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Executive Summary

During the post-World War II period automobiles became more widespread and
with large-scale urban areas commuting trend accelerated and people became car-
dependent. This mass use of motor vehicles led to some unforeseen consequences in
terms of traffic congestion, pollution, reduced safety and climate change. Growth
in the global transportation is likely to further exacerbate current problems,
especially in densely populated urban areas. We need disruptive ideas and
technologies in transportation, which could transform current mobility patterns.
In this dissertation we look at the feasibility of assembling a fleet of autonomous
vehicles for a mobility on demand service in order to ease congestion, increase
safety, and reduce environmental impacts. We consider a new mode of urban
transportation, which we refer as an Autonomous Mobility on Demand (AMOD)
system. AMOD consists of a fleet of light-weight electric and self-driving vehicles,
which are available through an e-hailing service application. We focus on the
issues related to the fleet management of an autonomous mobility on demand
system.

The main contribution of this dissertation is development of framework and
related algorithms to demonstrate the role of autonomy in Mobility on Demand
systems and its impact in terms of feasibility and efficiency through modeling,
simulation, algorithm development and experimental demonstration. The pro-
posed methodologies are applicable to large-scale systems in different simulations’
setup.

Our methodology comprises three design and management levels differentiated
by the timeframe:

(i) At the planning, or strategic, level we determine the size of operating area,
estimated demand, and the number and locations of stations (depots), where
we park the vehicles.

(ii) At the tactical, or long-term operational, level we determine the fleet size
(number of vehicles which are required to run the system), initial locations
of the vehicles, static rebalancing, and static pricing.

(iii) At the operational level we decide on short-term operational decisions,
which include vehicle to customer assignment, vehicle routing, dynamic
rebalancing, and dynamic pricing.
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The proposed methodologies are applicable to case-studies of large-scale AMOD
systems in Singapore. Our approach is simulation-based and we make use of
SimMobility—an agent-based simulation platform.

In Chapter 1, we present trends in mobility on demand services and different
operation strategies for managing fleets of shared-mobility systems. Next, we
state what is the contribution of this dissertation and provide outline of the
thesis.

In Chapter 2, we provide detailed description of our development which is a fleet
management system for an autonomous mobility on demand service (AMOD
Controller). We describe our methodology and systematically outline system
architecture and functional organization of AMOD Controller. We evaluate dif-
ferent modeling approaches of analytical and simulation traffic models and justify
choosing SimMobility over other available traffic simulators. Finally, we describe
communication infrastructure between AMOD Controller and SimMobility.

In Chapter 3, we focus on the strategic aspect of managing AMOD systems—
models for selecting the number and location of new facilities. By facilities we
understand stations, or distribution centers, for autonomous vehicles. First,
we provide classification of facility location problems and related work in the
field. Next, we formulate four facility location models for an AMOD system:
(i) distribution of stations based on the location factor rating, (ii) one station for
the entire system, (iii) stations based on the set covering problem, and (iv) stations
based on the maximal coverage problem. In order to assess the merits of our
methods we present a simulation study based on the demand for private vehicle
trips for the Central Business District in Singapore. We conclude that location
of distribution centers plays an important role in the overall performance of the
AMOD system. Finally, we acknowledge limitation of our models and provide
future directions.

In Chapter 4, we formulate the fleet assignment and routing problem. Given a
distribution (location) and capacity of available vehicles, the fleet assignment
problem faced by the operator is to determine which vehicle should pick up which
customer. The fleet routing is to determine the route for each assigned vehicle.
We first give introduction to the assignment problem by providing definitions,
terminologies and related work. Next, we describe how the assignment is imple-
mented within AMOD Controller. We formulate two types of assignment: (i) for
customers who are not willing to share a ride (called single-riders), and (ii) for
customers who are willing to share a ride (multiple-riders). We extend the frame-
work to demand management with price incentives and present results comparing
different assignment algorithms. Our simulation results indicate that the use of
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optimization-based methods instead of simple greedy approaches substantially
improves the performance of AMOD systems. Finally, we acknowledge limitation
of our work and state future directions.

In Chaper 5, we describe a core-component of this dissertation, which is empty
vehicle rebalancing. The rebalancing models aim in finding optimal control
policies for realigning demand and supply. First, we provide terminologies,
definitions, and related work in the filed of empty vehicle rebalancing. Next,
we provide explanation how the AMOD Controller handles rebalancing. We
propose static and dynamic formulation of the rebalancing problem. Static
rebalancing solves for (i) the total number of vehicles required to operate the
system, and (ii) rebalancing patterns between different locations for the course
of the entire day. Dynamic rebalancing solves rebalancing problem while the
system is in operation. We demonstrate the value of rebalancing policies in the
simulation-based case-studies in Singapore. We conclude that the ability to meet
the fluctuating demand for service is a crucial factor in the success of AMOD
system.

In Chapter 6, we present a large-scale implementation of the AMOD system
in the Central Business District in Singapore. We present two alternatives of
introducing AMOD service in Singapore: (i) case study of the central business
district in Singapore, and (ii) case study of the extended central business district
in Singapore. We describe simulation setup and results for both case studies.
Our results suggest that introducing AMOD service has a great potential to serve
for future urban mobility.

Finally, in Chapter 7, we present conclusions of the thesis, limitations and
directions for future work.
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Chapter 1

Introduction

During the post-World War II period automobiles became more widespread. With large-scale
suburban areas commuting trend accelerated and people became car-dependent [Marczuk
et al., 2016]. This mass use of motor vehicles led to some unforeseen consequences in terms
of traffic congestion, pollution, safety and climate change, which proves that privately-owned
motor vehicles are not a sustainable solution to serve for the future of personal urban mobility.
Due to the congestion, most of the vehicles used in urban areas are heavily underutilized, i.e.,
an average private vehicle is parked for around 22 hours daily and its driving speed is usually
five to ten times slower than the design speed [Pavone, 2015]. As one reaction to this fact,
in Singapore, extra fees have been introduced for car ownership (Certificate of Entitlement
COE ), road usage (Electronic Road Pricing ERP) and car park usage. However, growing
first- and middle-class, who still can afford to acquire private vehicles [Singapore Department
of Statistics, 2016] will further increase urban traffic problems, which cannot be solved by
fees alone. At this point, one emerging business model might be seen in selling mobility
instead of cars by providing vehicles to large-scale car-sharing systems [Firnkorn and Muller,
2011]. This model has already spurred a growing interest in mobility on demand (MOD)
systems—particularly a one-way vehicle sharing—as a sustainable alternative to privately
owned vehicles. The challenge is therefore, to ensure flexibility of private vehicles while
removing the need of car ownership. One emerging trend, which can help to tackle this
challenge, is development of autonomous vehicles (AVs). Due to extensive technological
developments in the field of autonomous vehicles [Google, 2016, Tesla, 2016, Pendleton et al.,
2015], it is gaining more ground to deploy AVs for mobility services.
This dissertation is set to assess and demonstrate the role of autonomy in mobility on demand
systems and its impact in terms of feasibility and efficiency through modeling, simulation,
algorithm development and experimental demonstration.

1.1 Trends in Transportation

Traffic deaths are at fourth position among the leading causes of death for all age groups [Cor-
win et al., 2015]. A vast majority of the car accidents involves alcohol or human error [Hars,
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Chapter 1. Introduction 2

2016, Frazzoli, 2014]. By the end of this century, global warming could increase the world’s
mean temperature by 4 degrees Celsius [Bank, 2012]. The effects would be dramatic: unprece-
dented heat waves, severe drought, and major floods in many regions, with serious impacts
on human systems, ecosystems, and associated services. Road transport is responsible for
about 5 billion tonnes of CO2 annually (data: 2008) which is almost 20% of total global
CO2 emissions [Hars, 2016]. Growth in global transportation [Bank, 2012] is likely to further
exacerbate current problems such as car accidents, pollution, road congestion, and parking
availability. This proves that the current transportation system is not a sustainable solution
for mobility, especially in densely populated urban areas. We need a disruptive ideas and
technology in transportation, which could transform current patterns of mobility. Shape
of the future evolution of transportation is driven by a series of industry-changing forces
and mega-trends [Corwin et al., 2015]: (i) Battery and electric fuel-cell vehicles offer higher
energy efficiency at lower emission levels. (ii) Lightweight materials enable automakers to
reduce the weight of vehicles without reducing passengers safety. (iii) Vehicles outfitted
with vehicle-to-vehicle, V2V, and vehicle-to-infrastructure, V2I, communications can gain
awareness of where they are in relation to other vehicles and potential hazards so they can
avoid accidents. (iv) At the same time, among young adults, the model of personal mobility
is inclined toward consumption based on pay-per-use rather than upfront purchase of a
capital asset. For them, owning a vehicle is no longer a status symbol. This new ecosystem
of mobility promises sustainable and affordable personal mobility. Further, there are four
different personal mobility futures emerging from two critical trends: vehicle control (driver
versus autonomous) and vehicle ownership (private versus shared) [Corwin et al., 2015].
Based on [Corwin et al., 2015], the most conservative vision is that private and manually
driven vehicles remain the norm due to the convenience, security and privacy that come
with owning vehicles. The second vision anticipates continued growth of shared access to
vehicles. As the cost per kilometer decreases, some people start to see shared-use mobility
as a more economical, convenient, and sustainable way to get around, particularly for short
point-to-point movements. The third possible trend assumes that autonomous vehicles prove
to be viable, safe, convenient, and economical. However, most drivers still prefer owning
their own vehicles, but with driverless functionality. The fourth vision sees a convergence of
both the autonomous and vehicle-sharing trends. In this dissertation, we believe that the
current state of mobility will transform in the direction of shared mobility, catalyzing the
adoption of autonomous drive. This new ecosystem of mobility promises sustainable and
affordable personal mobility. However, aspirations for its contributions in solving large-scale
transportation problems such as pollution, road congestion and land use are still to be
clarified. Therefore, this dissertation attempts to answer the question: what would change if
one day there is an autonomous mobility on demand system?



Chapter 1. Introduction 3

1.2 Background for Mobility on Demand Services

Extensive usage of private vehicles has led to increased traffic congestion, pollution, safety
issues and climate change. The challenge is therefore, to ensure flexibility of private vehicles
while removing the need of car ownership. An alternative can be seen in shared-use mobility
(or mobility on demand) systems. Mobility on demand can be broadly understood as a
service to meet transportation needs by offering vehicles (cars, bikes, scooters, etc.) for
some amount of time whenever they are needed. While, MOD was a niche market a decade
ago, today the phenomenon has entered the mainstream, with a broad array of companies
investing in it [Le Vine and Polak, 2015]. In this shared mobility, you do not have to be
an owner of a physical item (vehicles or bicycles) to use it. The items can be accessed by
multiple users via information and communications technology (ICT) on a pay-per-use basis.

The economic and social benefits of shared mobility are significant and wide-ranging, in-
corporating benefits of both, private and public transport. It allows door-to-door service
with a flexibility of personal vehicles without the cost of owning one. Due to smaller fleet
size and higher utilization rates [Marczuk et al., 2015] the MOD services lower static land
consumption (requires smaller number of parking lots).

Many have also suggested that shared transportation can help reduce emissions as well as
car ownership rates and household transportation costs, i.e., the literature on changes in
vehicle ownership associated with car-sharing shows that between 9 and 13 cars are sold or
not purchased for each shared car [Martin et al., 2010]. At the same time, however, more
independent research has to be done to investigate the long-term changes associated with
the shared-use mobility.

In the literature there are five (5) types of mobility on demand systems: (i) bike-sharing,
(ii) car-sharing, (iii) taxi, (iv) ride-sourcing, and (v) autonomous mobility on demand, which
are presented in Subsections 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.5, respectively. Example of shared
systems are shown in Figure 1.1.

(a) Bike-sharing in New York. (b) Taxi in Singapore. (c) ZipCar One-way in Boston.

Figure 1.1: Examples of different shared mobility systems.
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1.2.1 Bike-sharing

Bike-sharing (BS or bike-sharing system, BSS) is a service providing short-term bicycle rental
and is the oldest and one of the most recognized form of mobility-on-demand systems.

The first public-use bicycles known as White Bicycles were introduced in Amsterdam in
1965 [Shaheen and Guzman, 2011], followed by Yellow Bikes in French city of La Rochelle
in 1974 [Shaheen et al., 2010]. Since then, experiences have multiplied, and models have
become more complex. Number of bike-sharing systems worldwide increased from 13 in
2004 to 855 systems a decade later [Fishman, 2015], as illustrated in Figure 1.2. As of
January 2016, the largest number of BSSs was in China accounting for 296 systems [Paul and
Russell, 2016], while the world’s largest bike-sharing is in the city of Hangzhou, China, with
around 78,000 bicycles in their program [Paul and Russell, 2016]. World’s fleet of vehicles at
the end of 2015 was 1,270,000 bicycles, while China’s fleet accounted for 1,036,400 of the
total number (over 80 % of the total population of the public bicycles). Other examples of
massive-scale programs of public bicycles are the city of Taiyuan (China), Paris (France),
Shanghai (China), and London (United Kingdom) [Paul and Russell, 2016].

4 5 9 11 17 24 68
131

220

347
457

549

703

855

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Figure 1.2: Growth of bike-sharing systems worldwide (x-axis represents years, y-axis
represents the number of operating bike-sharing systems worldwide).

As of today, we recognize four (4) generations of BS schemes:

1. The first generation BSS, called white bikes (or free bikes), is a system in which bicycles
were left unlocked in the city for everyone to use it freely. In this type of unregulated
program the bicycles were very often stolen or damaged and the initiatives failed.

2. The second generation BSS is a response to the failure of the first generation system
and known as a coin-deposit system. In this system a small deposit is needed to unlock
a bicycle from a docking station. The second generation BSS consists of distinct design
bicycles and docking stations, however the users are anonymous, which led to lots of
thefts.

3. The third generation BSS is the information technology (IT) based system. The
systems are membership-based which prevents thefts, and incorporate advanced IT
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for bicycle reservations, pick-up, drop-off, and tracking. By incorporating advanced
technology the third generation systems gained a worldwide popularity [Shaheen et al.,
2010].

4. The fourth generation BSSs include all the main components seen in third-generation
systems but they are seamlessly integrated with public transportation and other
alternative modes. Its stations are conveniently located near transit hubs and a single
payment smartcard creates access to all available transportation options.

Some of the major benefits of bike-sharing schemes are: (i) BSSs increase mobility options
while decreasing short distance travel times. The literature consistently finds that convenience
is the major factor motivating people to sign up for BSS as it eliminates the first and last mile
problem and therefore supports multimodal transport connections. (ii) Bike share systems
are great for the environment as they produce no emissions and they reduce traffic congestion
(iii) Bike sharing provides an easy option for people to foster an active lifestyle by diverting
a greater share of trips to bicycling, which may be beneficial to our health. (iv) Riding a
bike can be just a fun way to see the city in a unique and personal way. (v) Using public
bicycle may contribute to individual financial savings as very often public bicycles are free of
charge. (vi) Current bike-sharing schemes have a potential to be integrated with electric bikes
(e-bikes), GPS (global positioning system), dockless systems and public transport [Fishman,
2015]. Some researchers suggest that shared e-bikes could provide a higher level of service
compared to existing BSSs with benefits such as the ability to travel longer distances and
over hills with less fatigue and sweat [Ji et al., 2014]. Implicit in many of the aforementioned
benefits is the assumption that a significant proportion of users are transferring from a single
occupant car use to a public bicycle. Yet, a number of papers have reported that the BSS
programs show little impact on reducing car use and it is quite common for the majority
of bike-share trips to be substituting from sustainable modes rather than the car [Shaheen
et al., 2010, Fishman et al., 2013, Fishman, 2015]. On the contrary, research on Hangzhou’s
bike-sharing program suggests that auto ownership may not discourage bike-sharing [Shaheen
and Guzman, 2011] as its members exhibited a higher rate of auto ownership (22 %) than
non-members (11 %).

Despite these considerable advantages, there are several factors which discourage people
from using BSS and these includes (but may not be limited to): (i) Limited access to the
bicycle stations is one of the major barriers to bike-sharing [Fishman, 2015, Fishman et al.,
2014]. (ii) Another critical barrier to BS is a lack of immediate access to helmets in countries
in which they are mandatory [Fishman et al., 2014]. (iii) Perceived danger from motorized
traffic is another key impediment to bike-sharing. Many riders also feel uncomfortable about
riding an unfamiliar bicycle. (iv) Some bikers, who are scared of cars or (and) new to the
city, go dangerously slow or make careless decisions. They put themselves and everyone
else on the road at risk. (v) Weather conditions are a permanent constraint to cycling, but
only under extreme conditions (pouring rain or blistering heat) [Fradea and Ribeiro, 2014].
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(vi) Bicycle trips are affected by the differences of slopes between origin and destination.
Steep slopes can make the ascents difficult for cyclists and the descents can lead to fast
speeds which might be unsafe. (vii) Another barrier for the potential users is the requirement
of credit cards to sign up, which—mostly poor people—do not have. Analysis of a recent
member survey by Washington, D.C.’s Capital Bike-sharing revealed that half of survey
respondents reported an annual income of $100,000 or more [Parzen et al., 2016]. The
story further underscored criticism that bike-sharing has largely failed to reach low-income
residents [Fishman, 2015, Parzen et al., 2016].

BSSs are considered as a cheap and reliable public mobility options and that is why they
do face financial challenges. The questions remain on how to profitably set up and run
the system? To give an answer a cost-benefit analysis should be evaluated. An efficient,
reliable and cost-effective bike-sharing system is assessed based on two critical performance
metrics [Gauthier et al., 2014]: (i) average number of daily uses per public bike (ideally,
four to eight daily uses per bike), and (ii) average daily trips per resident (ideally, one daily
trip per twenty to forty residents). These two metrics have an inverse relationship, i.e.,
many systems have a high average daily use per bike because they have too few bicycles in
circulation, and this means that market penetration is low. Therefore, the planning of a BSS
should be carefully calibrated to ensure performance is within the optimum range for both
metrics.

The lesson learned from bike-sharing operators is go big or go home. Most of BSS failures
were due to the small number of bikes and stations, as well as the long distances between
stations and limited operating hours [Gauthier et al., 2014].

