive in the current period, since

4Lehrer (1992) and Tomala (1999) have also adopted similar assumptions of observable
payo� in the environment of repeated games.
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the expectation of the transfers afterwards is zero.5 However, in our mechanism,

all the future transfers could influence the incentive of the current period.

Another approach that studies e�cient mechanism design exploits the

correlation of private information; see the seminal contribution of Crémer and

McLean (1988) in the static setting. More recently, Liu (2014) and Noda (2015)

extend the insight of Crémer and McLean (1988) to the dynamic setting and

construct e�cient and incentive-compatible mechanisms respectively. These

results leverage on the inter-temporal correlation of private information and do

not apply in our setting. Hörner, Takahashi, and Vieille (2015) apply a similar

technique to dynamic Bayesian games.

The rest of the paper is organized as follows. Section 3.2 introduces the

model. Section 3.3 constructs the e�cient, incentive-compatible and budget-

balanced mechanism and Section 3.4 concludes.

3.2 Model
3.2.1 Setup

Notation. We consider a dynamic mechanism design environment with in-

terdependent valuations in a discrete-time, infinite-horizon model. There is

a finite set I = {1, 2, . . . , I} of risk neutral agents. Time is discrete, indexed

by t œ N = {0, 1, 2, . . .}. The state of the world ◊

i

t

for agent i is a general
5See the proof of Proposition 2 in Athey and Segal (2013).
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Markov process on the state space �i. The aggregate state is given by the

vector ◊

t

= (◊1
t

, ◊

2
t

, . . . , ◊

I

t

) with � = r

iœI �i. Write ◊

≠i

t

œ �≠i = r

j ”=i

�j for

the state of all agents except agent i. The outcome space is a measurable set

X endowed with the ‡-algebra X . The initial state ◊0 œ � is assumed to be

publicly known. The current state ◊

t

œ � and current decision x

t

œ X define

a probability distribution for state variable ◊

t+1 on � by the law of motion

Q(·|x
t

, ◊

t

).

Timing. We consider mechanisms in which, following a publicly observed

initial state ◊0 œ �, a decision x0 œ X is made. Then in each period t Ø 1, each

agent privately observes her type ◊

i

t

œ �i

. Agents make reports simultaneously

and a public decision x

t

œ X is made at the end of each period. Each agent i

also receives a transfer y

i

t

œ R. We assume that the past reports of each agent

and the public decision are observable to all agents. All agents discount the

future with a common discount factor ” œ (0, 1).

Interdependent valuations. We allow agents to have interdependent

valuations in the sense that agent i’s payo� could depend on the signals of all

the other agents for each i œ I. If a sequence of types {◊

t

}
tØ0 is realized, a

sequence of public decisions {x

t

}
tØ0 and transfers {y

t

}
tØ0 are determined, then

the discounted payo� of agent i is

ÿ

tØ0
”

t[u
i

(x
t

, ◊

t

) + y

i

t

],
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where u

i

: X ◊ � æ R is assumed to be measurable and bounded. We will

refer to u

i

as the outcome-decision payo� of agent i.

Independent types. Throughout this paper, we shall assume independent

types. That is, conditional on decisions, the private information of agent i does

not have any direct e�ect on the distribution of the current and future types

of other agents (we still allow one agent’s reports to a�ect the future types of

other agents through the implemented decisions). More formally,

Definition 3.1. Agents have independent types if given any x

t

œ X and

◊

t

= (◊1
t

, ◊

2
t

, . . . , ◊

I

t

) œ �, the transition probability Q(·|x
t

, ◊

t

) = ¢
iœIQ

i

(·|x
t

, ◊

i

t

),

where Q

i

(·|x
t

, ◊

i

t

) is a transition probability from X ◊ �i to —(�i).

Equilibrium notion. The truthtelling strategy of agent i always reports

her state ◊

i

t

in every period t Ø 1 truthfully, regardless of the observed past (in

particular, regardless of whether she has lied in the past). We will consider

perfect Bayesian equilibrium (PBE) in truthtelling strategies, with beliefs that

assign probability 1 to the other agents’ latest reports being truthful.

3.2.2 E�ciency

A social policy is a measurable function ‰ : � æ X, where ‰(◊) represents the

decision made when the realized state in this period is ◊. Starting from an initial

type ◊0 œ �, a social policy ‰ together with the transition probability Q uniquely
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determine a probability measure over the sequence of states (◊
t

)
tØ0 œ �N.

In period t, e�ciency can be obtained at type ◊

t

by maximizing the dis-

counted expected surplus:

sup
{xs}sØt

E
S

U

ÿ

sØt

”

s≠t

ÿ

iœI
u

i

(x
s

, ◊

s

)
T

V

.

We characterize the e�cient social policy ‰

ú : � æ X and the associated

social value function V : � æ R by the following recursion using the principle

of dynamic programming:

V (◊) = v(◊) + ”

⁄

�
V (◊̃)Q(d◊̃|‰ú(◊), ◊)

= sup
xœX

C

ÿ

iœI
u

i

(x, ◊) + ”

⁄

�
V (◊̃)Q(d◊̃|x, ◊)

D

,

where v(◊) = q

iœI u

i

(‰ú(◊), ◊).6

3.3 Mechanism

In this section, we construct an e�cient and budget-balanced dynamic mech-

anism such that truthtelling strategies form a perfect Bayesian equilibrium.

As discussed in the introduction, we assume that in each period, each agent

observes her own realized outcome-decision payo� from the previous period.

Assumption 3.1. In each period t + 1 (t Ø 1) and for any x

t

œ X, each agent

i observes her own realized outcome-decision payo� from period t.
6Throughout this paper, we assume that the e�cient social policy exists.
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For simplicity of exposition, in what follows, we go a step further and

assume that in each period, the realized outcome-decision payo�s from the

previous period are observable to the mechanism designer. The mechanism we

construct still works under the original assumption. Indeed, in each period

t + 1, the mechanism designer could require the agents to report their realized

outcome-decision payo�s from period t. Since for each agent i, the report of

her own outcome-decision payo� does not a�ect her utility, we can assume that

agent i truthfully reports her outcome-decision payo� from the previous period;

see Mezzetti (2004) for further discussions.

In period t Ø 1, given reported types r

t≠1 and r

t

in periods t ≠ 1 and t

respectively,7 let

�
i

(r
t≠1, r

i

t

) =
⁄

�≠i

V (ri

t

, ◊̃

≠i

t

)Q≠i

(d◊̃

≠i

t

|‰ú(r
t≠1), r

≠i

t≠1) ≠
⁄

�
V (◊̃

t

)Q(d◊̃

t

|‰ú(r
t≠1), r

t≠1) and

�
i

(r
t≠1, r

t

) = �
i

(r
t≠1, r

i

t

) ≠ 1
I ≠ 1

ÿ

j ”=i

�
j

(r
t≠1, r

j

t

)

for each i œ I.