1.2.2 Car-sharing

Car-sharing (CS, or car-sharing system, CSS) is defined as the organized collective use of
passenger cars. It provides members access to a fleet of shared vehicles for short-term use
and is developed as a sustainable solution at affordable cost to serve for personal mobility in
densely populated cities [Barrios and Godier, 2014, Fan, 2013]. Users of car-sharing system
gain benefits of having a private vehicle without the costs of ownership, as for many people
living in urban areas, the cost of a vehicle ownership cannot be easily justified because they
simply do not drive enough.

Car-sharing pioneered in Switzerland in 1987, followed by Germany in 1988, but it was only
in the last decade that the concept has evolved into a mobility solution (Figure 1.3), which
is a key perspective for the automotive revolution. The car-sharing numbers presented in
Figure 1.3 demonstrate a steady growth. With development of information technology (IT),
idea of sharing vehicles is gaining more ground with almost 100,000 car-sharing vehicles
available worldwide in 2014. This disruptive trend of transforming the auto industry from
selling cars to selling mobility, accelerates rise of new technologies and changes consumer
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preferences. However, compared to car rental, total fleet size and revenues for car-sharing
still remain relatively small, and up to this day, car-sharing services do not replace vehicle
ownership, rather they substitute for taxis and car rentals [Brown, 2015].
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Figure 1.3: Number of members (left) and vehicles (right) in car-sharing worldwide,
2006-2014, (data based on [Le Vine et al., 2014]).

Objective of car-sharing systems is to offer drivers a sustainable transportation mode at the
efficiency of public transportation and flexibility of a private automobile. Four models of the
car-sharing operation have been established:

(i) Traditional station-based (round-trip) car-sharing, which restricts vehicles to be picked
up and returned to the same location (station). This type of car-sharing is mainly
operated by car rental companies.

(ii) One-way or point-to-point car-sharing is another form of station-based system, but
it allows customers to pick up a vehicle at one location and drop it off at another.
Usually the pick up and drop off locations and times have to be indicated in advance,
so that the operator can manage the vehicles.

(iii) Free-floating car-sharing, which allows pick up and drop off a vehicle at any location
within an operating area. They usually operate without fixed stations and do not
require a booking process in advance. It offers a flexibility of hiring a vehicle but at
a cost of higher uncertainty of getting one when in need. Free-floating car-sharing
services are primarily offered by car-manufacturers.

(iv) Peer-to-peer (or person-to-person) car-sharing, which allows car owners to monetize the
excess capacity of their vehicles by enrolling them in car-sharing programs. Existing
car owners make their vehicles available for others to rent for short periods of time.

Today, most CS operators use traditional station-based system offering round-trip rental [Pri-
vat, 2015]. Traditional business model, which requires cars to be collected and returned at
the same location is easier to managed by the operator. The drawback is that it becomes
uneconomical for trips that require lengthy stays at the destination, because the user must
also pay for the time the car is parked. For this reason point-to-point services can quickly
attract three to four times the number of members of a traditional round-trip service [Brown,
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2015]. But the cost of point-to-point systems is much higher since the systems requires bigger
fleet size to start with [Brown, 2015] and is more challenging from the operational perspective
due to rebalancing issues. An advantage of station-based, return and point-to-point services,
is guaranteed parking lot, which is not guaranteed in any free-floating model.

Examples of the most recognized car-sharing programs: (i) Car2Go (a subsidiary of Daimler
AG) operates free-floating systems in 30 cities with over a million members worldwide [Gibbs,
2016, Car2Go, 2016]. It is the largest car-sharing company worldwide. (ii) ZipCar (owned
by Avis Budget Group) is the largest car-sharing company in the USA, which operates a
station-based (return and point-to-point) car-sharing [ZipCar, 2016]. (iii) Autolib’ is an
electric car-sharing service which operates in Paris, Bordeaux and Lyon in France. As of
3 July 2016, Autolib’ maintains a fleet of 4,000 all-electric cars and almost 6,000 charging
points [Geron, 2016]. (iv) DriveNow (a joint venture between BMW and Sixt) and ReachNow
(owned by BMW). In most markets, DriveNow vehicles can park the cars anywhere on
the street with a special permit from the local municipality [DriveNow, 2016, ReachNow,
2016]. (v) Unite launched by Audi, which allows up to four people to literally share
ownership of an Audi for up to two years. Group members use a smartphone app to
schedule who gets the vehicle when, and a beacon, which electronically tracks personal usage
(everyone’s monthly payment is adjusted based on the usage) [Audi Unite, 2016]. (vi) Turo
(formerly RelayRides) is a company that operates a peer-to-peer carsharing. (vii) Smove is a
point-to-point car-sharing service in Singapore. Smove allows to book its cars to run trips
for UBER [Smove, 2016]. and many others.

Car-sharing, similarly to other on-demand services, is helping to create more diversified and
sustainable transport system. As presented in Figure 1.4, 23% of private vehicle expenses are
variable, while 77% are fixed charges. This price structure forces a more direct consideration
of how much each trip costs. CS therefore, gives consumers a practical alternative to owning
a personal vehicle. Users of car-sharing pay minimal fixed costs but almost 5 times higher
variable costs [Litman, 2015], which forces a more direct consideration of how much each
trip costs. Availability of CS have been found to be a deterring factor for a future vehicle
purchase [Litman, 2015, Duncan, 2011, Jorge and Correia, 2013]. Research suggests that
car-sharing decreases discretionary trips and lead to more efficient travel patterns, i.e.,
households that join car-sharing programs typically reduce their vehicle use 40-60% [Litman,
2015]. For the above reasons, CS can be seen as cost effective replacement of owning a
vehicle with neither acquisition nor maintenance costs.

Car-sharing can make living in urban areas more attractive [Duncan, 2011]. It is found to be
a good alternative for short trips within the city as the vehicles are located in the city and
priced by minute or hour. They are easy to check in and out. Conventional vehicle rentals
may be cheaper per mile for longer trips, but much more expensive for shorter trips and not
that easy to check in and out. Car-sharing usually offers a choice of vehicle types. Users
choose the vehicle type that best meets their needs for a particular trip rather than upfront
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Figure 1.4: Price structure for vehicle ownership (based on [Litman, 2015]).

purchase of an over-sized vehicle to meet occasional demand. CS may also release users from
the burden of vehicle maintenance and parking. One of the major concerns for substituting
privately owned vehicle with a CS subscription is limited reliability of CSSs. People have
proven little preference for a cooperative organization structure as they do not like to be
constrained by the availability of the vehicles, which may lesser their flexibility [Litman,
2015]. Another barrier for some people to subscribe to CS is that the CS vehicle does not
carry forward a status symbol associated with owning a car. Car-sharing is found to be the
most suitable for higher density urban neighborhoods with good walking, cycling and public
transit services [Litman, 2015] and it may fail in low density areas.

The trend is clear that a growing number of customers are relying on sharing services such
as car-sharing, bike-sharing or ride-sourcing, rather than purchasing cars [Kuhnimhof et al.,
2012, Poultney, 2015]. Research by Ford suggests that in the U.K. alone the car-sharing
sector will grow by 23 per cent in the next 10 years [Poultney, 2015]. [Privat, 2015] estimates
that car-sharing will attract 26 millions users worldwide by 2020. According to a report
from Navigant Research, global car-sharing services revenue is expected to grow from $1.1
billion in 2015 to $6.5 billion in 2024 [Lorenz, 2016]. Car-sharing can create up to $1.5
trillion in additional revenue potential for automakers in 2030, compared with about $5.2
trillion from traditional business model, which accounts for sales and aftermarket products
and services [Gao et al., 2016].

Summing up, the biggest challenge for CS operators is providing unlimited access to the
vehicles to gain reliability of the service.

1.2.3 Taxi services

Taxicab service (or taxi service) is a point-to-point transport system, very often considered
as part of the public transportation within cities, that provides flexible and convenient way
of travelling [Rodriguez-Valencia, 2014]. A taxi can be defined as a vehicle for hire provided
with a driver. Taxicabs are privately owned and operated by independent contractors within
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regulated environments [Rodriguez-Valencia, 2014].

Taxi was introduced in Europe in the early 17-th century and is playing a major role in
urban transportation since then [Paraboschi et al., 2015]. In most cities, the taxicab industry
was brought under municipal or state regulation at the beginning of XX-century [Teal and
Berglund, 1987]. Those regulations, up to this day, are similar worldwide and commonly
consider three factors: (i) number of taxicab in the city, (ii) minimum and maximum rates,
and (iii) service standards [Teal and Berglund, 1987]. [Rayle et al., 2014] suggested that low
barriers to entry in the taxi industry tended to enable over-competition, leading to aggressive
and unsafe driver behavior, poor vehicle maintenance, and congestion. Secondly, lack of
information on price or service quality before choosing a vehicle was a problem in street-hail
and cab-stand markets. However, with the appearance of information and communications
technologies (ICT), hailing a for-hire vehicle no longer requires standing on a street corner or
placing a telephone call, and rating systems might resolve the lack-of-information problem.
Despite the technology potential, the taxi system business model, the hailing experience,
and the fare system have remained the same [Paraboschi et al., 2015].

There are different ways in which people can order a taxi and there are different possible
combinations in which a driver can look for a new passenger. Most places allow a taxi to
be hailed on the the road as it is approaching. Another option is to be picked up from a
taxi stand. Passengers also commonly call a central dispatch office to book taxi. The newest
method to hire is through E-hailing apps [Paraboschi et al., 2015].

Taxis fill a critical gap by providing transportation when driving or other public transit
modes are not possible [Rayle et al., 2014]. As mentioned before, they are relatively
convenient. Unlike public transportation, taxi services are very flexible and can be customized
according to the passenger’s need. Taxis are commonly used for airport access and during
the nighttime [Rodriguez-Valencia, 2014]. They provide 24 hour service 7 days a week.
Thanks to the regulations imposed on the taxi companies, they employ professional and well
experienced drivers, which can provide a sense of safety and reliability. The same applies for
the vehicles. Although there are thousands of taxi companies all over the world, managing
millions of taxicabs altogether, the problem of online taxi dispatching has not been explored
thoroughly [Maciejewski and Nagel, 2014]. So much of freedom in getting a cab results in
low efficiency of the service and a massive amount of taxicabs on the streets, about half of
which wanders in search of new passengers [Paraboschi et al., 2015]. Aligning supply with
the demand is the most challenging task for the taxi operators. This topic is studied in
details in Chapter 5.

1.2.4 Ride-sourcing Services

Ride-sourcing services (RSS or ride-sourcing, RS, also known as Transportation Network
Companies, TNCs) use online platforms to connect passengers with drivers who use per-
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sonal, non-commercial, vehicles. Growth of RS services was possible thanks to advances in
information and communication technology. Ride-sourcing trips replicate taxi trips, so they
are usually one-way, with similar usage patterns to the trips on point-to-point car-sharing
services. Passengers of RS services request a ride through the mobile application, which
then assigns a driver to the request. The assignment is usually done based on the estimated
shortest arrival time or distance. A driver only learns the passenger’s destination when the
the customer is picked up, which takes care of the problem of being refused access to a taxi
when traveling to undesirable parts of town [Jalloh, 2014]. Because the passenger’s credit
card is linked to the E-Hail account, then upon arriving at the destination, the passenger can
simply walk out the car and the payment will be processed independently [Jalloh, 2014]. For
the driver, he does not need to worry about unpaid fares and robbery. The fare is usually
charged based on the trip distance and time, approximately 80% of which goes to the driver,
with the remaining to the ride-sourcing service. Many of these applications maintain a rating
system that allows mutual ratings after the trip is completed.

Ride-sourcing services target similar transportation gap as taxi services. Survey presented
in [Rayle et al., 2014] shows that ride-sourcing serves a similar demand to taxis, where a
substantial portion of sampled ride-sourcing trips is spatially and temporally not well served
by public transit. In addition, the analysis in [Rayle et al., 2014] shows that ride-sourcing
users also appear to be less likely to own an automobile. One of the most recognized TNC is
Uber, which is available worldwide [Uber, 2016]. The mobile application for Uber has been
launched in 2009 in San Francisco linking commuters with drivers 1.5. Most of Uber drivers
use personal, non-commercial, vehicles. There are also companies (e.g., Smove in Singapore),
who are renting vehicles to ride for Uber. Another big players are Lyft in the USA, Easy
Taxi in Hong Kong, Didi in China and Grab in South East Asia.

Figure 1.5: A screen-shot of Uber’s e-hailing app (passenger’s side). Before the customer
makes the booking, he or she can see available vehicles around his or her location and an
approximated waiting time to be picked up.
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RSS have made it possible to secure a car or taxi from a smartphone from any location.
Anyone can provide the RSS, what increases the number of cars available [Jalloh, 2014].
Although RSSs have a positive effect by increasing the supply of drivers, the drivers might
not be motivated to reach high standards of professionalism and safety, simply because the
service is deregulated (easy access for everyone to the E-Hail network as service provider).
Critics, claim that RSSs unfairly flout existing regulations, compete with public transit,
increase congestion at peak times, mislead consumers through opaque pricing practices, and
endanger public safety [Rayle et al., 2014]. This new services have created a competition
that has reduced the market share of traditional taxi services and lowered the overall profits
of drivers [Jalloh, 2014]. E-Hail services are engaged in an intense battle to provide the
cheapest service and gain more customers. With such cheap prices and wide availability
of cars, customers may get into the habit of taking a car even for short-distance trips. On
the other hand, low prices negatively impact drivers’ earnings, who have to work longer to
compensate lower fares.

The popularity and growth potential for ride-sharing services is tremendous. A challenge
for RSSs is how to expand its supply scale without recruiting private drivers as its service
suppliers. One of the promising approaches to tackle this problem might be introducing
an automated mobility on demand (AMOD) system with robotic shared vehicles, which is
introduced in Section 1.2.5.

1.2.5 Autonomous Vehicles for Mobility on Demand

Automated mobility on demand (AMOD) systems attempt to provide a one-way car-sharing
with self-driving electric vehicles. AMOD systems rely on high levels of vehicle-automation,
which are now entering the commercial marketplace [Pendleton et al., 2015, Martinez et al.,
2014]. Road vehicles capable of operating independently of real-time human control (so
called autonomous vehicles, AVs) will likely become more widely available in the near
future [Le Vine et al., 2015].

Autonomous vehicles Vehicles that drive themselves are no longer just fantasies. The
initial developments of autonomous vehicles can be traced back to the 80’s [Thorpe et al.,
1988]. It is currently considered a key research effort in many car manufacturer and
mobility/robotics research centers [Fagnant and Kockelman, 2015, Azevedo et al., 2016] and
has recently started to be marketed for personal use [Google, 2016, Tesla, 2016, Pendleton
et al., 2015, Martinez et al., 2014]. Industry experts believe that highly automated vehicles
would become viable by 2020 and fully autonomous ones could be common by 2030 [Sun et al.,
2014]. However, aspirations for its contributions in solving large scale transportation problems
such as pollution, road congestion and land use are also high [Fagnant and Kockelman, 2015].
Such vehicles are expected to bring massive economic benefits relative to human-driver vehicle
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control. Vehicle automation can increase safety as over 90% of car accidents are caused
by the human error [Pavone, 2015, Ozimek, 2014]. In 2014 in the USA alone, there were
29,989 fatal car crashes [National Highway Traffic Safety Administration, 2016]. According
to the Department of Transportation the official value of a statistical life is US$9.2 million,
so if self-driving cars can save 30,000 lives a year this is a yearly benefit of US$276 billion.
In addition to the lost lives, the deadly crashes in 2005 also lead to $41 billion in medical
and work loss costs [Ozimek, 2014]. So the total cost of deadly crashes per year is around
$317 billion. Then there are the non-deadly crashes and crashes where nobody is hurt,
which account for additional crash cost of US$226 billion [Ozimek, 2014]. The societal cost
of congestion is approximately worth US$ 100B/year [Frazzoli, 2014]. The health cost of
congestion is approximately US$50 B/year [Levy et al., 2010]. The next major source of
savings is that passengers will become fully disengaged from vehicle operation and free to
perform non-driving tasks (which translates to increased productivity), which is estimated
at savings of US$1.2T/year [Frazzoli, 2014]. Autonomous vehicles hold great promise for
mobility on demand systems because they can cooperate with each other and rebalance
themselves. When we enable a widespread car-sharing with autonomous vehicles, we gain
another US$1.8T/year of benefits [Frazzoli, 2014]. From the financial perspective, in the US
alone, the autonomy vehicles can contribute to savings of more than US$4T per year. This
number still misses a lot of important benefits like senior citizens who currently can’t drive,
and the cost savings to households who gain much cheaper access to cars by renting them by
the hour [Ozimek, 2014].

Autonomous mobility on demand AMOD can be considered as an element of a com-
plete integrated door-to-door future urban mobility, where efficient and reliable mass transit
is still needed. AMOD system does not require drivers to operate vehicles and it can be
designed in such way to maximize the number of demand served. There are already few
deployments of AV for mobility on demand services [Balea, 2016, Chafkin, 2016]. The world’s
first self-driving taxis developed by NuTonomy is picking up passengers in Singapore [Balea,
2016], while a giant Uber allows customers in downtown Pittsburgh to get self-driving cars
for their Uber rides [Chafkin, 2016]. With these advancements it became realistic to see
autonomous taxis on the streets.