From the mechanism designer’s perspective, �
i

(r
t≠1, r

i

t

) characterizes the

change in the expected social value if agent i reports r

i

t

in period t, given the

report r

t≠1 in period t ≠ 1.

Construct the following mechanism (‰ú
, y):

1. The socially e�cient policy ‰

ú is implemented in every period; that is, in
7Since the initial state ◊0 œ � is publicly known, we assume r0 © ◊0.
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period t, the allocation is ‰

ú(r
t

) based on the reports r

t

.

2. For each i œ I, the transfer to agent i in period t + 1 (for t Ø 1) is

y

i

t+1 = 1
”

ÿ

j ”=i

w

j

t

≠ I ≠ 1
I”

[v(r
t

) ≠ �
i

(r
t≠1, r

t

)] ,

where w

i

t

is the realized outcome-decision payo� of agent i œ I in period

t.8

As in the AGV mechanism and Athey and Segal (2013), our mechanism

requires all the other agents to pitch in to pay each agent’s incentive term,

which ensures that the budget is balanced on the equilibrium path.

Theorem 3.1. Truthtelling strategies form a perfect Bayesian equilibrium in

the mechanism (‰ú
, y). Furthermore, on the equilibrium path, the mechanism

(‰ú
, y) is budget-balanced in every period of the game.

Proof. The logic of the proof is summarized as follows. Step 1 begins by

considering a simpler mechanism (‰ú
, z) where the transfer z

i

t

to agent i is

an adjusted amount of the sum of the realized outcome-decision payo�s of all

the other agents in period t ≠ 1. We show that truthtelling strategies form a

PBE in this mechanism. The idea, as in the standard VCG mechanism, is to

make each agent the residual claimant of the full surplus. Step 2 proves that

8We let y

i
0 = y

i
1 © 0 for each agent i œ I.
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the expected present value of agent i’s gain from deviating in the mechanism

(‰ú
, y) is the same as in the simple mechanism (‰ú

, z). Therefore, truthtelling

strategies still form a perfect Bayesian equilibrium in the mechanism (‰ú
, y).

Lastly, Step 3 verifies that on the equilibrium path, the mechanism (‰ú
, y) is

budget-balanced in every period of the game.

Step 1. We consider a simpler mechanism (‰ú
, z) where the allocation

rule is still the e�cient social policy ‰

ú, but the transfer agent i receives in

period t Ø 2 is z

i

t

= 1
”

q

j ”=i

w

j

t≠1, where (w1
t≠1, w

2
t≠1, . . . , w

I

t≠1) are the realized

outcome-decision payo�s in period t ≠ 1.9 By the one-stage deviation principle,

to verify PBE it su�ces to show that a one-stage deviation of any agent i œ I to

reporting any r

i

t

œ �i instead of her true type ◊

i

t

œ �i in period t is unprofitable.

If all agents choose the truthtelling strategy, then the expected discounted

payo� of agent i in period t is

u

i

(‰ú(◊
t

), ◊

t

) + z

i

t

+ E
S

U

ÿ

kØ1
”

k(u
i

(‰ú(◊
t+k

), ◊

t+k

) + z

i

t+k

)|‰ú(◊
t

), ◊

t

T

V

= u

i

(‰ú(◊
t

), ◊

t

) + z

i

t

+ E
S

U

ÿ

kØ1
”

k(u
i

(‰ú(◊
t+k

), ◊

t+k

) + 1
”

ÿ

j ”=i

u

j

(‰ú(◊
t+k≠1), ◊

t+k≠1))|‰ú(◊
t

), ◊

t

T

V

=
ÿ

jœI
u

j

(‰ú(◊
t

), ◊

t

) + z

i

t

+ E
S

U

ÿ

kØ1
”

k

ÿ

jœI
u

j

(‰ú(◊
t+k

), ◊

t+k

)|‰ú(◊
t

), ◊

t

T

V

= V (◊
t

) + z

i

t

.

9We let z

i
0 = z

i
1 © 0 for each agent i œ I.
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Suppose that agent i reports r

i

t

instead. Let x = ‰

ú(ri

t

, ◊

≠i

t

). Then her

expected discounted payo� in period t is

u

i

(x, ◊

t

) + z

i

t

+ E
S

U

ÿ

kØ1
”

k(u
i

(‰ú(◊
t+k

), ◊

t+k

) + z

i

t+k

)|x, ◊

t

T

V

= u

i

(x, ◊

t

) + z

i

t

+ E
S

U

ÿ

kØ2
”

k(u
i

(‰ú(◊
t+k

), ◊

t+k

) + 1
”

ÿ

j ”=i

u

j

(‰ú(◊
t+k≠1), ◊

t+k≠1))

+ ”(u
i

(‰ú(◊
t+1), ◊

t+1) + 1
”

ÿ

j ”=i

u

j

(x, ◊

t

))|x, ◊

t

T

V

=
ÿ

jœI
u

j

(x, ◊

t

) + z

i

t

+ E
S

U

ÿ

kØ1
”

k

ÿ

jœI
u

j

(‰ú(◊
t+k

), ◊

t+k

)|x, ◊

t

T

V

=
ÿ

jœI
u

j

(x, ◊

t

) + z

i

t

+ ”

⁄

�
V (◊̃)Q(d◊̃|x, ◊

t

).

Since V is the social value function when the decision policy is ‰

ú, we have

V (◊
t

) =
ÿ

jœI
u

j

(‰ú(◊
t

), ◊

t

) + ”

⁄

�
V (◊̃)Q(d◊̃|‰ú(◊

t

), ◊

t

)

Ø
ÿ

jœI
u

j

(x, ◊

t

) + ”

⁄

�
V (◊̃)Q(d◊̃|x, ◊

t

).

Thus, a one-stage deviation of any agent i œ I to reporting any r

i

t

œ �i instead

of her true type ◊

i

t

œ �i in period t is unprofitable. Truthtelling strategies form

a perfect Bayesian equilibrium.

Step 2. We prove that the expected present value of agent i’s gain from

deviating in the mechanism (‰ú
, y) is the same as in the simple mechanism

(‰ú
, z).
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In period t ≠ 1, consider the case where the true type profile is ◊

t≠1 and the

reported type profile is (r≠j

t≠1, ◊

j

t≠1) for some j œ I. That is, agent j truthfully

reports ◊

j

t≠1 œ �j while the other agents arbitrarily report r

≠j

t≠1 œ �≠j. We

have

⁄

�j

�
j

(r≠j

t≠1, ◊

j

t≠1, ◊̃

j

t

)Q
j

(d◊̃

j

t

|‰ú(r≠j

t≠1, ◊

j

t≠1), ◊

j

t≠1)

=
⁄

�j

⁄

�≠j

V (◊̃j

t

, ◊̃

≠j

t

)Q≠j

(d◊̃

≠j

t

|‰ú(r≠j

t≠1, ◊

j

t≠1), r

≠j

t≠1)Qj

(d◊̃

j

t

|‰ú(r≠j

t≠1, ◊

j

t≠1), ◊

j

t≠1)

≠
⁄

�
V (◊̃

t

)Q(d◊̃

t

|‰ú(r≠j

t≠1, ◊

j

t≠1), r

≠j

t≠1, ◊

j

t≠1)

= 0,

where the first equality follows from the definition of �
i

.

Thus, for each agent i œ I, if all the other agents truthfully report their

types, then the expectation of the term q

j ”=i

�
j

(r
t≠1, r

j

t

) in �
i

(r
t≠1, r

t

) is 0

(from agent i’s perspective) regardless of her own report. In other words, if

agent i assigns probability 1 to the event that all the other agents truthfully

report their types, then the term q

j ”=i

�
j

(r
t≠1, r

j

t

) in the transfer y

i

t+1 cannot

distort her incentive.

Next we consider other terms v(r
t

) ≠ �
i

(r
t≠1, r

i

t

) in the transfer y

i

t+1 that

could potentially distort agent i’s incentives. Suppose that all the other agents

adopt the truthtelling strategy; that is, r

≠i

t≠1 = ◊

≠i

t≠1 in period t ≠ 1. As for

agent i, her past types are payo�-irrelevant since (1) the past types do not
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enter into her future outcome-decision payo� functions and transfers; and (2)

her belief about the opponents’ current types depends on her report, but not

the true type, in the previous period. As a result, we can assume that agent i

truthfully reports in period t ≠ 1. We focus on the case that the true type of

agent i is ◊

i

t

but she reports r

i

t

in period t.

In what follows, we consider the summation of the expectation of v(r
t+k

) ≠

�
i

(r
t+k≠1, r

i

t+k

) for k Ø 0 (from agent i’s perspective). If agent i deviates from
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◊

i

t

to r

i

t

, we have
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The first equality follows from the definition of �
i

. Terms (3.1), (3.2), (3.5)

aggregate to term (3.7) and terms (3.3), (3.4), (3.6) aggregate to term (3.8)

respectively. It is easy to see that both terms (3.7) and (3.8) are equal to zero.

Finally, (3.9) does not depend on agent i’s report.

Therefore, the transfer scheme y together with ‰

ú provides each agent the

same expected gain from deviating as the simple mechanism (‰ú
, z). Since

truthtelling strategies form a PBE in the latter mechanism, truthtelling strate-

gies also form a PBE if the mechanism (‰ú
, y) is adopted.

Step 3. We show that in the mechanism (‰ú
, y), the transfers y

i

t+1 balance

the budget on the equilibrium path; that is, q

iœI y

i

t+1 = 0. On the equilibrium

path, agents truthfully report their types, r

t

= ◊

t

and w

i

t

= u

i

(‰ú(◊
t

), ◊

t

). We
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where the third equality is due to the following:
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3.4 Conclusion

In a dynamic environment with interdependent valuations and evolving private

information, we construct an e�cient, incentive-compatible dynamic mechanism

that is also budget-balanced in every period of the game. To overcome the

di�culties with interdependent valuations, we assume that in each period, each

agent observes her own realized outcome-decision payo�s from the previous

period. This extends the insight of Mezzetti (2004) to the dynamic setting.
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We conclude with several observations. Firstly, our result can be generalized

to the case where each agent only observes her own realized outcome-decision

payo� after any finite number of periods. Secondly, we see no di�culties in

extending our result to the case of time-dependent payo�s. This allows us to

cover finite-horizon environments and in particular, Mezzetti (2004). Finally,

in dynamic mechanism design problems with private values, the assumption

that each agent observes her own realized outcome-decision payo� is trivially

satisfied. Therefore, our result can also be viewed as a construction of an

e�cient, incentive-compatible and budget-balanced mechanism in this setting.
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Appendix A

Proofs of Chapter Two

A.1 Technical lemmas

In the following, we present several lemmas as the technical preparation for

the proof of Proposition 1.1

If (X, X ) and (Y, Y) are measurable spaces, then a measurable rectangle is

a subset A◊B of X ◊Y , where A œ X and B œ Y are measurable subsets of X

and Y , respectively. The “sides” A, B of the measurable rectangle A ◊ B can

be arbitrary measurable sets; they are not required to be intervals. A discrete

rectangle is a measurable rectangle such that each of its sides is a finite set.

1These lemmas extend the corresponding mathematical results in Arkin and Levin
(1972) from the special case with I = 2 and ⁄ the uniform distribution on [0, 1] ◊ [0, 1]
to the general setting in this paper. The corresponding mathematical results in Arkin
and Levin (1972) were used to show the following result (see Theorem 2.3 therein):
“Suppose that f1 œ L

÷
1(X ◊ Y,Rl1), f2 œ L

÷
1(X ◊ Y,Rl2) and f3 œ L

÷
1(X ◊ Y,Rl3),

where X = Y = [0, 1] and ÷ is the uniform distribution on [0, 1] ◊ [0, 1]. Let A be
the simplex {a = (a1, . . . , aK) :

q

1ÆkÆK ak = 1, ak Ø 0}. Given any measurable func-
tion – from X ◊ Y to A, there exists another measurable function – from X ◊ Y to
the vertices of the simplex A such that

s

[0,1] f1(x, y)–(x, y) dy =
s

[0,1] f1(x, y)–(x, y) dy,
s

[0,1] f2(x, y)–(x, y) dx =
s

[0,1] f2(x, y)–(x, y) dx and
s

[0,1]
s

[0,1] f3(x, y)–(x, y) dx dy =
s

[0,1]
s

[0,1] f3(x, y)–(x, y) dx dy.”
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Lemma A.1. Let D be a Borel measurable subset of V , and F ™ V a

measurable rectangle with sides Y

i
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‘)�1ÆjÆI

l

j

.

The first inequality holds due to the condition that ⁄(D fl F ) Ø (1 ≠ ‘)⁄(F ).

The second inequality is true since ⁄≠i

(D
vi flF

vi) Æ (1≠
Ô

‘)⁄≠i

(F
vi) for v

i

œ �C

i

.

All the equalities are just simple algebras. Rearranging the terms, we have

⁄

i

(�
i

) Ø (1 ≠
Ô

‘)l
i

.
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This completes the proof.