AMOD can make inter-modal transportation easier providing solution for the first- and
last-mile problem. AMOD vehicles are demand-responsive, which means that they do not
operate on a regular schedule like buses or trains, but rather only run when there is a request
for the service. This allows for a long-term environmental sustainability and potential cost
savings for customers, while relieving people from the burden of driving. There is a believe
that, in the long run, prices will fall so low that the per-mile cost of travel, even for long
trips in rural areas, will be cheaper in a driverless car than in a private car [Chafkin, 2016].
For example, according to [Spieser et al., 2014], the estimated cost to own a mid-sized car in
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Singapore is approx. S$ 18,162/year. To reduce this cost, a pay-as-you-drive transportation
service would be a good alternative (according to the same study, estimated cost of mobility
on demand service in Singapore with autonomous vehicles is S$12,563/year). Another benefit
of using driverless technology is that the AMOD vehicles can provide mobility to people who
cannot, should not, or prefer not to drive such as elderly, youth or disabled and increase
productivity. It may also make the rural communities more attractive because of availability
of shared journeys to nearby cities becomes affordable and will not lead to loss of productive
time. Vehicles can also platoon together maintaining constant and close separation between
each other and at the same time reducing an overall occupancy of the road infrastructure.
Through the system-level coordination, autonomous vehicles can use existing roads more
efficiently e.g., by routing vehicles via not heavily congested roads [Spieser et al., 2014].
Shared autonomous vehicles could increase urban space by 15 to 20 percent [Spieser et al.,
2014], largely through the elimination of parking spaces. Freeing up this space would make
the cities greener and increase quality of life. To the consumer, AMOD offers an alternative
transportation mode to the private vehicles.

Despite these prominent advantages, an inadequate and unbalanced fleet of shared vehicles
can result in service unavailability problems, particularly during periods of high demand.
This topic is brought up in Section 1.2.6.

1.2.6 Fleet Management for Mobility on Demand Systems

Fleet management systems, FMS, have been adopted in a number of areas such as freight
logistics, railway industry, airlines, material handling systems or shared mobility services [Sa-
yarshad et al., 2012]. FMS can include a range of functions, such as operations planning,
fleet (vehicles and drivers) scheduling, vehicle tracking and diagnostics, speed management,
fuel management and health and safety management. It allows companies which rely on
transportation to minimize their cost associated with vehicle investment, while improving
efficiency, productivity and reducing their overall transportation and staff costs. Attrac-
tiveness of mobility on demand systems is highly depended on availability of vehicles to
the customers, which translates to efficiency of the fleet management system. If the system
does not respond well to the demand, e.g., due to shortage of the supply some customers
are rejected to be served, it will become less reliable and in a long-run will not provide a
sustainable alternative to the ownership. The most fundamental aspect of all MOD systems
is therefore determining the appropriate number of vehicles to serve for the requested trips.
This can be derived from travel patterns using the simulation-based approach. In general,
the fleet size of any transportation system largely depends on: (a) the size of the operating
area (which is related to the distance of trips), (b) the average user demand, (c) routing
policies, (d) the level of service that the system provider wants to achieve, (e) the assignment
and ride-sharing policies, and (f) the amount of redistribution.
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Operation of Bike-sharing System BSSs are designed to provide a transit mode for
short commuting trips within the city. As introduced in Section 1.2.1, BSSs have a tremendous
potential as an on-demand service. A first strategic decision in designing a bike-sharing
system is the planning of the number of stations, their locations and sizes. These issues
are addressed in [Garcia-Palomares et al., 2012, Lin and Yang, 2011, Martinez-Barbera
and Herrero-Perez, 2012]. [Garcia-Palomares et al., 2012] proposes a GIS-based method to
calculate the spatial distribution of the potential demand for bike-sharing trips and locate
stations using location allocation models. Authors show that with this analysis,relatively
isolated stations can be eliminated. [Lin and Yang, 2011] determine the number and locations
of bike stations, the network structure of bike paths connected between the stations, and
the travel paths for users between each pair of origins and destinations. They illustrate
the proposed model with a small network example. [Martinez-Barbera and Herrero-Perez,
2012] present a mixed integer linear program, that simultaneously optimizes the location of
bike-sharing stations, the fleet dimension and the relocation activities required in a regular
day. The authors present the design and deployment of their model for the BSS in Lisbon.
Other long-term operation decisions involve static pricing and fixing the number of bikes in
the system [Sayarshad et al., 2012]. At a more tactical level, pricing and reservation policies
should be determined by the operator [Ji et al., 2014]. [Sayarshad et al., 2012] presents a
mathematical model to optimize a bike-sharing system by determining the minimum required
bike fleet size that minimizes unmet demand, underutilized bikes, and the rebalancing trips.
The proposed approach is applied to an example problem, which proves that the model
gives an effective solution. [Ji et al., 2014] describe the operational concepts and system
requirements of a fully automated electric bike-sharing system demonstrated through a
pilot project at the University of Tennessee. Based on the results of the simulation, the
authors present a cost constrained e-bike sharing system design that can maintain a high
level of system reliability (e-bike and battery availability) through optimal battery charging
and distribution management. Finally, the day-to-day operation of the system requires
rebalancing the system in order to meet the demand for bicycles and vacant lockers at the
location and times desired by the users. Rebalancing issue arises from the fact that the
bicycles are not meant for performing long recreational trips. To maintain this objective
in most bike-sharing systems 30 minutes of usage is free of charge. After the free minutes,
charges increase exponentially forcing people to keep trip length short. These factors lead to
short one-way trips that cause imbalances in bike distribution [Caggiani and Ottomanelli,
2012, Caggiani and Ottomanelli, 2013, Ciari et al., 2014a, Farahani et al., 2014, Forma et al.,
2015, Garcia-Palomares et al., 2012, Martinez-Barbera and Herrero-Perez, 2012, Raviv and
Kolka, 2013, Raviv et al., 2013, Sayarshad et al., 2012, Vogel and Mattfeld, 2010], which
implies that bike-sharing systems should be efficiently rebalanced to provide a quality of
service for the customers. The relocation problem for the BSS is twofold: (i) to ensure
that the users can find an available bicycles at their origins, and (ii) to provide enough
vacant lockers to allow users to return bicycles at their destinations. In order to balance
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the difference between supply and demand at each station, the BSS operator has to operate
staffed trucks for manual relocation of bicycles or/and offer incentives to encourage customers
to use certain stations, i.e., to dock bicycles at empty docking locations [Shaheen et al.,
2010, Vogel and Mattfeld, 2010, Fricker and Gast, 2014, Zhang and Pavone, 2015]. This
rebalancing approach differs from the rebalancing of a fleet of vehicles as vehicles cannot be
loaded and unloaded from the trucks easily.

Operation of Taxi System To solve the problem of operation of taxi system several
simulation-based studies have been carried out [Alshamsi et al., 2009, Cheng and Nguyen,
2011, Horn, 2002, Lee et al., 2004, Maciejewski and Nagel, 2014, Maciejewski, 2014]. [Alshamsi
et al., 2009] apply a multiagent self-organization technique to the taxi dispatching problem.
The authors compare performance with actual data and show that the proposed technique
decreases total waiting time by up to 25% in comparison with the real system and increases
taxi utilization by 20%. [Cheng and Nguyen, 2011] propose a multi-agent simulation
platform to investigate interactions among taxis and to evaluate impact of implementing
certain management policies. The major contribution of their work is incorporation of
the analysis on the real-world driver’s behaviors. [Horn, 2002] describe a software system
designed to manage the deployment of a taxis system. The scheduling system includes
automated vehicle dispatching procedures designed to achieve a favorable combination of
customer service and efficiency of a vehicle deployment. Simulation tests indicate that
improvement procedures yield substantial efficiencies and that the system will be effective
in real-time applications. [Lee et al., 2004] propose a simple dispatch method based on
the Global Positioning System. The system assigns the nearest, in terms of the shortest
straight-line distance, taxi for each booking location. Data from the simulations of a real
network of Singapore show that the proposed method is capable of being over 50% more
efficient in the reductions in passenger pickup times and average travel distances as compared
to the current taxi dispatcher in Singapore. [Maciejewski and Nagel, 2014] and [Maciejewski,
2014] present an optimization toolbox for the dynamic vehicle routing problem embedded
into a microscopic, behavior-based traffic simulation MATSim. The authors show the off-line
and on-line taxi dispatching problems, and present three different dispatching strategies that
are then evaluated on a realistic scenario. The computational results show that a strategy of
assigning the nearest empty taxi to each incoming request works well as long as the system
is not overloaded.

Operation of Car-sharing System The findings summarized in the literature review
presented in [Jorge and Correia, 2013] show that the major issue in development of a one-way
car-sharing is how to balance the demand and supply [Jorge and Correia, 2013]. To estimate
the minimum required fleet size, many researchers have focused on rebalancing strategies
for both station-based and free-floating carsharing system [Alshamsi et al., 2009, Barrios
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and Godier, 2014, Barth and Todd, 1999, Brownell and Kornhauser, 2014, Ciari et al.,
2014b, Correia and Antunes, 2012, Fan et al., 2008, Horn, 2002, Jorge et al., 2014, Kek et al.,
2009, Maciejewski, 2014, Nourinejad and Roorda, 2014, Nourinejad and Roorda, 2015, Pavone
et al., 2011, Smith et al., 2013]. [Barth and Todd, 1999] develop a simulation model of
car-sharing operations and conclude that a sufficient fleet size for satisfying customers is 3-6
vehicles for every 100 trips but that 18-24 vehicles per 100 trips are required to minimize
relocation costs. This conclusion shows the importance of robustness of FMS. [Fan et al.,
2008] propose a multi-stage stochastic linear integer model which attempts to capture system
uncertainties such as car-sharing demand variation. The objective function of their model
maximizes revenues from servicing customers while minimizing the cost of vehicle relocation.
[Kek et al., 2009] design a mixed integer linear program to determine a set of near-optimal
manpower and operating parameters for the vehicle relocation problem. Simulation tests,
based on a set of commercially operational data for the city of Singapore, indicate that
optimization of manpower can reduce staff expenses by up to 50% and zero vehicle time
(duration of vehicle shortage at parking stations) by up to 13%. The model however cannot
be applied for a real-time operation. [Pavone et al., 2011] and [Smith et al., 2013] show a
theoretical solution to fleet sizing by introducing rebalancing assignments that minimize the
number of empty vehicles traveling in the network and the number of rebalancing drivers
needed, while ensuring stability. They introduce a rebalancing policy based on a fluidic
model. Using both theoretical and simulation results, the authors determined the minimum
number of vehicles required to maintain system stability. [Correia and Antunes, 2012], on
the other hand, focus on a depot location in one-way car-sharing systems where vehicle stock
imbalance issues are addressed. Considering all decision variables (depot locations, satisfying
demand and relocation), the authors present a mixed integer optimization approach to
maximize revenue of the car-sharing operator while minimizing operating cost such as vehicle
maintenance, parking provision, vehicle depreciation, and vehicle relocation. Based on the
case study of Lisbon, their results show that the depot location and trip selection schemes
have an impact on the profitability of such systems. [Jorge et al., 2014] builds their work
on [Correia and Antunes, 2012] and focuses on optimal rebalancing strategies for one-way
car-sharing systems. The authors applied their static relocations algorithms to network of
stations in Lisbon and their results show that relocating vehicles produces significant increases
in profit. [Nourinejad and Roorda, 2014] propose a dynamic optimization-simulation model
for one-way car-sharing. The authors analyze the trade-offs between the vehicle relocation
and fleet size using the Autoshare—a car-sharing company in Toronto—data. To perform
the analysis they run a dynamic vehicle relocation optimization, which was embedded in
a discrete event-based simulation. They came to two (2) conclusions: (i) a bigger fleet
requires less relocation hours to service the same demand and vice versa and (ii) if we
extend the reservation time (meaning allowed wait time of customers), then we observe a
significant reduction in the fleet size. [Nourinejad and Roorda, 2015] present an extension
to model in [Nourinejad and Roorda, 2014]. Their model consists of two (2) sequential



Chapter 1. Introduction 18

optimization problems:(i) fleet size problem, which finds the optimal fleet size when all
demand is answered, and (ii) profit maximization model, which maximizes car-sharing profits
when the fleet size is constant. They introduce a hybrid car-sharing system containing
features of both one-way and two-way systems and compare three of them against each
other. Their results suggest that the one-way system requires the smallest fleet size but
highest vehicle relocation hours. On the other hand, [Bruglieri et al., 2014] explores methods
to forecast the balancing trips of a one-way car-sharing system of electric vehicles and
applies them to the city of Milan, Italy. The authors solve a mixed integer program to
redistribute the vehicles. Their numerical results on a test bed of 30 vehicles show that two
workers with a duty time of 5 hours are sufficient to satisfy about 86% of the relocation
requests. [Barrios and Godier, 2014] presents three different redistribution strategies (zero,
periodic and continuous redistribution) for station-based and free-floating car-sharing using
an agent-based simulation approach. The authors showed that without changes in percentage
of satisfactorily served demand, continuous redistribution of vehicles results in a reduction
in the required fleet size as compared to zero-redistribution and periodical redistribution
strategies. [Brownell and Kornhauser, 2014] evaluated fleet sizing for an autonomous Taxi
system. The authors evaluated two models: (a) personal rapid transit, in which customers
were served by the same vehicle if they arrived at a station within a time window and their
origin and destination stations were the same, and (b) smart paratransit, where vehicles
were re-routed to pick-up additional customers. For both models, stations were established
in a grid. The authors presented upper and lower bounds for the fleet size required for both
models.

1.3 Contribution

A main motivation for development of Autonomous Mobility on Demand systems is a
sustainable urban transportation. However, no standard methodology has been established
to accurately and consistently design and evaluate this new service. Existing methods for
operating as well as modeling urban transport require extensions to incorporate AMOD
systems as benefits analysis requires controlled experiments that compare transportation
behavior with and without the new mode. To the best of our knowledge, most of the
existing literature treats problems of depot location, fleet size, assignment and redistribution,
separately. In this dissertation we attempt to correlate and merge together these different
problems of fleet management of autonomous mobility on demand systems. This work
aims to look at the feasibility of assembling a fleet of autonomous vehicles for a mobility
on demand service in order to ease congestion, increase safety, and reduce environmental
impact in the city of Singapore. The key part of this undertaking relies on the agent-based
simulations of the estimated traffic.

We set up this dissertation to assess and demonstrate the role of autonomy in mobility
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on demand systems and its impact in terms of feasibility and efficiency through modeling,
algorithms development, simulations, and experimental demonstrations.

Based on the literature review, which is presented in four chapters (Chapter 1, 3, 4, 5),
first novel contribution presented in this thesis detailed literature review of more than 100
publications on fleet management systems for flexible mobility services.

Second contribution is development of the controller for the fleet of autonomous taxis and
analysis of a potential implementation of such system. To the best of our knowledge, there
is no such contribution in the current literature. The fleet controller presented in this
dissertation is simulator-independent and can also be used as a manager of a fleet of real
autonomous vehicles.

Third contribution of the thesis is development of algorithms related to the operation of
autonomous vehicles for mobility on demand systems. Although the algorithms may be
similar to those for human-driven taxis, the AV-specific implementation gives us full control
over the vehicles, which inherently changes the perspective of the operator. There is growing
number of publications in the current literature related to operation of autonomous taxis,
however non of the existing work tackles the problem as a whole: from designing where to
operate (long term decisions), to simulating second-to-second operation of the system. To the
best of our knowledge, there is no such development in the literature which combines together
all operational perspectives of designing an AMOD system: problem of depot location, fleet
size, assignment and redistribution, separately.

Fourth contribution is a unique approach to rebalancing of autonomous vehicles, which
consists of static and dynamic models. Static model gives us a rough idea where and when
we need vehicles, which is estimated based on taxi travel pattern, while the dynamic model
serves as an adjustment (final tune) to the static model.

In this dissertation we identify the following three design and management levels of introducing
AMOD system:

(i) At the planning level we decide on strategic decisions, such as the location and size of
operating area and the number of stations (zones). These decisions are considered as a
long-term planning decisions and they cannot be easily changed after the system is
implemented.

(ii) At the tactical level we decide on long-term operation decisions. These decisions
include the number of vehicles which are required to run the system, home location of
the vehicles at the beginning of the day and static pricing.

(iii) Operational level (short-term operation decisions) include assignment and rebalancing
methods, and dynamic pricing. This decisions can vary between different days and
within days.
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Performing a sequential analysis of each level, based on the case study of the city of Singapore,
we answer the following questions:

(i) Where to operate the system and where to locate depots (stations) for AMOD vehicles?

(ii) What fleet sizes are optimal to serve demand? Most of the current studies assume a
fixed rate of trips which are served by MOD (car-sharing, taxi or aTaxi) systems. This
fundamental aspect of determining the appropriate number of vehicles is derived from
the travel patterns using the simulation-based approach.

(iii) What vehicles assignment and route choice policies are likely to improve system
performance? In order to manage an extensive fleet size of vehicles in real-time, we
designed a robust dispatcher and route planner for AMOD system.

(iv) How to perform rebalancing of the vehicles? AMOD systems offer a convenience of
boarding and alighting at any location, which may cause a deficit of vehicles in some
areas and surplus in other. To effectively move vehicles between different locations,
while minimizing the demand loss, a rebalancing mechanism is required. Our algorithm
performs two types of rebalancing: offline, which distributes vehicles once a day
(overnight) and online, which makes a real-time adjustments to to the offline solution.

(v) What ride-sharing policies will improve the system? Ride-sharing is a more economical,
convenient, and sustainable way to get around, particularly for short point-to-point
movements. We have developed a static ride-sharing algorithm, which shows a decrease
in the total vehicle-kilometer-traveled.

(vi) How the dynamic pricing will influence the mode choice of customers? A simple choice
model and dynamic pricing model have been developed to assist in managing the
demand and supply.

Our approach is simulation-based and we make use of SimMobility—an agent-based simulation
platform. The proposed methodologies are applicable to a large-scale AMOD systems for
the extended Central Business District in Singapore. Experimental results are presented and
discussed.

1.4 Thesis Outline

This thesis is organized as presented in Figure 1.6.

In Chapter 1, we present trends in mobility on demand services and how the fleets of
shared-mobility systems are managed, which set up background for our work. Next, we state
what is the contribution of this dissertation and provide outline of the thesis.

In Chapter 2, we provide detailed description of our development which is fleet management
systems for autonomous mobility on demand service (we call it AMOD Controller). We
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Figure 1.6: Organization of the thesis. Note that Chapter 2 presents an overview of
the AMOD Controller, while Chapter 3, 4, 5 show detailed representation of the models
introduced in Chapter 2.

evaluate different modeling approaches of analytical and simulation models. We present
paradigms in simulation modelings and review traffic simulators, which serves us as a
justification of choosing SimMobility over other available software. Finally, we introduce
the reader to simulation platforms and AMOD Controller. We provide justification to use
SimMobility as a tool to simulate autonomous vehicles and provide implementation details
of extending SimMobility with AMOD Controller.

In Chapter 3, we focus on the strategic aspect of management of AMOD systems—models
for selecting the number and location of new facilities. By facilities we understand stations
(distribution centers or car parks) for autonomous vehicles. In this chapter we provide
classification of facility location problems followed by related work in the field. We formulate
facility location models for an AMOD system as (i) distribution of stations based on location
factor rating, (ii) one station for the entire system, (iii) stations based on the set covering
problem, and (iv) stations based on maximal coverage problem. We evaluate our models
by providing results and discussion. Finally, we acknowledge limitation of our models by
stating future directions.

In Chapter 4, we formulate the fleet assignment and routing problem. Given a distribution
(location) and capacity of available vehicles, the fleet assignment problem faced by the
operator is to determine which vehicle should pick up which customer, while the fleet
routing is to determine the route for each assigned vehicle. We first give introduction to the
assignment problem by providing definition, terminology and related work. Next, we describe
how the assignment is implemented within AMOD Controller and we describe implemented
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algorithms for assignment with and without ride-sharing. We extend the framework to
demand management with price incentives and present results comparing different assignment
algorithms. We discuss the results and acknowledge limitation of our work by stating future
directions.

In Chapter 5, we show our formulation of empty vehicles rebalancing problem, which aims in
finding optimal control policies for realigning demand and supply. We provide terminology,
definitions, and related work in the filed of empty vehicle rebalancing. Next, we provide
explanation how the AMOD Controller handles rebalancing and what algorithms are used
for static and dynamic methods of redistributing the vehicles. We present comparison of
rebalancing policies, discussion and directions for the future work.

In Chapter 6, we present a large-scale implementation of the AMOD system in the Central
Business District in Singapore. We present two alternatives of introducing AMOD service in
Singapore: (i) case study of the central business district in Singapore, and (ii) case study of
the extended central business district in Singapore. We describe simulation setup, results
and discussion for each case study. We summaries our results and provide directions for
future work.

Finally, in Chapter 7, we present conclusions of the thesis and directions for future work.



Chapter 2

Autonomous Mobility on Demand (AMOD)

Controller

This dissertation addresses the problem of design and analysis of an autonomous mobility
on demand system. More specifically, we focus on the strategic and operational decisions
which are required to run the AMOD service. Our approach is simulation-based, with some
parts of the problem solved analytically. The simulation framework is modular and each
module is responsible for a different task, e.g., facility location, assignment, rebalancing.
This formulation encompasses several decisions under one framework by integrating the key
strategic and operational issues that may emerge during regular operation of the system.
To the best of our knowledge, most of the existing literature treats problems of depot
location, fleet size, assignment and redistribution, separately. In this dissertation we attempt
to correlate and merge together these different problems of autonomous vehicles’ fleet
management systems. If operational decisions are taken into account when considering
strategic decisions, this may lead to a more efficient management of the system [Boyaci et al.,
2015]. For this reason, we develop AMOD Controller—an experimental research platform to
test models and algorithms for (i) planning, (ii) strategic, and (iii) operational decisions of
an autonomous mobility on demand system.

AMOD Controller is designed as a hybrid software framework, including both analytical ap-
proach and event-driven discrete time-step simulation. It is platform-independent framework
for managing a fleet of autonomous vehicles.

This chapter describes framework of AMOD Controller and how it is integrated with
simulation platforms. The chapter is organized as follows. Modeling approaches are presented
in Section 2.1. Introduction to SimMobility Platform is covered in Section 2.2. Section 2.3
and Section 2.4 present framework and software design of AMOD Controller. Run-time
operation of AMOD Controller is described in Section 2.5.

23
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2.1 Modeling Approaches

Road traffic becomes a challenge for urban planners. To better predict outcomes of introducing
new solutions for the transportation needs, we model it first to check the robustness of the
proposed implementations. In this section we describe the modeling approaches used within
AMOD Controller.

2.1.1 Analytical and Simulation Models

We distinguish analytical and simulation models. Understanding capabilities of these two
approaches is of great practical interest to system modelers. In analytical, or static, model
we identify system variables (parameters) and evaluate them based on sets of equations
relating these variables. However, analytical solution does not always exist, or may be
very hard to find [Borshchev and Filippov, 2004]. Alternatively, simulation, or dynamic,
modeling may be considered. Simulation can be defined as a set of rules (e.g. equations,
flowcharts, state machines, cellular automata) that define how the system will change in the
future, given its present state [Borshchev and Filippov, 2004]. Simulation executes the model
through (discrete or continuous) state changes over time. An example of traffic simulation
can be defined as a dynamic representation of the real world through the application of
computer software [Pursula, 1999]. For complex problems where time dynamics is important,
simulation modeling is a better answer, because it can study models too complicated for
analytical or numerical analysis alone.

Abstraction levels [Traffic] simulation software can be classified as microscopic, meso-
scopic and macroscopic depending on the simulated level of details and timescale [Pursula,
1999].

(i) Micro-simulation is a so called physical modeling where individual objects with exact
sizes, distances, velocities and timings matter [Borshchev and Filippov, 2004]. It
represents a highly detailed model of activities such as individuals’ movement and their
interactions between each other. This simulation technique, when applied to traffic
simulations, relates directly to traffic flow theory and utilizes equations governing
driver behavior such as gap acceptance, lane changing or car following models [Espada
et al., 2010]. The driving pattern of each individual car is generally influenced by
the surrounding cars in the model and the rules for modeling this impact can be
chosen by the operator. Due to its level of details, this technique is the most resource
intensive [Espada et al., 2010].

(ii) Mesoscopic simulations are based on aggregate traffic movements, where vehicles
are represented as a traffic stream or a network density map. To reduce modeling
complexity no single driver’s behavior is directly modeled, but incorporated in to the
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Table 2.1: Types of simulations in transportation

Time State
Space

Continuous Discrete N/A

Cont.
Discrete

Real transportation

systems, e.g.,

dynamic traffic

assignment

Discrete event systems,

e.g., queuing

Cont.

Traffic flow models

based on partial

differential equations

Open dynamics engine

methods, e.g., vehicle

motion, fluid approx.

for queuing

Discrete
Discrete Cellular automata

Discrete event

simulation

Cont.

Car following models

Microscopic traffic

flow models

Numerical methods

based on

Partial diff. equations

Numerical open

dynamics engine

methods

N/A
Discrete

or Cont.
Monte Carlo method

Econometric models,

e.g., trip generation,

traffic assignment

model as a consideration of an overall interacting traffic. Results are provided as
graphic visualization of speed, flow, density, queue-length for each lane and movements
in intersections.

(iii) Macro-simulations represent the traffic at the most aggregate level of details. Macro-
simulations are typically understood in terms of aggregate values, global feedbacks
and trends [Borshchev and Filippov, 2004]. System analysis based on macroscopic
assignment provides a big picture and allows simulating a high-level decisions such as
land use planning.

Simulations rely on the concept of system state, which describes the evolution of the system
over time. System state can be either discrete or continuous. Traffic simulation models are
classified according to discrete and continuous time, state, and space. Basic division of the
simulation types is presented in Table 2.1.
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2.1.2 Paradigms in Simulation Modeling

The major paradigms in simulation modeling are: System Dynamics (SDM), Dynamic
Systems (DSM), Discrete Event (DEM) and Agent Based (ABM) Modeling [Borshchev and
Filippov, 2004].

(i) System Dynamics Modeling simulates the real-world processes in terms of stocks (e.g.,
material, people, money), flows between these stocks, and information that determines
the values of the flows. To approach the problem in SDM style one has to describe the
system behavior as a number of interacting feedback loops, typically in the form of
differential equations [Borshchev and Filippov, 2004].

(ii) Dynamic Systems Modeling is used in technical engineering disciplines as a standard
part of the design process. The mathematical models of a dynamic system consist
of state variables and algebraic differential equations over these variables. Opposite
to the SDM, the variables in DSM have direct physical meaning: location, velocity,
acceleration, pressure, etc., they are inherently continuous, and are not aggregates of
any entities [Borshchev and Filippov, 2004].

(iii) Discrete Event Modeling is based on the concept of entities, resources and block charts
describing entity flow and resource sharing [Borshchev and Filippov, 2004]. Entities
are passive objects representing objects such as people, documents, tasks. They travel
through the flowchart where they are processed.

(iv) In Agent-Based Modeling, a system is modeled as a collection of autonomous decision-
making entities called agents [Helbing, 2012, Bonabeau, 2002]. The crucial feature of an
agent in ABM is being decentralized. Compared to SDM or DEM, in AB model we do
not declare any global system behavior (dynamics). Instead, we define behavior at the
individual level, and the global behavior emerges as a result of many individuals, each
following its own behavior rules while living together in some environment [Borshchev
and Filippov, 2004]. These dynamically interacting rule-based agents can create a
system with real-world-like complexity. In some ways, agent-based models complement
traditional analytic methods. Where analytic methods enable humans to characterize
the equilibria of a system, agent-based models allow the possibility of generating those
equilibria. This generative contribution may be the most mainstream of the potential
benefits of agent-based modeling.

In terms of time space, SDM and DSM work mostly as continuous processes, while DEM
and ABM as discrete time, i.e. jump from one event to another.

Our approach Based on our expertise, ABM allows us to capture real life phenomena
better than other approaches do. Therefore, a core-component of AMOD Controller is design
such that it can interact with agent-based simulators. AMOD Controller contains active
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objects such as customers and vehicles, who are characterized by timing, event ordering and
individual behavior as in the ABM framework. Additionally, we make use of the analytical
methods to estimate demand for simulated case-studies (as presented in Chapter 6).

In the next section (Section 2.1.3), we review open-source and commercial agent-based
microscopic simulation platforms and present our findings.

2.1.3 Review of Traffic Simulators

In order to keep track of the AMOD vehicles, it is necessary to simulate them individually.
For performing empirical tests on individuals’ level, a micro-scale simulator is of great interest
to modelers. Although a variety of transportation simulation tools do exist, e.g., Aimsun,
Coresim, MATSim, Paramix, PTV Vissim, SimMobility, SimTraffic, Transims, only a few
allow taking into account some specific requirements [Maciejewski and Nagel, 2014, Garcia-
Palomares et al., 2014]. AimSun [Aimsun, 2016], is a commercial microsimulation software
developed by TSS-Transport Simulation Systems. It is built as a hybrid simulator providing
simultaneous a more detailed time-sliced microscopic model and an event-based mesoscopic
model [Aimsun, 2016]. This allows to model large areas while zooming in on all areas that
require a finer level of detail. MATSim, Multi-Agent Transport Simulation [MATSim, 2016],
is an agent-based system for transport simulation with the primary focus on transportation
planning. It allows disaggregated activity-based modeling that consists of three main phases
which are run iteratively: planning, traffic flow simulation, and scoring [Maciejewski and
Nagel, 2014]. MITSimLab, MIcroscopic Traffic SIMulation Laboratory [Mitsim, 2016] is
an open-source application developed at MIT. Its core models have been written in C++.
It consists on three main components: Microscopic Traffic Simulator, Traffic Management
Simulator and Graphical User Interface. All three modules interact with each other. PTV
Vissim, Verkehr In Stadten–SIMulations modell [Vissim, 2016] is a commercial microscopic
agent-based multi-modal traffic flow simulation software. VISSIM is one of the most widely
used simulation tool to validate new transportation policies and control systems [Garcia-
Palomares et al., 2014, Marczuk, 2010]. It can model integrated roadway networks, as well
as different modes such as buses, light rail, heavy rail, trucks, pedestrians, and bicycles. The
software may be used to create detailed computational results or 3D animations for different
scenarios. Paramics, PARAllel MICroscopic Simulation [Paramix, 2016] is a commercial
software integrating a microscopic traffic modeled dedicated for the simulation of congested
traffic networks. Paramics is designed to handle scenarios ranging from single intersection up
to an entire city traffic system [Paramix, 2016]. SimMobility [Adnan et al., 2016] is a multi-
scale simulator that considers land-use, transportation and communication networks along
with individual choices and decisions at different levels of resolutions: from detailed traveler
movements to day-to-day and year-to-year travel decisions. SimMobility is under ongoing
development and it is an open-source software based on a distributed C++ implementation.
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SUMO, Simulation of Urban MObility [Sumo, 2016], is an open source, microscopic and
continuous traffic simulation package developed at the German Aerospace Center. It is
designed to handle large road networks. SUMO allows modeling of inter-modal traffic systems
including road vehicles, public transport and pedestrians.

Our approach Our preferred choice of simulator is an open-source platform. It is important
for our research to know how the software is implemented and configured. The open source
programs are, in general, more flexible for the user as compared to commercial counterparts.
Users of open-source platforms can easily examine the source code and make the necessary
alterations to the code based on their desired behavior of the system. This also allows us
to potentially identify any problems in the system and to make our fixes to the software to
rectify the problem. In the commercial software the source code is usually not available for
the user, in which case we may not be aware of what exactly affects the performance. Among
the non-commercial simulation platforms, we have simulators such as SUMO, MATSim,
MITSIMlab and SimMobility.

Another consideration is the level of details of the simulator. Our study evaluates the
fleet management of a new transportation service, which is an autonomous mobility on
demand. In short, the fleet management system consists of the reservation procedures
(related to assignment), routing and rebalancing. Therefore, to evaluate the impact of
different implementation policies the level of details may play an important role. Based on
our experience, MATSim simulates the system at a mesoscopic level. It does not consider
lanes and detailed interactions between vehicles. SUMO due to its simplicity is neither
distributed nor parallel so the simulation with a sophisticated fleet management of thousands
vehicles may be prohibitively time consuming. SimMobility is built on MATSIMLab and
extends it. It is an agent-based and multi-modal platform with parallel and distributed
architecture. Therefore, for this work, SimMobility is selected and used. A general overview
of SimMobility is presented in the following section (Section 2.2).

2.2 SimMobility Platform

SimMobility is a multi-scale simulator that considers land-use, transportation and communi-
cation networks along with individual choices and decisions at different levels of resolutions:
from detailed traveler movements to a day-to-day and a year-to-year travel decisions. SimMo-
bility is under ongoing development and it is an open-source software based on a distributed
C++ implementation. SimMobility is an agent-based simulator. The individual travel
behavior is modeled under an activity-based formulation, where each agent’s daily activities
and its impact on the transportation systems are simulated [Lu et al., 2015]. Each individual
person is represented as an agent in the model, which helps in simulating how people will
react in the uncertain future. To support multi-modality SimMobility explicitly simulates
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private traffic, public transit, pedestrian traffic as well as freight transportation, and allows
agents to switch between these modes over the course of a given day.

SimMobility integrates various mobility-sensitive behavioral models within a multiple time-
scale structure, comprised of three simulation levels which are differentiated by the time-frame.

The high-level design of SimMobility is shown in Figure 2.1.

Figure 2.1: High-level design of SimMobility. SimMobility comprises three primary modules
differentiated by the time-frame.

The long-term simulator models year-to-year changes. It captures land use and economic
activity, with special emphasis on accessibility. It predicts evolution of a land use and
property development, determines associated life cycle decisions of agents, and accounts
for interactions among individuals and firms. The mid-term simulator models day-to-
day changes. It handles transportation demand for passengers and goods. It simulates
activity and travel patterns of agents. The mid term represents moving vehicles in aggregate,
and routes are generated by behavior-based demand models. The short-term simulator
(SimMobility ST) operates at the operational level. It simulates movement of agents at a
microscopic granularity. It synthesizes driving and travel behavior in detail and also interacts
with a communication simulator that models the impact of a device to device communication
on these behaviors. Similarly, the code structure and functions are shared by the three levels,
assuring consistency among sub-models. Short-term level shares several mobility decisions
with the mid-term level, as described in![Lu et al., 2015].

The three levels can work together as well as independently. When they are run independently
they only require a prior knowledge from different level, e.g., if an update on accessibility
is required for the long-term simulator, it calls the mid-term level. The key to multi-scale
integration in SimMobility is a single database model that is shared across all levels [Adnan
et al., 2016]. Every agent exists across all levels and in this way the impact from one level is
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propagated to the others. SimMobility is entirely developed in C++, using boost threads
library, for parallelization, and MPI (message passing interface) library, for distribution [Ad-
nan et al., 2016]. SimMobility takes advantage of state-of-the-art computational efficiency
tools to increase scalability, i.e., it allows network decomposition with MPI distribution, and
it is able to do runtime load balancing by taking advantage of individual agent’s context,
e.g., agent of similar type can be grouped together.

Model validation and calibration within SimMobility SimMobility consists of three
pillars: long-term, mid-term, and short-term, each of them simulating the same agents at
different spacial and temporal resolutions.

Demand estimation and calibration for AMOD Controller takes place within SimMobility
Mid-Term (MT). The MT simulator takes multi-modal network and population, which may
come from SimMobility Long-Term (LT) simulator or other population data sets, as an input.
Population data set contains detailed characteristics of each agent (Appendix A.1.1). As an
output, it passes accessibility measures (in the form of Logsums) from the pre-day component
of MT simulator to the LT simulator. The MT simulator provides the ST simulator with trip
chains as input demand to simulate smaller network regions in more detail (Appendix ??).
SimMobility ST applies several design heuristics to make modeling and development easier
for a heterogeneous user base. As we have described in [Azevedo et al., 2017]:

1. Entities are isolated from each other, and can only interact through properties that
are shared among them, which is a typical agent-based simulation framework.

2. The simulator is location-agnostic regarding agents. In other words, an agent’s interface
is not affected by the agent’s location on the network.

3. Time step within SimMobility is indivisible and agents are assumed to all tick forward
at once.

4. SimMobility is hierarchical and provides sensible defaults, e.g., trip-chains can be filled
in with more information as the agent’s trip progresses.