Lemma A.2. Let D be a Borel measurable subset of V with ⁄(D) > 0, ĩ1, . . . , ĩ

I

be positive natural numbers, and 0 < ‘ < 1 be su�ciently small such that

‘

Õ = �1ÆjÆI

ĩ

j

· ‘ < 1 and �1ÆjÆI

ĩ

j

· ‘

Õ 1
2I

< 1.

Consider the system of measurable rectangles F

i1,...,iI = r

1ÆjÆI

Y

ij

j

, where

1 Æ i

j

Æ ĩ

j

and Y

1
j

, . . . , Y

ĩj

j

are pairwise disjoint subsets on V

j

for 1 Æ j Æ I

such that ⁄(F i1,...,iI fl D) Ø (1 ≠ ‘)⁄(F i1,...,iI ). Then there exists a discrete

rectangle {v

i1
1 , . . . , v

iI
I

}{1ÆijÆĩj ,1ÆjÆI} such that

1. (vi1
1 , . . . , v

iI
I

) œ F

i1,...,iI fl D for 1 Æ i

j

Æ ĩ

j

and 1 Æ j Æ I;

2. for each 1 Æ j Æ I, {v

ij

j

} are di�erent points for 1 Æ i

j

Æ ĩ

j

.

Proof. First, we consider the set

�i1,...,iI
1 = {v1 œ Y

i1
1 : ⁄≠1(Dv1 fl F

i1,...,iI
v1 ) > (1 ≠

Ô
‘

Õ)⁄≠1(F i1,...,iI
v1 )}.

Denote �i1
1 = fl1ÆikÆĩk,2ÆkÆI

�i1,...,iI
1 . We have

⁄1(�i1
1 ) = ⁄1(Y i1

1 ) ≠ ⁄1
1

fi1ÆikÆĩk,2ÆkÆI

(Y i1
1 \ �i1,...,iI

1 )
2

Ø ⁄1(Y i1
1 ) ≠

ÿ

1ÆikÆĩk,2ÆkÆI

1

⁄1(Y i1
1 ) ≠ ⁄1(�i1,...,iI

1 )
2

Ø ⁄1(Y i1
1 ) ≠

ÿ

1ÆikÆĩk,2ÆkÆI

1

⁄1(Y i1
1 ) ≠ (1 ≠

Ô
‘

Õ)⁄1(Y i1
1 )

2

=
1

1 ≠ �2ÆkÆI

ĩ

k

·
Ô

‘

Õ
2

⁄1(Y i1
1 )

> 0.
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The second inequality holds due to Lemma A.1. We fix points y

i1
1 œ �i1

1

arbitrarily, as long as they are all distinct.

Second, let

�i1,...,iI
2 = {v2 œ Y

i2
2 : (

p

3ÆkÆI

⁄

k

)(D(yi1
1 ,v2)flF

i1,...,iI

(yi1
1 ,v2)

) > (1≠‘

Õ 1
4 )(

p

3ÆkÆI

⁄

k

)(F i1,...,iI

(yi1
1 ,v2)

)}.

Since y

i1
1 œ �i1

1 for any i1, we have y

i1
1 œ �i1,...,iI

1 and

(
p

2ÆkÆI

⁄

k

)(D
y

i1
1

fl F

i1,...,iI

y

i1
1

) > (1 ≠
Ô

‘

Õ)(
p

2ÆkÆI

⁄

k

)(F i1,...,iI

y

i1
1

).

By Lemma A.1, we have

⁄2(�i1,...,iI
2 ) Ø (1 ≠ ‘

Õ 1
4 )⁄2(Y i2

2 ).

Denote �i2
2 = fl1ÆijÆĩj ,j ”=2�

i1,...,iI
2 . We have

⁄2(�i2
2 ) = ⁄2(Y i2

2 ) ≠ ⁄2
1

fi1ÆikÆĩk,k ”=2(Y i2
2 \ �i1,...,iI

2 )
2

Ø ⁄2(Y i2
2 ) ≠

ÿ

1ÆikÆĩk,k ”=2

1

⁄2(Y i2
2 ) ≠ ⁄2(�i1,...,iI

2 )
2

Ø ⁄2(Y i2
2 ) ≠

ÿ

1ÆikÆĩk,k ”=2

1

⁄2(Y i2
2 ) ≠ (1 ≠ ‘

Õ 1
4 )⁄2(Y i2

2 )
2

=
1

1 ≠ �1ÆkÆI,k ”=2ĩk

· ‘

Õ 1
4
2

⁄2(Y i2
2 )

> 0.

We fix points y

i2
2 œ �i2

2 arbitrarily, as long as they are all distinct, and are also

di�erent from {y

i1
1 }.

Repeating this procedure until I ≠ 1, we can find y

ik
k

œ �ik
k

for 1 Æ i

k

Æ ĩ

k

and 1 Æ k Æ I ≠ 1, where �ik
k

= fl1ÆijÆĩj ,j ”=k

�i1,...,iI
k

and ⁄

k

(�ik
k

) > 0. In
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particular,

�i1,...,iI
I≠1 =

Ó

v

I≠1 œ Y

iI≠1
I≠1 : ⁄

I

(D(yi1
1 ,...,y

iI≠2
I≠2 ,vI≠1) fl F

i1,...,iI

(yi1
1 ,...,y

iI≠2
I≠2 ,vI≠1)

)

> (1 ≠ ‘

Õ 1
2I≠1 )⁄

I

(F i1,...,iI

(yi1
1 ,...,y

iI≠2
I≠2 ,vI≠1)

)
Ô

.

Finally, consider the set

E

iI = fl1ÆikÆĩk,1ÆkÆI≠1

3

D(yi1
1 ,...,y

iI≠1
I≠1 ) fl Y

iI
I

4

.