SimMobility uses an activity-based demand formulation in the form of activity-schedules
rather than the traditional Origin-Destination matrix definition. In such approach, trip
chains are generated by individuals’ daily schedules instead of aggregated traffic specific
matrices. Demand parameters are calibrated through tuning of the OD flows by calibrating
one parameter for each activity schedule [Azevedo et al., 2017]. Then the updated OD
parameters are converted into trip chains by dis-aggregating through so-called killing-cloning
process for each iteration. There are also parameters related to the route choice, which are
calibrated as described in [Azevedo et al., 2017, Adnan et al., 2016]. Further details on
SimMobility, in terms of modeling details, integration, and calibration can be found in [Adnan
et al., 2016, Azevedo et al., 2016, Azevedo et al., 2017], Appendix D, and Appendix E.
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In this dissertation we make use of SimMobility ST as a tool to simulate autonomous vehicles’
traffic, which is presented in the following section.

SimMobility Short-Term SimMobility Short-Term (SimMobility ST) is an agent-based,
multi-modal microscopic simulator [Adnan et al., 2016]. It captures agents’ movements at
resolution of up to 100 milliseconds. SimMobility ST comprises three main components as
shown in Figure 2.2. The core traffic simulation model of SimMobilityST (in Figure 2.2

Figure 2.2: Framework of SimMobility Short-Term. SimMobility ST comprises three
primary components: (i) Microscopic Traffic Simulator, (ii) Control and Operation Module,
and (iii) Communication Network Simulator.

Microscopic Traffic Simulator) is based on the microscopic simulation tool MITSIM [Yang
et al., 2000]. The structure of the Microscopic Traffic Simulator is detailed in Figure 2.12.
Traffic simulator simulates high level decisions, e.g., route choice, and low level decisions,
e.g., movement decisions, such as car following and lane-changing. Control and Operation
Systems simulates the control centers, e.g., traffic and parking controller, bus, rail, and
autonomous vehicle controllers. The controllers influence the movement simulator. At the
current state of SimMobility, the bus controller, traffic signal controller and autonomous
vehicle controller are operational [Adnan et al., 2016]. The autonomous vehicle controller is
a contribution presented in this dissertation. The third component of SimMobilityST is the
Communication Network Simulator, which simulates an agent-to-agent communication, e.g.,
via mobile phones or a vehicle-to-vehicle infrastructure.

2.3 General Framework of AMOD Controller

The AMOD Controller framework consists of a core component and communication infras-
tructure (Figure 2.3). The core component is responsible for the fleet management of AVs,
e.g., assignment, routing, rebalancing, and has been implemented in C++ with some parts
written in Matlab. The communication component handles connections with the simulators
and is written in C++.

AMOD Controller is a detachable component which is responsible for the fleet management of
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Figure 2.3: Design of AMOD Controller. The AMOD Controller design consists of a
core component and communication infrastructure. It is a detachable component which is
responsible for the fleet management of autonomous mobility on demand system. This design
allows us to test the controller within different simulation frameworks. AMOD Controller
sends dispatches to a microscopic simulator, which handles vehicle movements.

autonomous mobility on demand system. This design allows us to test the controller within
different simulation frameworks. The basic idea is that AMOD Controller sends dispatches to
a microscopic simulator, which handles vehicle movements and provides tracking information
for all vehicles in the system. The objective of this approach is to design a versatile manager
which can be used as an extension of any system (simulator). It aims to provide a tool which
helps us to understand how different system setups of AMOD system impact its efficiency.

The overall architecture of AMOD Controller is presented in Figure 2.4. The controller’s

Figure 2.4: General framework of AMOD Controller. AMOD Controller is run at three
(3) stages. Each stage requires external data, such as the network and demand information
to be fed into the controller. At the planning (strategic) stage we determine the size of
operating area, estimate the demand and the number of stations (depots), where we park the
vehicles. At the tactical (long-term operational) stage we focus on the number of vehicles,
which are required to run the system, and static pricing. At the last stage we decide on
short-term operational decisions, which include methods for assignment, routing, rebalancing,
and dynamic pricing.

framework is modular and each module is responsible for different task, e.g., facility location,
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assignment, rebalancing. AMOD Controller has been designed to run at three stages. At
each stage demand information are fed into the controller. At the planning (strategic) stage
we determine the size of operating area, estimated demand, and the number and locations of
stations (depots), where we park the vehicles. This stage is evaluated first and the solution is
passed to the tactical stage. At the tactical stage (equivalent to long-term operation decisions)
we focus on the number of vehicles which are required to run the system, static rebalancing,
and pricing. At the last stage we decide on short-term operational decisions, which include
dynamic pricing, assignment, routing, and dynamic rebalancing policies. The performance
measures from the operational stage are fed back to the tactical level and the planning level.
Based on the output from the operational level we make adjustments to the tactical and
planning level and repeat the loop. In this framework we do not treat each decision level
separately as the strategic and tactical decisions influence directly operational decisions.
When considering strategic and tactical decisions, we take into account operational matters.
Mathematical formulations of each component are presented in Chapter 3, Chapter 4, and
Chapter 5.

A vast majority of AMOD Controller has been implemented in C++ with some components
written in Matlab. There are few benefits of using C++ environment. One of them is high
portability of C++ language, which allows to develop software irrespective of hardware and
operating system. It compiles into highly optimized CPU-specific machine code with little
or no runtime overhead. Finally, as an object-oriented programming language, it provides a
clear modular structure, which is easy to maintain and modify.

2.4 System Architecture

Here, we describe the system architecture of AMOD Controller. AMOD Controller is designed
in a modular manner. The modularity in designing AMOD Controller allows us to easily test
different scenarios and management algorithms by simply replacing necessary sub-modules
of the controller. Additionally, AMOD Controller is a detachable component and can be
easily tested within different simulation frameworks.

In the next paragraphs, we describe architecture of different management levels within
AMOD Controller: planning, tactical and operational.

Planning Level At the planning level of AMOD Controller, AMOD Controller PL, we
decide on (i) the area where we want to deploy AMOD system), and (ii) the station locations.
The architecture of AMOD Controller at the planning level is presented in Figure 2.5. To
successfully run AMOD Controller at the planning level we require external sources of
information, such as network information and trips data. Based on the input we can decide
on the region where we can potentially implement the AMOD service. Then the demand
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Figure 2.5: Architecture of AMOD Controller at the planning level. The network informa-
tion and trips data (predicted demand for AMOD system) are fed to the Controller. Based
on the input, we decide on the operating area and the number and location of stations
(zones) for AMOD vehicles.

generation for the region is performed and based on the demand, we estimate the number
of zones and location of the distribution centers (facilities). The zones are not necessarily
equal in size, but we assume that each zone hosts exactly one station for the AMOD vehicles.
The stations are understood as distribution centers, where parking and charging facilities
for the vehicles are provided. One can understand the function of facilities for AMOD
vehicles similarly to the function of bus interchanges for the public transport buses. The
service coverage and demand generation are inter-correlated in our model and the detailed
description of the method is provided separately for each case study in Chapter 6. The
facility location models are more generic and explained in Chapter 3.

Tactical Level At the tactical level of AMOD Controller, AMOD Controller TL, we
estimate (i) the number of vehicles required to efficiently move people around, and (ii) counts
for the static rebalancing. The architecture of AMOD Controller at the tactical level is
presented in Figure 2.6. The number of vehicles required to run the service is optimized based

Figure 2.6: Architecture of AMOD Controller at the tactical level. The network information
and trips data are fed to the Controller based on which service coverage and the number
and location of zones are decided.

on the network data, the estimated demand and the location of stations. Counts for static
rebalancing between the stations are obtained from the model presented in Section 5.3).

Operational Level The models and algorithms within the operational level of AMOD
Controller, AMOD Controller OL, are organized into three main components: initialization,
online fleet management and vehicle tracking modules (Fig. 2.7). During the initialization
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Figure 2.7: Architecture of AMOD Controller at the operational level. AMOD Con-
troller OL comprises of three main components: initialization, online fleet management
and vehicle tracking. It dispatches vehicles to the traffic simulator and keeps track of their
location and statuses.

phase the configuration parameters from AMOD Controller Pl and AMOD Controller TL
are loaded and the connection to the database with the booking requests is established. The
online fleet management component establishes connection with Traffic Simulator and if
the connection is successful, it sends dispatches, e.g., requests Traffic Simulator to simulate
vehicle movement from its origin to the pick up point and from the pick up to the destination.
The online fleet management module is a core component of AMOD Controller and is
responsible for assignment, routing, rebalancing and pricing. AMOD Controller dispatches
orders to the simulator, which performs a simulation of the vehicles and returns vehicular
information (e.g., speed and location) to the vehicle tracking component that captures and
logs the results.
Next section describes functional organization of AMOD Controller at the Operational Level.

Functional Organization of AMOD Controller at the Operational Level AMOD
Controller OL is a centralized system, where the entire communication goes through a server
as presented in Figure 2.8. As presented in Figure 2.8 the ride requests (bookings made
through an app) are stored in the database. Each booking request consists of a time stamp,
customer id, origin and destination location. The AMOD server constantly pulls booking
information from the database. If there are no vehicles available, the booking is stored in a
booking queue (for a limited time). If the booking is not served within a predefined time, it is
discarded and logged as a not served trip. If there are vehicles available, then the assignment
algorithm (Chapter 4) is executed. Assigned vehicles are sent to the dispatcher, which
communicates the trips to the traffic simulator. To manage the AMOD system, the server
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Figure 2.8: Centralized communication of AMOD system. Ride requests (bookings made
through an app) are stored in the database. The AMOD server constantly pulls booking
information from the database and assigns vehicles to customers. Assigned vehicles are sent
to the dispatcher, which communicates the trip to the traffic simulator. To manage the
AMOD system, the server keeps track of the fleet of vehicles through the vehicle monitoring
module.

keeps track of the fleet of vehicles through the vehicle monitoring module. Additionally,
AMOD Controller OR dispatches vehicles for the rebalancing trips and for the battery
charging.

Class structure of AMOD Controller The manager is composed of different physical
elements such as AMOD vehicles, stations, and customers. The class structure of the physical
elements is presented in Figure 2.9. Physical elements belong to super class Entity and

Figure 2.9: Class diagram for the physical elements of AMOD system: super class Entity,
child classes Location, Vehicle, Customer and Station. A more detailed diagram is presented
in Appendix C.

inherit functionality from it. The child classes of Entity are: Location (or Node), Vehicle and
Customer. Station is a child class of Location. On top of the inherited functionality, each
element adds new functionality as presented in Appendix in Figure C.1. During simulation
the physical elements cannot be modified, e.g., the number of vehicles remains constant over
the simulation time. Attributes of these elements, which describe their current occupation,
change as the simulation progresses, e.g., a vehicle can be available at the beginning of the
simulation, however when it picks up a customer, then its status changes.

Other classes and structures describe actions and movements of customers and vehicles.
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They are presented in Figure 2.10.

Figure 2.10: Classes and structures describing actions within AMOD system.

Maps maintaining vehicles and customers flow Bookings, customers and vehicles
are stored in C++ map structures, which allows us for an easy access of the elements by the
keys, e.g., map of bookings contains keys and values, where key is the booking ID and value
is the Booking object. If we want to retrieve a particular booking we can find the entire
object by the ID. There are 3 basic maps at which AMOD Controller operates:

(i) available vehicles

(ii) booking requests

(iii) pick-ups

(iv) drop-offs

2.4.1 Framework for Autonomous Vehicles in SimMobility

As mentioned, the behavioral models in SimMobility operate in different temporal resolutions.
For the purposes of this dissertation, we focus primarily on the SimMobility Short-Term
(SimMobility ST), which simulates individual decisions and transportation network at the
sub-second level. AMOD Controller is an integrated, but detachable, component that imbues
SimMobility ST with the capability to simulate an AMOD system. The communication
framework of AMOD Controller and SimMobility ST is presented in Figure 2.11.

The models and algorithms in AMOD Controller are organized into three main components:
initialization, fleet management and vehicle tracking modules. The principal component is
fleet management, which assigns, dispatches and routes vehicles. This component is typically
reconfigured depending on the model being evaluated. In general, as presented in Figure 2.11,
initialization is triggered by AMOD Controller, which queries network information and trip
data from SimMobility. Based on the response from SimMobility, AMOD Controller selects
location of the facilities (stations for AMOD vehicles). The network structure and location of
the facilities are passed to the fleet management module, which performs real-time operation
of AMOD system. To perform assignment and rebalancing, the fleet management module
queries SimMobility ST for the current travel time on the network. Results of the assignment
and rebalancing are dispatched to SimMobility ST, which simulates vehicle movement and
provides a continues update on vehicles’ location and status. Vehicle tracking module receives
information from SimMobility, logs events and feedback the fleet management module.
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Figure 2.11: Framework enhancing SimMobility with dedicated AMOD Controller to
manage and simulate autonomous vehicles.

More detailed information about input and output for each stage of AMOD Controller is
presented in Appendix A.1.

2.4.2 Communication of AMOD Controller with SimMobility

To run AMOD Controller at the operational level, input from the planning and tactical level
are required.

SimMobility MT and AMOD Controller Planning Stage At the planning level, we
feed network and demand information from the simulator, i.e., SimMobility Mid-Term (Sim-
Mobility MT ), into the controller as presented in Figure 2.13. The network information passed
by SimMobility to Planning Stage consists on the list of nodes and edges. Nodes are described
by x and y coordinates in WGD84 (zone 48N) coordinate system. Edges, e.g., road lanes and
connectors are described by start and end node and the length. Demand information accepted
by AMOD Controller Planning Stage is the daily activity schedule (DAS) generated by
SimMobility MT. Each row of DAS consists of the following structure: person id is a unique
id for the person; tour_no describes sequence number of the trip for the person; tour_type
describes purpose of the trip, e.g., work-related trip; stop_no, stop_type, stop_location,
which is understood as trip destination; stop_zone, stop_mode, which is understood as
trip mode; primary_stop, arrival_time, departure_time, prev_stop_location, which
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Figure 2.12: The AMOD Controller handles fleet management of autonomous vehicles and
consists of five main components responsible for: (i) facility location, (ii) passenger to vehicle
assignment, (iii) routing, and (iv) empty vehicle rebalancing. AMOD Controller dispatches
orders to SimMobilityST, which performs a 0.1 second scale simulation of the vehicles and
returns vehicular information (e.g., speed and location) back to the fleet management module.

Figure 2.13: Integration of SimMobility and the Planning Stage of AMOD Controller.
AMOD Controller gets data, i.e., network and demand information, from SimMobility
Mid-Term Simulator.

is understood as trip origin; prev_stop_zone, prev_stop_departure_time, which is under-
stood as trip tart time. Based on the input from SimMobility MT, Planning Stage estimates
number and pattern of AMOD trips within the analyzed region.

AMOD Controller Planning Stage receives feedback (performance indicators) from AMOD
Controller Tactical Stage so that the ASPS estimates can be adjusted based on the feedback.

AMOD Controller Planning Stage does not send any direct feedback to SimMobility MT.
Indirectly, AMOD Controller Operational Stage communicates with SimMobility ST and
SimMobility ST feeds back the performance measures to SimMobility MT (compare Sec-
tion 2.1.

More details on structure and algorithms used by AMOD Controller Planning Stage are
presented in Section 2.4.
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SimMobility MT and AMOD Controller Tactical Stage AMOD Controller Tactical
Stage is set to estimate

(i) Number of vehicles required in the system, and

(ii) General travel pattern to optimize static counts for vehicle rebalancing.

Tactical Stage uses information provided by the Planning Stage:

(i) Location of stations,

(ii) Processed information from SimMobility MT in Planning Stage, i.e., network and
estimated demand as presented in Figure 2.14

Figure 2.14: Integration of SimMobility and the Tactical Stage of AMOD Controller.
AMOD Controller Tactical Stage gets data from the Planning Stage, i.e., network information,
estimated demand, and location of stations. Note that network and demand data are indirectly
received from SimMobility MT.

SimMobility ST and AMOD Controller Operational Stage Integration of SimMo-
bility and the Operational Stage of AMOD Controller is presented in Figure 2.15. AMOD

Figure 2.15: Integration of SimMobility and the Operational Stage of AMOD Controller.
AMOD Controller Operational Stage gets initialization data from the Planning and Tactical
Stage, i.e., network information, estimated demand, and location of stations. It performs
assignments of vehicles to (passenger or empty) trips and dispatches trips to SimMobility.
SimMobility updates the Controller with positions of the vehicles.
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Controller Operational Stage gets initialization data from the Planning and Tactical Stage,
i.e., network information, estimated demand, and location of stations. It performs as-
signments of vehicles to (passenger or empty) trips and dispatches trips to SimMobility.
SimMobility updates the Controller with positions of the vehicles so that the Controller can
update the dispatch orders. Every dispatch consists of the following message being sent to the
simulator: veh_id is a unique id for the vehicle which is being dispatched; destination_id
which is the destination node id (it may be a pick-up or drop=off or end of the rebalancing
trip); way_points which is a list of nodes and edges (a path) which vehicle should take.
Upon dispatch, AMOD Controller through the update module keeps track of all its vehicles
and assigns them to new trips, e.g., to drop-off location after picking-up the customer.

2.5 Run-time Operation

The AMOD Controller handles fleet management of autonomous vehicles. Its fleet manage-
ment component, which is a core component, consists of five main subcomponents responsible
for: (i) facility location, (ii) passenger to vehicle assignment (including ride-sharing), (iii) rout-
ing, and (iv) empty vehicle rebalancing. During the run-time operation tasks of components
(ii), (iii), and (iv) are performed.

2.5.1 Reservation Procedure

A general view of the reservation procedure The AMOD fleet is assumed to be ho-
mogeneous consisting of 2-seater autonomous cars. Each vehicle changes its role dynamically
based on the requests from passengers, i.e., each vehicle can serve as a private and shared
AMOD vehicle. There are two roles for vehicles:

(i) single-rider AMOD, p-amod, serves a single passenger providing a door-to-door service.

(ii) shared AMOD, s-amod, serves maximum of 2 bookings providing a door-to-door service
for all customers (usually at an increased service time).