Notice that F

i1,··· ,iI

(yi1
1 ,...,y

iI≠1
I≠1 )

= Y

iI
I

for any i1, . . . , i

I

. Then

⁄

I

(EiI ) = ⁄

I

3

fl1ÆikÆĩk,1ÆkÆI≠1(D(yi1
1 ,...,y

iI≠1
I≠1 ) fl Y

iI
I

)
4

= ⁄

I

(Y iI
I

) ≠ ⁄

I

3

fi1ÆikÆĩk,1ÆkÆI≠1(Y iI
I

\ D(yi1
1 ,...,y

iI≠1
I≠1 ))

4

Ø ⁄

I

(Y iI
I

) ≠
ÿ

1ÆikÆĩk,1ÆkÆI≠1

3

⁄

I

(Y iI
I

) ≠ ⁄

I

(D(yi1
1 ,...,y

iI≠1
I≠1 ) fl Y

iI
I

)
4

= ⁄

I

(Y iI
I

) ≠
ÿ

1ÆikÆĩk,1ÆkÆI≠1

A

⁄

I

(Y iI
I

) ≠ ⁄

I

(D(yi1
1 ,...,y

iI≠1
I≠1 ) fl F

i1,··· ,iI

(yi1
1 ,...,y

iI≠1
I≠1 )

)
B

> ⁄

I

(Y iI
I

) ≠
ÿ

1ÆikÆĩk,1ÆkÆI≠1

A

⁄

I

(Y iI
I

) ≠ (1 ≠ ‘

Õ 1
2I≠1 )⁄

I

(F i1,··· ,iI

(yi1
1 ,...,y

iI≠1
I≠1 )

)
B

= ⁄

I

(Y iI
I

) ≠
ÿ

1ÆikÆĩk,1ÆkÆI≠1

1

⁄

I

(Y iI
I

) ≠ (1 ≠ ‘

Õ 1
2I≠1 )⁄

I

(Y iI
I

)
2

=
1

1 ≠ �1ÆkÆI≠1ĩk

· ‘

Õ 1
2I≠1

2

⁄

I

(Y iI
I

)

> 0.

The second inequality holds since y

iI≠1
I≠1 œ �iI≠1

I≠1 ™ �i1,...,iI
I≠1 , and hence

⁄

I

(D(yi1
1 ,...,y

iI≠1
I≠1 ) fl F

i1,...,iI

(yi1
1 ,...,y

iI≠1
I≠1 )

) > (1 ≠ ‘

Õ 1
2I≠1 )⁄

I

(F i1,...,iI

(yi1
1 ,...,y

iI≠1
I≠1 )

).
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Fix points y

iI
I

œ E

iI arbitrarily, as long as they are all di�erent, and are di�erent

from {y

ij

j

}1ÆjÆI≠1,1ÆijÆĩj
. By the choice of E

iI , (yi1
1 , . . . , y

iI
I

) œ F

i1,...,iI fl D for

any 1 Æ i

j

Æ ĩ

j

and 1 Æ j Æ I. This completes the proof.

Now we prove the last lemma.

Lemma A.3. E is not dense in L

⁄

1(D,R).2 In particular, there is a measurable

function d(v) with a finite set of values, which cannot be approximated in

measure on (D, B(D), ⁄) by functions in E .

Proof. Let g = 1
D

be the indicator function of the set D, and g

”

(v) =

1
⁄(B(v,”))

s

B(v,”) g d⁄. By Lemma 4.1.2 in Ledrappier and Young (1985), g

”

æ g

for ⁄-almost all v œ RlI as ” æ 0. Without loss of generality, we assume

that this convergence result holds for each point of D and the function h is

continuous on D.

Fix natural numbers ĩ

j

satisfying the condition that l · q

JœJ (�
jœJ

ĩ

j

) <

�1ÆjÆI

ĩ

j

. For any discrete rectangle L = {(vi1
1 , . . . , v

iI
I

) œ D : 1 Æ i

j

Æ ĩ

j

, 1 Æ

j Æ I}, we associate a linear mapping T

L

from R�1ÆjÆI ĩj to Rl0·
q

JœJ (�jœJ ĩj):

T

L

(w) = {
ÿ

j /œJ,1ÆijÆĩj

h(vi1
1 , . . . , v

iI
I

) · w

i1,...,iI }1ÆijÆĩj ,jœJ,JœJ ,

where l0 = IKM + 1, w is a vector with dimensions ĩ1, . . . , ĩ

I

and w

i1,...,iI is

the corresponding component.
2Recall that E is defined in the proof of Proposition 1.
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Fix a discrete rectangle L ™ D such that

• L = {(vi1
1 , . . . , v

iI
I

) œ D : 1 Æ i

j

Æ ĩ

j

, 1 Æ j Æ I};

• the rank of the mapping T

L

is maximal, say r.

Consider the system of q

JœJ (�
jœJ

ĩ

j

) homogeneous linear equations with

�1ÆjÆI

ĩ

j

unknowns:

T

L

(w) = 0.

We take r equations and r unknowns for which the corresponding deter-

minant is nonzero. Without loss of generality, we focus on this r ◊ r matrix

and denote it as L

s

, then det(L
s

) ”= 0. For any discrete rectangle L, denote

L

s

as the restriction of the vector generated by the operator T

L

onto the same

matrix. Since h is continuous, det(L
s

) ”= 0 for any discrete rectangle L in a

small open neighborhood of L.

Let w

L

be a nontrivial solution of the system corresponding to the discrete

rectangle L in the sense that T

L

(w
L

) = 0. For any discrete rectangle L ™ D

such that det(L
s

) ”= 0, we provide a solution w

L

below such that T

L

(w
L

) = 0.

• Since det(L
s

) ”= 0, the rank of the system corresponding to the operator T

L

is at least r. Due to the choice of L, the rank of the system corresponding

to the operator T

L

is at most r, and hence is r. As a result, the equations
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that do not occur in the determinant det(L
s

) are linear combinations of

the r equations that do.

• We focus on the r equations that occur in the determinant det(L
s

), and

let w

i1,...,iI
L

= w

i1,...,iI

L

if the column corresponding to the unknown w

i1,...,iI
L

does not occur in the determinant det(L
s

).

• The remaining r unknowns of w

i1,...,iI
L

, corresponding to the columns that

occur in the determinant det(L
s

), can be obtained by Cramer’s rule.

By the above construction, it is obvious that w

L

depends continuously on

the r nodes of the discrete rectangle L corresponding to the columns of det(L
s

).

Pick numbers d

i1,...,iI subject to q

1ÆijÆĩj ,1ÆjÆI

d

i1,...,iI ·wi1,...,iI

L

= 1. Consider

the measurable rectangles

G

i1,...,iI = {v = (v1, . . . , v

I

) œ RlI : |v
j

≠ v

ij

j

| Æ ”, 1 Æ j Æ I},

and

F

i1,...,iI = {v = (v1, . . . , v

I

) œ V : |v
j

≠ v

ij

j

| Æ ”, 1 Æ j Æ I}.

Then for su�ciently small ”, {G

i1,...,iI } are pairwise disjoint, and {F

i1,...,iI } are

also pairwise disjoint.

By the first paragraph of this proof, 1
⁄(B(v,”))

s

B(v,”) 1
D

d⁄ æ 1
D

(v) for

each v œ D. Since (vi1
1 , . . . , v

iI
I

) œ D, ⁄(Gi1,...,iI fl D) Ø (1 ≠ ‘)⁄(Gi1,...,iI ) for
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su�ciently small ”, where ‘ is given in the proof of Lemma A.2. Since D is a

subset of V , we have

⁄(F i1,...,iI fl D) = ⁄(Gi1,...,iI fl D) Ø (1 ≠ ‘)⁄(Gi1,...,iI ) Ø (1 ≠ ‘)⁄(F i1,...,iI ).