As presented in Figure 2.16 each passenger gets two offers from the AMOD pre-booking
system (for private and shared ride) and he/she chooses to accept one of them or reject
both. A ride request consists of the following information: (i) Pick-up and drop-off locations
(ii) Time of the booking request Note that the customer can only request an immediate ride
(no advanced booking is allowed). The trip offers are generated according to first-in first-out
(FIFO) order (to reduce the computational burden) and are based on the current state of
the system. Each offer has following attributes:

(i) Service type (p-amod, s-amod),

(ii) Estimated pick-up time,
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Figure 2.16: Reservation procedure. The AMOD customer request a ride by specifying
origin and destination of the trips. The server sends back two offers: for single-rider and
shared trip. The server provides estimated pick-up and drop-off time and estimated price for
both options. To confirm (or cancel) the booking the customer selects one of the options or
rejects both. Pseudo-code for the implementation of the reservation procedure is presented
in Algorithm 2.1

(iii) Estimated drop-off time,

(iv) Fare.

Pick-up and drop-off time for single-riders are obtained based on the estimated arrival time
of the nearest available vehicle. For the shared rides the upper bound of waiting and travel
times are provided. For the shared ride we allow a 30% increase in waiting and travel time
(compared to the private ride). We also provide a 30% reduction in the fare due to shared
ride.

The customer selects the offer (p-amod, s-amod or reject) based on her/his personal attributes:

(i) Sensitivity to increase in commuting time, and

(ii) Sensitivity to price increase.

Currently the above attributes are synthetic, i.e., generated at random for each customer.
To give an example, if a customer is sensitive to price, he/she will not accept any increase in
price.
Pseudo-code for the implementation of the reservation procedure is presented in Algorithm 2.1.
The AMOD customer request a ride by specifying origin and destination of the trips. AMOD
server sends back two offers: for single-rider and shared trip. When the offer is send to the
customer, the system suggests to share the ride. The customer evaluates the suggestion,
and possibly, agrees to share. At this time, she/he can also decide to cancel the booking.
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Algorithm 2.1: Reservation procedure

Data: availableVehicles, bookingQueue
Result: accepted single-riderTrips, accepted SharedTrips

1 if bookingsQueue is empty then
2 break
3 end
4 for bookingQueue do
5 if wait time exceeded then
6 discardBooking
7 end

8 end
9 if no vehicles available then

10 break
11 end
12 for bookingQueue do
13 generateTripOffers
14 selectOffer

15 end

The reservation function is not triggered if there are no ride requests or no available vehicles.
Customers stay in the queue only for a limited time (e.g., 5 minutes) and leave the system
if they do not receive any offer within this time. Also note that the waiting time here is
measured from the customer’s arrival time until he/she gets an offer, i.e., it is not equivalent
to waiting time to being picked-up by a vehicle. Based on the customer’s decisions the
AMOD Controller optimizes the assignment of vehicles, which is described in details in
Chapter 4. AMOD server keeps track of vehicle positions and statuses, which is taken into
account when optimizing the system.

2.5.2 Run-time Event Structure

In addition, this server is based on an event system so that all sub-modules just wait until
the desired type of event has occurred. The event structures of the AMOD operation are
presented in Figure 2.17 and Figure 2.18.

Booking management The simulations are discrete in time, with time step of 0.1-1.0
second. Bigger time step speeds up the simulation runtime, however at a cost of some
accuracy in driving behavior. Besides the discrete time frame, the progression of simulation
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is also event-based. The event structure for managing the trip requests is presented in
Figure 2.17. After the booking is received, the customer is prompted for the willingness

Figure 2.17: Event structure for managing the trip requests. All events are logged with the
time stamp and IDs of the entities. If the process is distracted, e.g., due to the simulator’s
error, the error event is logged and the booking is destroyed.

of getting a shared ride (the pre-booking system, which is responsible for providing the
options to customers, is presented in Section XX). If the customer accepts a shared ride,
SharedBookingServiced and SharedVehicleDispatched events are triggered. For each pick-up
and each drop-off an event is risen (FirstPickup, SecondPickup, FirstDropoff, SecondDropoff,
respectively). After the second drop-off, the vehicle becomes available. A similar event
structure is designed for a single-booking ride. All events are logged with the time stamp,
IDs of the entities and coordinates (where applicable). If the process fails, e.g., due to the
simulator’s error, the error event is logged and the booking is destroyed.

Vehicle management The event structure for managing the vehicles is presented in
Figure 2.18.

As a simple example that has been implemented, consider a first-in-first-out (FIFO) service
that assigns to each customer the nearest available vehicle (in terms of shortest-path distance).
The AMOD vehicles are routed with the least cost path between two different locations,
where the cost is proportional to the traversed distance. After dropping off passengers,
vehicles can either return to the originating station, the closest station or simply wait at
the drop-off location for a service request. The implemented model of AMOD Controller
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Figure 2.18: Event structure for managing the vehicles. All events are logged with the
time stamp and IDs of the entities. If the process is distracted, e.g., due to the simulator’s
error, the error event is logged and the vehicle is resurrected with the time delay at the
station of the destination.

is summarized in Figure 2.18. More sophisticated assignment and routing algorithms are
embedded into the Controller as presented in Chapter 4.





Chapter 3

Facility Location

This chapter focuses on the most important strategic aspect of management of AMOD
systems—selecting the number and location of new facilities. Intuitively, the spatial distribu-
tion of demand in a city is non-uniform and hence, strategically placed facilities can reduce
customer waiting times and the fleet size. In traditional MOD systems (e.g., bike-sharing
or car-sharing), accessibility to the stations (in terms of distance from your location to the
station) is a critical factor, because people must walk to get a vehicle. In AMOD systems,
customers do not have to walk to get a vehicle, but location of the vehicles can influence
waiting time of passengers.

The facility location problem (FLP) presented in this chapter is closely related to the offline
rebalancing method, which is described in Chapter 5. In the literature, these two decision
levels are generally treated separately [Repoux et al., 2015]. However, facility location
influences directly operational decisions and vice versa. In this dissertation we attempt to
correlate and merge together these different aspects of an autonomous mobility on demand
systems.

3.1 Background

Facility location problems is a strategic planning decision, which seeks to solve for a number
and locations of a set of facilities to minimize the cost of satisfying a set of customers
with respect to some set of constraints [Farahani and Hekmatfar, 2009, Liu, 2009, Boyaci
et al., 2015]. The cost is typically associated with fixed (e.g., investment) and variable
(e.g., conveying from facilities to customers) cost. The facilities are usually characterized
by their number, type (e.g., size), and cost. Facility location is critical element in strategic
planning for a wide range of problems and it influences numerous operational and logistical
decisions [Farahani and Hekmatfar, 2009]. FLP models are used in a variety of applications.
Some of them include locating warehouses within a supply chain to minimize the average
time to market, locating noxious material to maximize their distances from the public,
locating railroad stations to minimize the unpredictability of delivery schedules, locating
automatic teller machines to serve bank customers better, etc. It is also closely related to

47
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similar problems in communication networks, logistics and distribution systems [Carlo et al.,
2012].

3.1.1 Basic Classification of Facility Location Problem

The FLP problems can be classified into continuous and discrete space. The continuous FLP
assumes that facilities can be located anywhere within the analyzed area and are referred to
as site-generation models since the generation of appropriate sites is left to the model at
hand. Solution to the continuous FLP does not consider any specific locations and therefore,
is likely to select a facility location that is infeasible. However, the solution can still be useful
to identify a region in which the facilities should be located. The discrete FLP assumes that
the facilities are selected from pre-identified locations and are referred to as site-selection
models since we have a priori knowledge of the site candidates [Farahani and Hekmatfar,
2009, Carlo et al., 2012]. Clearly, the discrete FLP has a much smaller solution space than
the continuous FLP. The most widely studied model in discrete space is uncapacitated FLP,
UFLP. In this problem we are given (i) a set of potential customers, (ii) a set of potential
facilities, (iii) cost of opening each single facility, and (iv) distance between all elements
satisfying triangle inequality. The goal is to select (open) undetermined number of facilities
and assign each customer to an open facility such that the sum of the total opening cost
and total service cost is minimized. This NP-complete problem has been studied in the
literature extensively and there exist some successful approximation algorithms to solve the
problem [Vogel and Mattfeld, 2004]. One of the most efficient solution techniques for this
problem, presented and reviewed in [Verter, 2011], is as a dual-based algorithm [Erlenkotter,
1978]. In many cases, it is more realistic to incorporate the capacity limitations on the
facilities. This problem is known as capacitated FLP, CFLP and it is a generalization of
the uncapacitated problem. In contrast to the UFLP, each facility in CFLP can provide
limited quantity of product. Although mathematical models of those problems not very
differ much, but solving methods for CFLP are more difficult. Based on [Verter, 2011], the
most efficient algorithms for CFLP are the cross-decomposition algorithm [Van Roy, 1986]
and the Lagrangean-based approach [Beasley, 1988].

Models of FLPs can differ in their formulations. An overwhelming majority of the proposed
algorithms aim at minimizing the total fixed and variable costs relevant to the location
problem under consideration. In general, we distinguish six components that describe facility
location problems:

(i) customers, who are assumed to be known a priori,

(ii) set of potential facilities that will be located (in case of discrete space model),

(iii) a space in which customers and facilities are located,

(iv) the objective function,
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(v) the number and size of facilities to be located, and

(vi) a metric that indicates cost (distances or time) between customers and facilities.

Covering problem One of the most popular models among facility location models is
covering problem [Farahani et al., 2012]. In most of the covering problems, customers are
served by facilities depending on the distance between the customer and facilities, i.e., the
customer can be served by the nearest available facility. The concept of covering problems can
be classified in two categories: (i) Set Covering Problem (SCP) where coverage is required,
and (ii) Maximal Covering Location Problem (MCLP) where coverage is optimized. Both
models are analyzed in this dissertation (see Section 3.2 for more details).

3.1.2 Related Work

The research focusing on the strategic problems regarding the number and locations of
facilities for mobility-on-demand systems is very broad [Shu et al., 2010, Lin and Yang,
2011, Martinez-Barbera and Herrero-Perez, 2012]. In the related problems [Boyaci et al.,
2015, Carlo et al., 2012, Chen et al., 2013, Correia and Antunes, 2012, Farahani and Hekmatfar,
2009, Garcia-Palomares et al., 2012, Larsen et al., 2013, Lin and Yang, 2011, Kumar and
Bierlaire, 2012], facility locations are optimized based on the expected demand for the service.
[Lin and Yang, 2011] address the strategic planning of public bicycle sharing systems. The
authors propose an integer nonlinear program to model an integrated decision problem,
which determines (i) where to locate the bike stations, (ii) where to build the bicycle lanes,
and (iii) what paths should be used for users from each origin to each destination. Due to
the complexity of the model, it is only applicable to small scenarios. [Martinez-Barbera and
Herrero-Perez, 2012] presents an heuristic mixed integer linear program, that simultaneously
optimizes the location of stations, the fleet size and relocation activities required in a regular
operation day of a bike-sharing system. The results show the spatial distribution and
capacities of docking stations and the cost structure for introducing different scenarios of
the bike-sharing scheme. [Garcia-Palomares et al., 2012] proposes integration of location-
allocation models with one of the most commonly used commercial GIS. The authors applied
the proposed methodology for the optimal location and capacity of bike-sharing stations in
the city center of Madrid. Facility location for car-sharing services are usually formulated in
a similar way. In general, one of the main problems faced by the car-sharing businesses is
finding the locations to park the vehicles. These locations should be chosen by attractiveness
of various parameters such as the socio-demographic-economic profile of the population that
resides or works at the location and accessibility of other forms of public transport in that
location [Boyaci et al., 2015]. However the presence of one or more stations in the vicinity and
the type of vehicles placed in a station are also critical for decision-making. The overarching
problem addressed in [Correia and Antunes, 2012] is how to select sites for locating depots
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in order to maximize the profits of a one-way car-sharing organizations. Their approach is
based on mixed-integer programming model which maximizes the total profit of a car-sharing
operator. The approach is illustrated by the case study of Lisbon, Portugal. [Kumar and
Bierlaire, 2012] use two-step procedure to optimize the new station locations for an existing
car-sharing service in the city of Nice, Switzerland. At the first step, the authors analyze
the performance of an electric car-sharing service across different stations (the performance
of the station is measured by the average number of rides per day), and estimate the driving
factors (attractiveness measures) for people to use the service. Secondly, the authors use
the attractiveness measures to find the best locations for new stations so that the overall
performance of the system is maximized. Literature on electric vehicle charging stations also
highlights the importance of facility (in this case charging stations) location problem. It is
commonly agreed that availability of charging stations will impact EV adoption rates [Chen
et al., 2013]. The charging stations should be (i) pervasive enough such that an EV anywhere
can easily access a charging station within its driving range, (ii) widely spread so that EVs can
cruise around the whole city upon being recharged [Lam et al., 2014]. There is an increasing
number of research in the domain of charging stations for EVs. [Wang et al., 2010] present a
numerical method for the layout of charging stations using a multi-objective planning model.
The authors design their algorithm based on demand priority and the usage of the existing
gas station. They apply their algorithm to the city of Chengdu, China. [Wang et al., 2013]
formulates a quantitative method for location of charging facilities. The model is based on
the conversion of oil sales to electricity sales, which correlates replacing traditional gasoline
vehicles with electric vehicles. [Liu et al., 2013] identifies the optimal sites of EV charging
stations by a two-step screening method with environmental factors and service radius of EV
charging stations considered. Then, the authors apply a modified primal-dual interior point
algorithm for the optimal sizing of EV charging stations with the minimization of total cost
associated with EV charging stations. The algorithm is tested on the IEEE 123-node test
feeder and the results show that the algorithm improves the overall electric grid performance.
[Lam et al., 2014] prove that the problem of location of charging stations is nondeterministic
polynomial-time hard. The authors propose four solution methods to tackle the problem:
(i) iterative mixed integer linear program, (ii) greedy approach, (iii) effective mixed integer
linear program, and (iv) chemical reaction optimization. The work is concluded that each
method is suitable for different situation depending on the modeler’s requirements. [Wang
et al., 2016] formulate the problem of the electric vehicle charging station placement for
public buses. The authors use relaxation of the integer linear program.

3.2 Model Formulation

In this dissertation, we address the problem of the design of an autonomous mobility on
demand system. More specifically, in this section we present model formulation for the facility
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location problem. We develop exact methods for deciding on the location of distribution and
charging stations in a [station-based] autonomous mobility on demand system that provides
one-way trips to its users. We conduct computational experiments on the data created based
on estimated AMOD trips in the extended CBD in Singapore.

3.2.1 Problem Definition

In this section we describe definitions, terminology and assumptions used for the model
formulation. We formulate the facility location problem as a discrete optimization problem.
For this reason we provide some details on the discretization which is performed based on
the SimMobility’s road network.

Representation of the road network Road network used in this dissertation is repre-
sented as a graph. An example of a simple road network represented as a graph is shown
in Figure 3.1. Graph G is a set of vertices V (nodes), which are connected by edges E

Figure 3.1: A general weighted graph representing a road network. Circles are nodes
(intersections) labeled with unique node IDs, while arrows are the edges. Each arrow is
characterized by weight (cost) associated with traveling from the origin to the destination
node, i.e., cost of traveling from node 1 to node 5 (and from node 5 to node 1) is equal 5.
The road network consists of two-way and one-way roads, which can be easily read from the
graph. Note, that the graph satisfies the triangle inequality.

(arcs). A vertex in a graph is associated with at least one arc, while an arc is associated
with exactly two vertices. There are a few basic types of graphs depending upon the number
of vertices, number of edges, interconnectivity, and their overall structural properties. (i) A
graph may be undirected, in which edges have no orientation, or directed, in which edges
are directed from one vertex to another (compare examples in Figure 4.2). A directed graph
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G = (V,E) consists of a set V of vertices and set E of directed edges, where a directed edge
is an ordered pair (i,j) of distinct nodes. In a directed graph, for any arc (i,j), we say that i
is the start node and j is the end node. In a directed graph, a vertex is said to be a sink
node if there is no path to or from the vertex. (ii) A graph may be weighted, in which there
is a weight assigned to each edge. Without the weights, the graph is typically assumed to
be unweighted. (iii) A complete graph contains all possible edges. Otherwise, the graph
is incomplete. (iv) A walk from vertex u to vertex v in undirected graphs is defined as a
sequence of vertices, while a walk in directed graphs is defined as a sequence of vertices,
together with associate sequence of edges. A walk is said to be a path if all its nodes are
distinct [Bertsimas and Tsitsiklis, 1997]. For a weighted graph, length of the path is defined
as the sum of the costs of all edges in the path. The shortest path is a path from a given
origin node to a given destination node whose length is the smallest. For the graph shown in
Figure 3.1 the sequence 5, (5,10), 10, (10,7), 7, (7,6), 6, (6,5), 5, (5,1), 1 is a walk, but not
a path, because node 5 is visited twice. The sequence 10, (10,7), 7, (7,6), 6, (6,5), 5, (5,1),
1 is a path, but it is not the shortest path. (v) A graph may consists of a path starting and
ending at the same vertex, which is referred as cycle (closed walks). A graph consisting of no
cycles is known as acyclic graph. (vi) Edge-weighted graph satisfies the triangle inequality if
the graph has no shortcuts. This holds for any graph representing points in a metric space.
(vii) Trivial graph is a graph which contains only one vertex and no edges.

Road Network used in this dissertation Road network is represented as a weighted
directed graph. The graph is connected and consists of no cycles (no edges (v,v) are allowed
for all v 2 V ). The nodes represent points in a metric space. This implies that they satisfy
the triangle inequality [Atallah and Blanton, 2009]. The triangle inequality is property
that weight(u, v)  weight(u,w) + weight(w, v) holds for all vertices u, v, w. Informally, it
means that the graph has no short cuts. An example of the road network retrieved from
SimMobility is shown in Figure 3.2.

The road network used by AMOD Controller is taken from SimMobility. SimMobility’s
network is a comprehensive representation which provides information on all lanes includ-
ing pedestrian walkways and bicycle’s paths. It also gives detailed information on the
intersections, i.e., whether there are traffic signals and what are the turning groups.