In addition, since q

1ÆijÆĩj ,1ÆjÆI

d

i1,...,iI · w

i1,...,iI
L

is continuous in the discrete

rectangle, for su�ciently small ”, q

1ÆijÆĩj ,1ÆjÆI

d

i1,...,iI · w

i1,...,iI
L

Ø 1
2 for

L = {(vi1
1 , . . . , v

iI
I

) œ F

i1,...,iI fl D : 1 Æ i

j

Æ ĩ

j

, 1 Æ j Æ I}.

To summarize, we pick ” > 0 su�ciently small such that

1. ⁄(F i1,...,iI fl D) Ø (1 ≠ ‘)⁄(F i1,...,iI ); and

2. q

1ÆijÆĩj ,1ÆjÆI

d

i1,...,iI · w

i1,...,iI
L

Ø 1
2 for any discrete rectangle

L = {(vi1
1 , . . . , v

iI
I

) œ F

i1,...,iI fl D : 1 Æ i

j

Æ ĩ

j

, 1 Æ j Æ I}.

Let

d(v) =
Y

]

[

d

i1,...,iI
, if v œ F

i1,...,iI fl D;
0, otherwise.

If it could be approximated by functions in E on (D, B(D), ⁄) in measure, then

there is a sequence d

n

(v) = h(v) · q

JœJ Â

n

J

(v
J

) which converges to d on some

Borel measurable subset C such that ⁄(C) = ⁄(D).

By condition (1) above and Lemma A.2, there exists a discrete rectangle

L = {(vi1
1 , . . . , v

iI
I

)}{1ÆijÆĩj ,1ÆjÆI} such that (vi1
1 , . . . , v

iI
I

) œ F

i1,...,iI fl C for
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1 Æ i

j

Æ ĩ

j

and 1 Æ j Æ I. Since q

1ÆijÆĩj ,j /œJ

w

i1,...,iI
L

h(vi1
1 , . . . , v

iI
I

) = 0 for any

J œ J , we have

ÿ

1ÆijÆĩj ,1ÆjÆI

d

i1,...,iI · w

i1,...,iI
L

= lim
næŒ

ÿ

1ÆijÆĩj ,1ÆjÆI

d

n

(vi1
1 , . . . , v

iI
I

) · w

i1,...,iI
L

= lim
næŒ

ÿ

1ÆijÆĩj ,1ÆjÆI

Q

a

h(vi1
1 , . . . , v

iI
I

) ·
ÿ

JœJ
Â

n

J

(viJ
J

)
R

b

w

i1,...,iI
L

= lim
næŒ

ÿ

1ÆijÆĩj ,1ÆjÆI

Y

]

[

1

w

i1,...,iI
L

h(vi1
1 , . . . , v

iI
I

)
2

·
ÿ

JœJ
Â

n

J

(viJ
J

)
Z

^

\

= lim
næŒ

ÿ

JœJ

ÿ

1ÆijÆĩj ,1ÆjÆI

Ó1

w

i1,...,iI
L

h(vi1
1 , . . . , v

iI
I

)
2

· Â

n

J

(viJ
J

)
Ô

= lim
næŒ

ÿ

JœJ

ÿ

1ÆijÆĩj ,jœJ

Y

_

]

_

[

ÿ

1ÆijÆĩj ,j /œJ

w

i1,...,iI
L

h(vi1
1 , . . . , v

iI
I

)

Z

_

^

_

\

· Â

n

J

(viJ
J

)

= 0,

where v

iJ
J

denotes the vector (vij

j

)
jœJ

. However, q

1ÆijÆĩj ,1ÆjÆI

d

i1,...,iI ·wi1,...,iI
L

Ø

1
2 by condition (2) above, which is a contradiction. As a result, the function d

cannot be approximated by functions in E on (D, B(D), ⁄) in measure. This

completes the proof.
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A.2 Proof of Theorem 2.1

Let h be a function from V to RIKM+1
++ such that h0(v) © 1, and h

ikm

(v) =

r

k

im

(v≠i

)3 for each i œ I, 1 Æ k Æ K and 1 Æ m Æ M .4 Let J be the set of all

nonempty proper subsets of I, and � be the set of all allocation rules. That is,

given any q̃ œ �, q̃ is a measurable function and q

kœK q̃

k(v) = 1 for ⁄-almost

all v œ V . For any coalition J ™ I, denote ⁄

J

= o

jœJ

⁄

j

.

Fix a Bayesian incentive compatible mechanism (q, t). We consider the

allocation rule q̃ œ � such that for any J œ J and ⁄

J

-almost all v

J

œ V

J

,

E (q̃h

j

|v
J

) = E (qh

j

|v
J

) (A.1)

for j = 0 or j = ikm, i œ I, 1 Æ k Æ K and 1 Æ m Æ M .

Definition A.1. We define the following set �
q

:

�
q

= {q̃ œ � : q̃ satisfies Equation (A.1)}.

In what follows, we first provide the following characterization result for the

set �
q

: �
q

is a nonempty, convex and weakly compact set in some Banach space.

3Throughout this paper, IKM is the product of the integers I, K and M . However, the
subscript ikm is not the product of the numbers i, k and m, but refers to the vector (i, k, m)
identifying the function r

k
im.

4Denote R++ as the strictly positive real line. We assume that h is strictly positive
without loss of generality. Indeed, we can work with the function h

Õ from V to R2IKM+1
+

such that h

Õ
0(v) © 1, h

Õ1
ikm(v) = |rk

im(v≠i)| + 1, and h

Õ2
ikm(v) = r

k
im(v≠i) + |rk

im(v≠i)| + 1 for
each i œ I, 1 Æ k Æ K and 1 Æ m Æ M . The function h

Õ is strictly positive and su�ces for
our purpose.
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Therefore, the classical Krein-Milman Theorem (see Royden and Fitzpatrick

(2010, p. 296)) implies that �
q

admits extreme points. We proceed by showing

that all extreme points of the set �
q

are deterministic mechanisms.5 The

existence of a deterministic mechanism that is equivalent in terms of interim

expected allocation probabilities immediately follows. The equivalence in

terms of interim expected utilities and ex ante expected social surplus follows

from Equation (A.4) and the separable payo� assumption. The incentive

compatibility of the deterministic mechanism follows from Equation (A.4) and

the assumption that types are independent.

The following lemma characterizes the set �
q

.

Lemma A.4. �
q

is a nonempty, convex and weakly compact subset.