The Extended Central Business District (ECBD) in Singapore, presented in Figure 3.2, is
highlighted in pink. The area of the analyzed zone is 57 km2, which is 8 % of the entire
Singapore area. This zone carries over 30% of the entire passengers’ traffic as most of the
daily trips are to and from CBD. The blue circles represent nodes and are located at the
drivers’ decision points, e.g., intersections, entrances or exits from the expressway. Nodes
are connected by links (edges), which represent road lanes. The analyzed road network is a
part of the entire network. The ECBD network is cut in such a way that there is no sink
and source nodes as they are substituted by u-turns. For any source or sink node which
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Figure 3.2: Road network of the Extended Central Business District (ECBD) in Singapore
(highlighted in pink). The network has been generated based on SimMobility’s network
information. Note, that circles represent nodes and are located at the intersections and other
decision points. Blue edges are road lanes. The ECBD network is a subset of the entire
Singapore network.

arose from the cut, a link from a neighbor node has been created so that the network is fully
traversable for vehicles. We believe this is a fairly realistic assumption given the fact that in
the real world vehicles can almost always make a u-turn.

Assumptions in the models We formulate facility location problem as a discrete opti-
mization problem. There are n potential facility locations and m passengers, who will be
served from these locations. We represent our set of potential facilities as a set of nodes in
a connected graph. Nodes are placed at the intersections and decision points of the road
network as presented in Figure 3.2. All edges in the graph are directed.

The problem is to find the best locations to place distribution centers for autonomous mobility
on demand vehicles. We were working on 3 case-study scenarios:

(i) A 14 km2 zone in the Central Business District in Singapore, consisting on 2945 nodes.

(ii) A 57 km2 zone in the Extended Central Business District in Singapore, consisting on
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1,255 nodes.

(iii) The entire Singapore network of 714 km2, consisting on 5,424 nodes.

In each formulation presented below, the set of potential facilities consists on all nodes
within the analyzed area. The demand generation is case specific. The detailed description
of the demand generation is presented is Chapter 6. A general rule is that the origin and
destination of all trips is always at nodes, i.e., trips never start in the middle of the link
or between the links, they are always approximated to the nearest node. For the facility
location problem we use 3 basic demand cases:

(i) For the 14 km2 zone we analyze the demand for the 2-hour period during evening peak
(5:00 PM to 7:00 PM) consisting on 28,525 trips within the region.

(ii) For the 57 km2 zone we analyze we analyze the demand for the 12-hour period from
3:00 AM to 3:00 PM consisting on 808,356 trips within the region.

(iii) For the entire Singapore we analyze we analyze we analyze the demand for the 12-hour
period from 3:00 AM to 3:00 PM consisting on 2,396,543 trips within the region.

In this chapter, we show application of the the models to the 57 km2 zone in Singapore
with the demand consisting on 808,356 trips. The remaining scenarios, as well as a complete
picture of scenario presented here, are presented in Chapter 6.

The following sections introduce models analyzed in this dissertation and the comparison
of their performance. The performance of each model is estimated based on the average
waiting time of passengers.

3.2.2 Distribution of Stations Based on Location Factor Rating

In this approach we select facilities based on the factor rating. We identify one factor which
is measurable and important to us: the proximity to the highest number of customers. We
do not consider other factors such as the geographic location and proximity to the offices or
shopping centers as we do not have this information. The model can be easily extended to
account for additional factors. We assume no capacity constraint on the facilities, i.e., each
facility could hold as many cars as required.

Location factor rating is defined as a function of the number of trips originating at each
node. In this formulation, we rank all nodes within the network based on the number of trip
origins, i.e., the highest rank is given to the nodes with the highest number of trip origins. If
there are two nodes with the same number of estimated trip origins, we give them the same
rating. After assigning the ratings, we select the first n nodes to be the stations for AMOD
vehicles. In the first cut-implementation, the number of facilities, n, is selected based on the
trial and error method through simulation of different number of facilities and based on their
performance score. This model is further extended to capture relation with the set covering
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model (presented in Section 3.2.4). The relation between two models is established in the
following way. We assume that the number of station in location factor rating model is:

(i) Equal to the number of facilities generated by the set covering model,

(ii) Equal to 130% of the number of facilities generated by the set covering model,

(iii) Equal to 70% of the number of facilities generated by the set covering model,

Station distribution based on the location factor rating is the first-cut implementation of
the facility location problem. By evaluating high-demand locations we are looking at the
difference in AMOD performance between simple and optimization-based approaches of the
facility location problem. We present our optimization-based approaches in the following
subsections.

There are few limitations of the model. The formulation may be bias towards some specific
areas within the city, e.g., model may generate too many stations in the CBD areas where
many commuters start or end their trips leaving some neighborhoods with no stations in the
proximity. It also does not account for the capacity of the stations and number of charging
infrastructure required by the system.

3.2.3 One Station for the Entire System

It is a problem of locating one centralized station (depot) for the entire AMOD fleet. There
was no capacity constraint on the depot, i.e., the facility could hold as many cars as required.
We use the Center of Gravity Technique, or weight center, to locate the depot (based on
Equation 3.1). This technique is a quantitative method for locating one facility at the center
of movement in a geographic area based on weight and distance.

x =

Pn
i=1 xiWiPn
i=1Wi

, y =

Pn
i=1 yiWiPn
i=1Wi

(3.1)

At each demand point i 2 N we have Wi number of customers. We locate a depot at (x,y)
location, which is at the gravity center.
The problem with this approach is that the resulted coordinates are based on straight-line
distances, which may not be accurate for the real road distances. However, similarly to
Section 3.2.2 we aim here to cross-check if the facility location influences significantly the
design of the AMOD system.

3.2.4 Stations Based on the Set Covering Problem

The set covering problem is one of Karp’s 21 NP-complete problems [Karp, 1972]. In
covering problems, customers need to be with a specific distance through facilities which



Chapter 3. Facility Location 56

are servicing [Farahani and Hekmatfar, 2009]. In order to formulate the FLP as a classical
maximum coverage problem, we use the integer programming technique (as presented
in [Bertsimas and Tsitsiklis, 1997]). We define a binary decision variable xj for each
location j, which is equal to 1 if facility j is selected, and 0 otherwise. Next, we define a set N
containing all stations n 2 N and a maximum acceptable service distance S. In our case we
assume S = 4km (if vehicle moves 40 km/h, customer waits 0.1 hr). A set of the potential
facilities Ni within S, so that Ni = {j|dij  S}, The set covering problem is formulated in
Equation 3.2. Objective function of the model is to minimize number of required facilities
covering all demand points.

minimize
nX

j=1

xj

subject to
X

j2Ni

xj � 1, i = 1, ...,m

xj 2 {0, 1} , j = 1, ..., n

(3.2)

The objective function minimizes the total number of facilities. First constraint shows the
service requirement for the demand node i. Second constraint is the integrality constraint.

Equivalent formulation of the problem is presented in Equation 3.3.

minimize
nX

j=1

cjxj

subject to
nX

i=1

aijxj � 1, 8i, i = 1, ...,m

xj 2 {0, 1} , j = 1, ..., n

(3.3)

In this formulation the objective function minimizes the cost of locating facilities (cj is the
cost of placing facility xj). We assume that cj = 18j. We introduce a binary parameter aij

which is equal 1 if distance from candidate facility j to the customer i is not greater than
S. In order to cover all demand nodes, first constraint enforces that for each demand node,
at least one facility must be located within distance S. Second constraint is the integrality
constraint.

Greedy algorithm to solve the set covering problem The set covering problem is
found to be NP-hard [Karp, 1972]. One of the methods to solve this problem is the greedy
polynomial time approximation algorithm. First we define service radius S and discretize the
demand based on the nodes in the network. Then, we evaluate the coverage within distance
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S for all potential facilities and run Algorithm 3.1.

Algorithm 3.1: Greedy approximation for the covering set problem

input :D, N
output : sN

1 repeat
2 pick the set that covers the maximum number of uncovered elements
3 mark elements in the chosen set as covered

4 until all elements are covered

Out input is a set D consisting of n customers (demand) and a collection N consisting of j
subsets of U (representing coverage of all potential facilities). Our goal is to select as few
subsets as possible from N such that their union covers U. The output of the algorithm is
sN, which is a subset of N.

3.2.5 Stations Based on the Maximal Coverage Problem

In this formulation we assume that the resources are not sufficient to cover all of potential
customers with desired level of coverage, i.e., we can only place a limited number of facilities.
This model (introduced by [Church and Velle, 1974]) maximizes the amount of demand
covered within the distance S by locating a given fixed number of new facilities. The
formulation of the Maximal Covering Problem is an intuitive extension of the Set Covering
Formulation with an additional constraint on the number of selected facilities. In other
words, we aim to cover as many customers as possible by a fixed number of facilities. To
formulate the problem, we introduce index i as the index of demand nodes and j as the
index for potential facilities. In our case the number of demand nodes and potential facilities
are equal. We define hi as the number of demands at node i and S as service time (or
coverage distance). The maximum number of stations to be located is P. We introduce a
binary variable, xj , indicating if a facility is positioned at j or not, and a binary decision
variable zj indicating if node i is covered (1 if yes, otherwise 0). The problem formulation is
presented in Equation 3.4.

maximize
X

i

hizi

subject to zi 
X

j

aijxj , 8i

xj  P

zi 2 {0, 1} , 8i

xj 2 {0, 1} , 8j

(3.4)
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The objective maximizes the number of customers covered by the stations. First constraint
states that demand node i is covered if there exists at least one facility at one of the potential
sites which is able to cover node i. Second constraint limits the number of located facilities
to P. The last two constraints are integrality constraints.

Greedy algorithm to solve the set covering problem The Maximal Coverage Prob-
lem, similarly to the Set Covering Problem, is found to be NP-hard [Karp, 1972]. One of
the methods to solve this problem is the greedy polynomial time approximation algorithm
introduced in Algorithm 3.1.

3.3 Results

In this section we present analysis of the facility location methods. Methods are evaluated
in terms of the customers’ waiting time (from booking request until the pick-up). Note,
that the simulation assumptions and complete analysis of the AMOD system is presented in
Chapter 6.

Data In order to estimate the potential demand of an AMOD system, we use the data for
the taxi rides in Singapore. We filter the data for the extended Central Business District
area including incoming and outgoing trips. The data are obtained from the Comfort Taxi
provider in Singapore through the Singapore-MIT Alliance for Research and Technology. The
data consist of 2 weeks traces of the taxis including their statuses, e.g., available, passenger
on board. We run the analysis on the network of 5424 nodes. To evaluate performance of
the facility location models we run 10 simulations for each model and compare the average
waiting time for each model. As our customer’s locations the trip origins are selected
(destinations are not taken into account when optimizing the facility location). We limit the
sampling period to the morning peak period (6am until 9am) and evening peak period (5pm
until 8pm), which helps us to capture all most important points of interest (home and work
locations). The model generated a total demand in the study area of 418,383. The location
of the potential depots was determined using the models described in Section 3.2.

3.3.1 Model Evaluation

In this analysis we test performance of the facility location as a function of both, the coverage
radius and facility location model. The coverage radius is a parameter for all facility location
models presented in this thesis. Therefore, we evaluate facility location models with different
values of the coverage parameter. The coverage radius we test ranges from 500m to 2500m
(Table 3.1). For each coverage radius we evaluate three alternatives:
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Table 3.1: Setup for the facility location analysis. CR is the coverage radius for each
station; MNF is the minimum number of facilities based on the set covering problem, 70%C
is the solution to the maximal coverage problem with the number of facilities open equal to
70% of the number of facilities facilities open in MNF solution; MFO is the solution to the
location rating formulation based on the most frequent trip origins

CR [m] MNF 70%C MFO

500 89 62 89

750 50 35 50

1,000 36 25 36

1,250 29 20 29

1,500 18 13 18

1,750 13 9 13

2,000 11 8 11

2,250 10 6 10

2,500 7 5 7

(i) Solution to the set covering problem, which gives us the minimum number of facilities
required for covering the entire demand within the given coverage radius,

(ii) Solution to maximal coverage problem which gives us maximal coverage of the demand
by 70% of the number of facilities required to cover the entire demand (70% of the
number of facilities in the set covering problem),

(iii) Solution to the distribution based on the location factor rating. In this model we
choose the most popular origins of the trips. The number of facilities we select in this
formulation is equal to the number of facilities selected by the set covering problem.
Note that no specific radius is directly evaluated in this model. We only choose the
number of selected facilities to be equal to the optimized distribution of the same
number of facilities.

As presented in Table 3.1 for the smallest radius of 500m we need as many as 89 facilities
when solving for the minimum number of facilities to cover all demand points. We also test
the case where we are able to open only 70% of the facilities required by the set covering
model. This case is solved with the maximal coverage formulation restricting the number of
station to 70% of the set covering solution. The visualization of the output for the service
radius of 2,000 m is presented in Figure 3.4. Waiting time for each formulation is shown in
Figure 3.3. The results show a general trend that the waiting time increases as we increase
the service radius. This may be explained by the fact that if we have fewer number of
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facilities, they are more spread over the region and therefore, the vehicles need more time
to drive from the facilities to most of the locations. This trend is valid across all models.
Further, we conclude that when we place facilities based on the set covering problem (blue
line on the graph), the customers wait 1.5 minute shorter to be picked-up than for the case
where facilities are placed at the high demand nodes. This gives us an insight that even if
we place stations at high demand nodes, there is still a significant number of customers who
are not within proximity of the station. Furthermore, our results suggest that placing fewer
facilities, which locations are optimized, performs better than a higher number of facilities
placed purely based on our location rating (green line vs read line on the graph), e.g., it is
more desired to place 62 optimized facilities rather than 89 facilities which are purely based
on the location rating. To support the claim, Figure 3.4 shows a graphical representation
of the output from each model for the case of the coverage radius equal to 2,000m. In this
figure we can see clearly that for the stations based on the location rating we tend to cluster
facilities at one region leaving a significant part of the region not covered. Given the travel
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Figure 3.3: Customer waiting time as a function of the service radius of facilities. The
results show a general trend across all models that the waiting time increases as we increase
the service radius. Placing fewer facilities, which locations are optimized, performs better
than a higher number of facilities placed purely based on our location rating (green line vs
read line on the graph). Placing facilities based on the set covering problem gives us the
shortest waiting times (blue line).

time information, we know that the mean travel time on the network is 13 minutes. Based
on our analysis, we conclude that up to 15% of the additional commuting time can be saved
by simply optimally placing the same number of station stations rather than placing them
based on the location rating. The average rate of the waiting time increase is 0.5 minute, 1.1



Chapter 3. Facility Location 61

103.78 103.8 103.82 103.84 103.86 103.88 103.9 103.92

1.26

1.28

1.3

1.32

1.34

1.36

xPos

yP
os

Facilities at High Demand Nodes: 10 Facilities

103.78 103.8 103.82 103.84 103.86 103.88 103.9 103.92

1.26

1.28

1.3

1.32

1.34

1.36

xPos

yP
os

Minimum Number of Facilities: 10 Facilities and 2250m Service Radius

103.78 103.8 103.82 103.84 103.86 103.88 103.9 103.92

1.26

1.28

1.3

1.32

1.34

1.36

xPos

yP
os

Maximal Coverage Problem: 6 Facilities and 2250m Service Radius

Figure 3.4: Facility location for different models: high demand nodes (left), set covering
formulation (middle), and 70% coverage (right).

minute and 0.4 minute for each 1 km of service radius for MNF, 70%C and MFO models,
respectively. Additionally, each additional station in the set covering problem reduces the
average waiting time by 1.2 second. In the maximal coverage problem the waiting time is
reduced by 3.5 seconds per one station added and in the location rating model by 1.0 second
per one station added. Therefore, the most significant improvement in the waiting time is
achieved with increase in the number of stations in the maximal coverage model. Finally, it
has to be noted that the analysis is dependent on the demand distribution. In our case the
demand was spread over the entire network (not clustered at only few locations).

Our results highlight the importance of the facility location problem for the performance of
an autonomous mobility on demand system. We conclude that it is the most desired for an
AMOD service to place facilities based on the set covering problem.

3.4 Summary

This chapter addresses strategic problem of facility location for an autonomous mobility on
demand system with regular (single-class) electric vehicles.

3.4.1 Chapter Summary

We formulated five different models to solve the problem:

(i) Stations at high demand nodes,

(ii) Stations at random locations,

(iii) One depot for the entire system,

(iv) Stations based on the maximum set covering problem,

(v) Stations based on maximal coverage.
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Our results suggest that the service radius of stations plays an important role in the
performance of an AMOD system. We observe that the shorter the service radius the shorter
the waiting time as vehicles need less time to reach customer locations. The analysis provides
us with the insight that the maximum set covering model proved to be efficient and sensitive
to different operational configuration for a medium to large case study (gives the shortest
waiting times for the customers with the minimum fleet size).

3.4.2 Limitations

We are aware that our results may change significantly if we change the fleet size, assignment
and rebalancing policies. Further extensions of the proposed solutions should consider:

(i) Geographic information, which is required for cross-checking of the feasibility of
potential locations;

(ii) Capacity of each station; at the current implementation each station can store as many
vehicles as needed, however we are aware that this assumption is not realistic.

(iii) Requirements for charging infrastructure at each station; in real situation electric
vehicles are running on batteries with limited range and therefore they have to be
recharged. In our work, we neglected the battery capacity and range of the vehicles. As
opposed to combustion engine vehicles, charging batteries of EVs may take significant
time during which vehicles are offline. Additionally, external factors such as weather
conditions may affect range of electric vehicles, e.g., EVs have lower fuel efficiency at
colder temperatures, decreasing how far the vehicle can travel without refueling.

(iv) Cost of placing new car parks may be affected by its location and number of parking
lots available; in the current study we assume that the stations do not differentiate by
price, i.e., the price was not a decision factor for placing facilities.



Chapter 4

Fleet Assignment

Operation of an AMOD system involves picking up and dropping off passengers, which is
intrinsically linked to many operational issues. Given a distribution (location) and capacity
of available vehicles, the fleet assignment problem faced by the operator is to determine which
vehicle should pick up which customer. This decision has a major impact on performance of
the system.

In this chapter, we develop optimization approaches specifically tailored to the dynamics
of an e-hailing environment where customers continuously enter and leave the system and
vehicles become available and busy based on the trips they serve. We build a simulation
environment based on the estimated travel demand for the city of Singapore, and use it to
test our assignment concepts.