Proof of Lemma A.4. Clearly, the set �
q

is nonempty and convex. We first

show that �
q

is norm closed in L

⁄

1(V,RK), where L

⁄

1(V,RK) is the L1 space of

all measurable mappings from V to RK under the probability measure ⁄.

Suppose that the sequence {q

m

} ™ �
q

and q

m

æ q0 in L

⁄

1(V,RK). Then by

the Riesz-Fischer Theorem (see Royden and Fitzpatrick (2010, p. 398)), there

5Manelli and Vincent (2007) use a related technique in the screening literature. Manelli
and Vincent (2007) consider revenue maximizing multi-product monopolist and study the
extreme points of the set of feasible mechanisms. They show that, with multiple goods,
extreme points could be stochastic mechanisms. In contrast, we work with the mechanism
design setting, study a particular set of interest �q and show that all extreme points are
deterministic. Apart from this general approach, the technical parts of the proofs are
dramatically di�erent.
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exists a subsequence {q

ms} of {q

m

}, which converges to q0 ⁄-almost everywhere.

Since q

kœK q

k

ms
(v) = 1 for ⁄-almost all v, q

kœK q

k

0(v) = 1 for ⁄-almost all v.

As a result, q0 œ �.

For any k œ K, J œ J , and B(V
J

) ¢
1

o

1ÆjÆI,j /œJ

{V

j

, ÿ}
2

-measurable

bounded mapping p : V æ RK ,

⁄

V

(qk

0h

j

)p⁄(dv) = lim
sæŒ

⁄

V

(qk

ms
h

j

)p⁄(dv) =
⁄

V

(qk

h

j

)p⁄(dv)

for j = 0 or j = ikm. The first equality is due to the dominated convergence

theorem, and the second equality holds since {q

ms} ™ �
q

. Thus, q0 œ �
q

,

which implies that �
q

is norm closed in L

⁄

1(V,RK).

Since �
q

is convex, �
q

is also weakly closed in L

⁄

1(V,RK) by Mazur’s

Theorem (see Royden and Fitzpatrick (2010, p. 292)). As � is weakly compact

in L

⁄

1(V,RK), we have that �
q

is weakly compact in L

⁄

1(V,RK), and hence has

extreme points.

Since �
q

is a nonempty, convex and weakly compact set, �
q

has extreme

points. The following result shows that all extreme points of �
q

are deterministic

allocations.

Proposition A.1. All extreme points of �
q

are deterministic allocations.

Proof of Proposition A.1. Pick an allocation rule q̃ œ �
q

which is not

deterministic, we shall show that q̃ is not an extreme point of �
q

.
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Since q̃ is not deterministic, there is a positive number 0 < ” < 1, a

Borel measurable set D ™ V such that ⁄(D) > 0, and indices j1, j2 such that

” Æ q̃

j1(v), q̃

j2(v) Æ 1≠” for any v œ D. For any J œ J , let D

J

be the projection

of D on r

jœJ

V

j

. For any v

J

œ D

J

, let D≠J

(v
J

) = {v≠J

: (v
J

, v≠J

) œ D}

(abbreviated as D

vJ ).

Consider the following problem on – œ L

⁄

Œ(D,R): for any J œ J and

v

J

œ D

J

,
⁄

D≠J (vJ )
–(v

J

, v≠J

)h(v
J

, v≠J

)⁄≠J

(dv≠J

) = 0. (A.2)

Recall that h is a function taking values in RIKM+1. For simplicity, denote

l0 = IKM + 1. Define the set E as

E = {h(v) ·
ÿ

JœJ
Â

J

(v
J

) : Â

J

œ L

⁄

Œ(D
J

,Rl0), ’J œ J }.

Then a bounded measurable function – in L

⁄

Œ(D,R) is a solution to Prob-

lem (A.2) if and only if
s

D

–Ïd⁄ = 0 for any Ï œ E . Lemma A.3 shows that E

is not dense in L

⁄

1(D,R). By Corollary 5.108 in Aliprantis and Border (2006),

Problem (A.2) has a nontrivial bounded solution –.

Without loss of generality, we assume that |–| Æ ”. We extend the domain

of – to V by letting –(v) = 0 when v /œ D. For every v œ V , define

q̂(v) = q̃(v) + –(v) (e
j1 ≠ e

j2) ;

q(v) = q̃(v) + –(v) (e
j2 ≠ e

j1) .
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Then q

kœK q̂

k(v) = q

kœK q

k(v) = q

kœK q̃

k(v) = 1. If v œ D, then 0 Æ

q̂

j1(v), q

j2(v) Æ 1 as ” Æ q̃

j1(v), q̃

j2(v) Æ 1 ≠ ”, and q̂

j(v) = q

j(v) = q̃

j(v) for

j ”= j1, j2. If v /œ D, then q̂(v) = q(v) = q̃(v) as –(v) = 0. Thus, q̂, q œ �.

For any J œ J and B(V
J

) ¢
1

o

1ÆjÆI,j /œJ

{V

j

, ÿ}
2

-bounded measurable

mapping p œ L

⁄

Œ(V,RK),

⁄

V

(q̂ · p)h⁄(dv) =
⁄

V

(q̃ · p)h⁄(dv) +
⁄

V

–(v) ((e
j1 ≠ e

j2) · p(v)) h(v)⁄(dv).

Since

⁄

V

–(v) ((e
j1 ≠ e

j2) · p(v)) h(v)⁄(dv)

=
⁄

VJ

⁄

V≠J

–(v) ((e
j1 ≠ e

j2) · p(v)) h(v)⁄≠J

(dv≠J

)⁄
J

(dv

J

)

=
⁄

VJ

(e
j1 ≠ e

j2) · p(v)
⁄

V≠J

–(v)h(v)⁄≠J

(dv≠J

)⁄
J

(dv

J

)

= 0,

we have that
⁄

V

(q̂ · p)h⁄(dv) =
⁄

V

(q̃ · p)h⁄(dv),

which implies that q̂ œ �
q

. Similarly, one can show that q œ �
q

. Since q̂ and q

are distinct and q̃ = 1
2(q̂ + q), q̃ is not an extreme point of �

q

.

Now we are ready to prove our main result.

Proof of Theorem 2.1. Fix a mechanism (q, t). The proof is then divided

into two steps. In the first step, we obtain a deterministic allocation rule q̃
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which has the same interim expected allocation probability with q. In the

second step, we verify that (q̃, t) and (q, t) deliver the same interim expected

utility for each agent.

By Proposition A.1, every extreme point of �
q

is a deterministic allocation

rule. Therefore, we can fix a measurable allocation rule q̃ such that

1. q̃

k (v) = 0 or 1 for ⁄-almost all v œ V and 1 Æ k Æ K;

2. for any agent i and ⁄

i

-almost all v

i

œ V

i

,

⁄

V≠i

q̃(v
i

, v≠i

)⁄≠i

(dv≠i

) =
⁄

V≠i

q(v
i

, v≠i

)⁄≠i

(dv≠i

), (A.3)

and

⁄

V≠i

q̃(v
i

, v≠i

)h
jkm

(v
i

, v≠i

)⁄≠i

(dv≠i

) =
⁄

V≠i

q(v
i

, v≠i

)h
jkm

(v
i

, v≠i

)⁄≠i

(dv≠i

)

(A.4)

for any j œ I, 1 Æ k Æ K and 1 Æ m Æ M .

Let D

i

be the subset of V

i

such that Equation (A.3) or (A.4) does not hold.

Then ⁄

i

(D
i

) = 0. Define a new allocation rule q̂ such that

q̂(v) =
Y

]

[

q(v), if v

i

œ D

i

for some i œ I;
q̃(v), otherwise.

Then q̂

k (v) = 0 or 1 for ⁄-almost all v œ V and 1 Æ k Æ K.
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Fix agent i and v

i

œ V

i

. If v

i

œ D

i

, then q̂(v
i

, v≠i

) = q(v
i

, v≠i

) and
s

V≠i
q̂(v

i

, v≠i

)⁄≠i

(dv≠i

) =
s

V≠i
q(v

i

, v≠i

)⁄≠i

(dv≠i

). If v

i

/œ D

i

, then

⁄

V≠i

q̂(v
i

, v≠i

)⁄≠i

(dv≠i

) =
⁄

D≠i

q̂(v
i

, v≠i

)⁄≠i

(dv≠i

) +
⁄

V≠i\D≠i

q̂(v
i

, v≠i

)⁄≠i

(dv≠i

)

=
⁄

D≠i

q(v
i

, v≠i

)⁄≠i

(dv≠i

) +
⁄

V≠i\D≠i

q̃(v
i

, v≠i

)⁄≠i

(dv≠i

)

= 0 +
⁄

V≠i

q̃(v
i

, v≠i

)⁄≠i

(dv≠i

)

=
⁄

V≠i

q(v
i

, v≠i

)⁄≠i

(dv≠i

),

where D≠i

= fi
jœI,j ”=i

1

D

j

◊ r

sœI,s ”=i,j

V

s

2

. The first equality holds by dividing

V≠i

as D≠i

and V≠i

\ D≠i

. The second equality is due to the definition of q̂.

The third equality holds since ⁄≠i

(D≠i

) = 0. The last equality is due to the

condition that v

i

/œ D

i

. As a result, Equation (A.3) holds for q̂ and every

v

i

œ V

i

. Similarly, one can check that Equation (A.4) also holds for q̂ and every

v

i

œ V

i

.

Suppose that the mechanism (q̂, t) is adopted. By Equation (A.3), the

allocation rules q and q̂ induce the same interim expected allocation. We need

to check that they induce the same interim expected utility. If agent i observes
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the state v

i

but reports v

Õ
i

, then his payo� is

⁄

V≠i

S

U

ÿ

1ÆkÆK

u

k

i

(v
i

, v≠i

)q̂k(vÕ
i

, v≠i

) ≠ t

i

(vÕ
i

, v≠i

)
T

V

⁄≠i

(dv≠i

)

=
ÿ

1ÆkÆK

ÿ

1ÆmÆM

⁄

V≠i

w

k

im

(v
i

)rk

im

(v≠i

)q̂k(vÕ
i

, v≠i

)⁄≠i

(dv≠i

) ≠ T

i

(vÕ
i

)

=
ÿ

1ÆkÆK

ÿ

1ÆmÆM

w

k

im

(v
i

)
⁄

V≠i

r

k

im

(v≠i

)q̂k(vÕ
i

, v≠i

)⁄≠i

(dv≠i

) ≠ T

i

(vÕ
i

)

=
ÿ

1ÆkÆK

ÿ

1ÆmÆM

w

k

im

(v
i

)
⁄

V≠i

h

ikm

(v)q̂k(vÕ
i

, v≠i

)⁄≠i

(dv≠i

) ≠ T

i

(vÕ
i

)

=
ÿ

1ÆkÆK

ÿ

1ÆmÆM

w

k

im

(v
i

)
⁄

V≠i

h

ikm

(v)qk(vÕ
i

, v≠i

)⁄≠i

(dv≠i

) ≠ T

i

(vÕ
i

)

=
ÿ

1ÆkÆK

ÿ

1ÆmÆM

w

k

im

(v
i

)
⁄

V≠i

r

k

im

(v≠i

)qk(vÕ
i

, v≠i

)⁄≠i

(dv≠i

) ≠ T

i

(vÕ
i

)

=
⁄

V≠i

S

U

ÿ

1ÆkÆK

u

k

i

(v
i

, v≠i

)qk(vÕ
i

, v≠i

) ≠ t

i

(vÕ
i

, v≠i

)
T

V

⁄≠i

(dv≠i

).

The first and second equalities follow from the separable payo� assumption.

The fourth equality follows from Equation (A.4) and also the assumption that

types are independent. All other equalities are simple algebras. Thus, these

two mechanisms (q, t) and (q̂, t) deliver the same interim expected utility for

every agent. If (q, t) is Bayesian incentive compatible, then (q̂, t) is clearly

Bayesian incentive compatible. This completes the proof.

113


	Revisiting the Foundations of Dominant-Strategy Mechanisms
	Introduction
	Related literature

	Preliminaries
	Notation
	Types
	Mechanisms
	The mechanism designer as a maxmin decision maker

	Motivating examples
	Setup
	Standard bilateral trade
	Bilateral trade with ex ante unidentified traders

	Results
	Uniform shortest-path tree
	Foundations of dominant-strategy mechanisms
	No foundations of dominant-strategy mechanisms

	Applications
	Linear utilities and one-dimensional payoff types
	Multi-unit auction with capacity-constrained bidders
	Auction with type-dependent outside option

	Discussion
	Foundations of ex post incentive-compatible mechanisms
	On the notion of the maxmin foundation


	Equivalence of Stochastic and Deterministic Mechanisms
	Introduction
	Preliminaries
	Notation
	Mechanism
	Mechanism equivalence

	Examples
	An illustration of equivalent deterministic mechanism
	Self purification and mutual purification

	Results
	Discussions
	Benefit of randomness revisited
	An implementation perspective
	Assumptions

	Conclusion

	Efficient Dynamic Mechanisms with Interdependent Valuations
	Introduction
	Model
	Setup
	Efficiency

	Mechanism
	Conclusion

	Bibliography
	Appendices
	Proofs of Chapter Two
	Technical lemmas
	Proof of Theorem 2.1