The main contributions of this chapter can be summarized as follows:

(i) We develop optimization approaches for the dynamics of a practical AMOD system
where riders continuously enter and leave the system.

(ii) We build a simulation environment based on the estimated demand for the city of
Singapore, and use it to test our AMOD concepts.

(iii) We demonstrate the value of optimization approaches over greedy matching methods
in a dynamic AMOD system.

This chapter is organized as follows. Definitions, fundamental concepts and related work are
presented in Section 4.1. Proposed methods to solve the assignment problem in an AMOD
system are described in Section 4.2. Short notes on the demand management by introducing
price incentives are presented in Section 4.6. Finally, Section 4.7 discusses the results for
different assignment models and Section 4.8 provides the summary the chapter.

4.1 Introduction to the Assignment Problem

The assignment problem is one of the fundamental combinatorial optimization problems [Bert-
simas and Tsitsiklis, 1997]. It attempts to find a maximum weight matching (or minimum

63
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weight perfect matching) in a weighted bipartite graph. Mathematically, an assignment is
defined as a bijective mapping of a finite set into itself, i.e., a permutation [Burkard and
Cela, 1999]. In general, the problem has a number of suppliers and a number of consumers.
Any supplier can be assigned to any consumer, incurring some cost that may vary depending
on the supplier-consumer assignment. It is required to satisfy all consumers by assigning
exactly one supplier to each consumer and exactly one consumer to each supplier in such
a way that the total cost of the assignment is minimized [Bertsimas and Tsitsiklis, 1997].
If the numbers of suppliers and consumers are equal, then the problem is called the linear
assignment problem. Linear assignment problem corresponds to the perfect (maximum)
matching in graph theory, which is described in Section 4.1.2.

4.1.1 Basic Definitions and Terminology

In this section we provide definitions we use in the assignment formulation.

Online and Offline Algorithms Online, or dynamic, algorithms attempt to model a
real life situations, where the entire input is not available beforehand [Khuller et al., 1994].
The input is obtained incrementally, and the algorithm has to make irrevocable decisions to
respond to the input. Offline, or static, algorithms have the a priori knowledge about the
entire input. Typically, in real life situations, we have to find solution to the problem with
imperfect information. In this dissertation, we study the online algorithms for the assignment
problems. To evaluate the performance of an online algorithm, we measure the ratio of
its performance to the performance of an optimal off-line algorithm. The performance is
measured in the number of served customers and the average waiting time incurred by each
algorithm. For most online problems studied in the past [Khuller et al., 1994] randomization
helps in improving the performance. The simple deterministic first come, first served appears
to be the first on-line problem for which provably one cannot do better with randomization.

Representation of the Road Network Road network is represented as a graph. Formal
definition of the road network is provided in Section 3.2. For the completeness we provide
definition of bipartite graph, which is a special case of the general graph. A bipartite graph
is a graph G = (V,E), in which all vertices V are divided into two disjoint sets, V = V1 [ V2,
and every edge in E connects a vertex in V1 to a vertex in V2. A bipartite graph G = (V,E)

with partition V = V1 [ V2 is said to be a complete bipartite graph if every vertex in V1 is
connected to every vertex of V2. In general, a complete bipartite graph is not a complete
graph.

In this thesis, we focus on two graph representations:

(i) Road network graph: road network is represented as a weighted directed graph. The
graph is connected and consists of no cycles (no edges (v,v) are allowed for all v 2 V ).
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The nodes represent points in a metric space. This implies that they satisfy the
triangle inequality [Atallah and Blanton, 2009]. The triangle inequality is property that
weight(u, v)  weight(u,w) + weight(w, v) holds for all vertices u, v, w. Informally,
it means that the graph has no short cuts. Many problems involving edge-weighted
graphs have better approximation algorithms if the problem is restricted to weights
satisfying the triangle inequality [Atallah and Blanton, 2009]. An example of the road
network is presented in Figure 3.1.

(ii) Graph for the assignment : vehicles and customers are represented as a weighted
bipartite graph. Each vehicle v belongs to a set of vehicles V and each customer
(passenger) p belongs to a set of passengers P. Note, that both sets are disjoint and all
nodes Nall = V [ P . Edge e 2 E, which connects node v and node p represents the
cost of assigning vehicle v to passenger p. If edge e = {v, p} /2 E, this indicates that
node v and p cannot be matched. Informally, the edge does not exist if there is no
path from location of vehicle v to location of passenger p. An example of the bipartite
graph of vehicles and customers is presented in Figure 4.1

Figure 4.1: Two disjoint sets: vehicles (node 1-4) and customers (node 5-8). Figure on
the left shows both sets on a road network, while figure on the right shows its bipartite
graph representation. Note, that the two sets are disjoint and there are no edges connecting
elements within one set. Not all nodes are connected, i.e., there is no path between vehicle 4
and passenger 8. Weights of the edges are neglected in both representations.

4.1.2 Matching Problem in a Graph

A matching is pairing of items (or persons), so that each item is matched with exactly
one other item [Bertsimas and Tsitsiklis, 1997], e.g., it gives an assignment of suppliers to
consumers. To solve the matching problem, one have to calculate the cost of all possible
assignments. The cost is a function of the distance (or travel time) on the network and the
customers waiting time in the queue.

Formally, matching in a graph G = (V,E) is a collection of vertex-disjoint edges, that is, no
two edges share a common vertex. The goal is to find a matching which minimizes the total
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cost of assignment [Bertsimas and Tsitsiklis, 1997]. An example of matching is shown in
Figure 4.2. A matching is maximum (or maximum weight) if there is no other matching of

(a) {2, 4} , {3, 7} , {6, 9} (b) {4, 1} , {5, 2} , {3, 7} , {6, 10} , {8, 9}

Figure 4.2: Examples of matching in a general graph: matching in a general unweighted
graph (a), and maximal matching in a directed unweighted graph (b).

larger cardinality (or larger weight). A matching is maximal (or maximal weight) if there is
no other matching containing it which is of larger cardinality (or larger weight). A matching
is called the perfect matching if the matching contains n/2 edges (the largest possible),
meaning perfect matchings are only possible on graphs with an even number of vertices.
A perfect matching is sometimes called a complete matching or 1-factor. Every perfect
matching is a maximum matching and corresponds to the assignment problem introduced in
Section 4.1.

Known algorithms for matching in general graphs If the graph is general and un-
weighted, the Edmonds’ algorithm [Edmonds, 1965] and improvement by Micali-Vaziarani [Mi-
cali and Vazirani, 1980] can solve the problem in O(|E| |V |1/2). If the graph is general and
weighted, the Edmonds’ algorithm [Edmonds, 1965] with improvement by Galil [Galil, 1986]
solves the matching problem in O(|E| |V | log (|V |).

Matching Problem in Bipartite Graphs Matching in bipartite graphs is a special case
of the general matching problem. A matching in a bipartite graph is a set of the edges chosen
in such a way that no two edges share an endpoint. A maximum matching in bipartite graph
is a matching of maximum size (with the largest possible number of edges). It is globally
optimal. In a maximum matching, if any edge is added to it, it is no longer a matching.
There can be more than one maximum matchings for a given bipartite graph. The bipartite
matching is defined as a problem of finding a maximum cardinality matching between two
sets. A perfect matching is a matching in which each node has exactly one edge incident on
it. Matching in a bipartite graph is the perfect matching if the size of the matching equals
the number of nodes in each partition. Solution to the matching problem solves only for one
passenger in a car.
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Known algorithms for matching in bipartite graphs If the graph is bipartite and
unweighted, the Hungarian algorithm [Kuhn, 1955] and Hopcroft-Karp algorithm [Hopcroft
and Karp, 1973] can solve the problem in O(|E| |V |) and O(|E| |V |1/2), respectively. If the
graph is bipartite and weighted, the Kuhn-Munkers (Hungarian) algorithm [Kuhn, 1955]
solves the matching problem in O(|E| |V |2).

4.1.3 Related Work

Safety, traffic congestion, and environmental concerns have recently increased the interest in
services that allow people to use personal automobiles more wisely [Agatz et al., 2012]. As we
discussed earlier, mobile Internet technology has created opportunity to enable these dynamic
and on-demand transportation services, i.e., e-hailing applications. These services—especially
through the ride-sharing which aims to bring together travelers with similar itineraries—have
the potential to provide huge societal and environmental benefits by reducing the number
of cars used for personal travel and improving the utilization of available seat capacity.
The heart of the real-time e-hailing concept is the development of algorithms for optimally
matching vehicles (or drivers in traditional systems) and customers [Wang, 2013]. We have
seen in the literature a growing interest to address the optimization issues in the dynamic
assignment for autonomous mobility on demand systems but, as of today, the number of
specific contributions is still small. [Agatz et al., 2011] considers the problem of matching
drivers and riders for shared rides in dynamic settings. The authors formulate a bipartite
matching optimization problem and integer program to solve the assignment. Bipartite
matching is used for one-leg trips while the integer program is used when the riders want
to schedule a round-trip. They deal with uncertainty by using a rolling horizon approach.
Based on the simulation results for the metropolitan Atlanta region, USA, the authors show
that their methods lead to ride-sharing systems that generate larger overall system travel
cost savings. They also discuss the importance of sufficient numbers of participants to enable
dynamic ride-share matches to be established on short notice in practice, because it may
be difficult to attract enough participants to generate good matches, and this will likely
lead many potential participants to give up on the system. [Xu et al., 2015] attempts to
find the complex relations between ride-sharing and traffic congestion to evaluate the ride-
sharing enterprises. The authors propose a traffic assignment model that explicitly represents
ride-sharing as a mode of transportation. Their results indicate that the ride-sharing price
influences the congestion level, and within a certain price range, an increase in price may
reduce the traffic congestion. They also show that the utilization of ride-sharing increases
as the congestion increases. Therefore, for the AMOD service to be efficient and better
than the current systems, we have to carefully consider the adoption policies. [Furuhata
et al., 2013] present a classification to understand the key aspects of existing ride-sharing
systems. Some of the identified difficulties stem from the requirement of instantaneous
coordination of itineraries, schedules, and cost-sharing among participants and building of
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trust among unknown travelers in the systems. [Wang, 2013] in her dissertation presents
matching algorithms for dynamic ride-sharing systems. The author formally defines real-time
ride-sharing, identifies optimization problems for finding best sets of ride-share matches,
develops approaches for solving ride-share optimization problems, and tests the concepts
via a simulation study of work trips in the Atlanta metropolitan area. [Kleiner et al.,
2011] propose an auction-based mechanism to determine the driver’s compensation. This
approach takes into account the different ride valuations of individual riders. The auction
mechanism provides rankings of the bids received from passengers. The bids are ranked
based on the utility function of each driver. In this environment, higher driver compensations
correspond with more ride-share matches because drivers accept longer detours. [Geisberger
et al., 2009] suggest to divide the cost of the shared part of the trip evenly between the
customers who share the ride. [Amey, 2011] studies the ride-sharing potential at the MIT
campus in Cambridge, Massachusetts. The methodology seeks to improve upon previous
research by differentiating between modeled ride-sharing potential based on known trip
characteristics, and observed ride-share behavior, within the same commuting population.
The author formulates the problem as a general network flow problem with side constraints
to ensure that a commuter was not matched up as both a driver and a rider in separate
ride-share arrangements. The author concludes that disparity between the potential and
observed behavior suggests that the barrier to ride-sharing is in human attitudes rather than
incompatible trip characteristics.
There are also several papers consider using agent-based simulations with intelligent agents
to design a ride-sharing, or assignment, solutions. [Xing et al., 2009] consider an agent-based
ride-sharing system with the objective of maximizing the number of served riders. The drivers
and riders are matched en-route. The experimental results show that with sufficient number
of drivers, dynamic ride-sharing may be an attractive alternative to public transportation.
[Atasoy et al., 2015] introduces a demand-responsive personalized services to passengers.
The passengers have a flexibility to choose service type (taxi, shared-taxi and mini-bus) from
a menu that is optimized in an assortment optimization framework. For operators, there
is flexibility in terms of vehicle allocation to different service types. The system is built
based on a choice model and consumer surplus is taken into account in order to improve the
passenger satisfaction.
The ride-sharing problem can be seen as a special case of the vehicle routing problem with
pickup and delivery (VRPPD), which has been studied extensively [Agatz et al., 2012].
These problems involve scheduling of vehicles’ routes to satisfy transportation requests at
different locations. Typically, to operate the routes, a fleet of vehicles with a given capacity
is available. The pickup and delivery problem for ride-sharing focuses on transportation of
passengers which implies additional constraints on the passengers’ convenience, e.g., total
travel time, waiting time, the number of stops while on board. [Cordeau et al., 2007]
formulates the ride-sharing problem as VRPPD. However, the VRPPD is NP-hard since it
generalizes the Traveling Salesman Problem (TSP) commonly known to be NP-hard. The
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problem is usually solved with construction of heuristic algorithms [Cordeau et al., 2007].
Another approach known in literature to solve ride-sharing problem is The Dial-a-Ride
Problem (DARP). DARP is a particular case of the VRPPD arising in contexts where
passengers are transported between specified origins and destinations. In a dial-a-ride system
all vehicles typically operate out of one or more depot locations, however the riders do
not necessarily arise dynamically over time. [Psaraftis, 1980] study the immediate-request
case for the dial-a-ride problem with single vehicle in which a list of requests should be
served as soon as possible. The model presented by the author assumes no time windows
specified by the customers. The objective function minimizes the sum of route completion
time and customer dissatisfaction. The complexity of this algorithm is O(n23n). [Psaraftis,
1983] extends work presented in [Psaraftis, 1980] to handle time windows on departure
and arrival times. The algorithm uses forward recursion (as opposed to the backward
recursion presented in [Psaraftis, 1980]), however the complexity remains O(n23n), which is
applicable to solve only small instances. [Dumas et al., 1991] have proposed a set-partitioning
formulation and an exact column generation algorithm for the multiple-vehicle VRPPD. This
formulation is solved by a dynamic programming algorithm and the results show that the
algorithm is successful in solving two real-life instances with 19 and 30 requests. A similar
approach was developed in [Savelsbergh and Sol, 1998]. [Xu et al., 2003] proposed another
column generation method to address a complex pickup and delivery problem encountered
in long-haul transportation planning. The results presented by the authors reported that the
algorithm works on larger instances involving 500 requests. [Jaw et al., 1986] propose one
of the first heuristics for the multiple-vehicle DARP. Their algorithm imposes windows on
the pick-up times of inbound requests and on the drop-off times of outbound requests. The
authors have developed an insertion heuristic that selects users in order of earliest feasible
pick-up time and gradually inserts them into vehicle routes. The authors show results on
artificial instances involving 250 users and on a real data set with 2617 users and 28 vehicles.
More recently, [Cordeau and Laporte, 2003] have developed a tabu search heuristic for the
problem in which users specify a desired arrival time for their outbound trip and a desired
departure time for their inbound trip as well as their maximum acceptable travel time. The
search algorithm iteratively removes requests from its current route and reinserts it into
another route. The algorithm was tested on randomly generated instances with up to 144
users. Finally, [Agatz et al., 2012] presents a review of the challenges for the dynamic
ride-sharing system. Based on the review the authors concluded that there is a growing
interest from the research community to address the dynamic ride-sharing but there is still a
big room for contributions in the field. In particular, they see the future research in finding
fast optimization approaches for real-life instance sizes, incentive schemes to build critical
mass and optimization approaches that allow choice. This are the milestones we attempt to
address in this dissertation.
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4.2 Overview of the Assignment in AMOD Controller

As mentioned in Chapter 2, AMOD Controller optimizes the vehicle to customer assignment.
The optimization is performed based on the customer’s decisions for single-rider or multiple-
riders trips. Examples of single-rider and multiple-riders trips are presented in Figure 4.3.
We consider a specific settings for the dynamic assignment for the AMOD service, which

Figure 4.3: Single-rider (left) and multiple-riders (right) trip. For the single-rider trips the
vehicle is dispatched from its location to pick-up location (origin of the C1’s trip), and then
is dispatched to trips destination. Upon arrival at the destination the vehicle may idle at
that location or may be send to a new locations. For the multiple-riders the vehicle picks-up
first customer, later the second one, followed by dropping off and eventually going to a new
location.

is described in Figure 2.16 and Algorithm 2.1. By dynamic assignment, we refer to a
system where the AMOD provider matches vehicles and riders on a very short notice, or
even en-route. In this setting, the provider of AMOD system receives trip announcements
(bookings) from customers. Note, that customers have to be registered in the system before
they can make bookings. Every time a customer intends to book a ride, the AMOD provider
asks whether the customer is willing to share the ride. The AMOD server provides an
estimate of the fare, waiting time and travel time for each option (single-rider or shared
trip) to the customer. Based on the estimate the customer may choose to participate in a
ride-sharing to reduce travel costs. Each confirmed booking specifies whether the customer
intends to be a single-rider, or is flexible to share the trip. Booking also contains an origin
and a destination location. A customer announces his or her trip at the time he or she wants
to departure (immediate booking). The AMOD systems allows only immediate bookings,
and the customers can not book vehicles in advance. With this information, the provider
automatically establishes assignments, matching vehicles and riders. A trip announcement
(or booking) is said to expire if a successful match cannot be found within a predefined
time. The maximum waiting time is adopted differently for different case scenarios, e.g., it is
assumed to be equal 10 minutes for the extended CBD region in Singapore. To evaluate the
performance of our ride-matching optimizations, we propose a benchmark method which
provides an upper bound on the solution quality. The benchmark assignment is the offline
(static) model, which is introduced in this section. In the static variant, it it is assumed that



Chapter 4. Fleet Assignment 71

all driver and rider requests are known in advance, prior to the execution of a matching
process. Given this setting, we explore formulations of the assignment (with and without
ride-sharing) problem, in which the AMOD system seeks to minimize total system-wide
vehicle-miles, while satisfying all (or almost all due to those leaving the system before being
assigned) customers. Note, that this objective is aligned with societal objectives for reducing
emissions and traffic congestion. Furthermore, since this objective seeks to maximize the
total travel distance savings of all customers, it also minimizes total travel costs. Finally, if
the AMOD system is compensated for the travel cost savings, the objective is also consistent
with maximizing the revenues of the provider.

High level algorithm for the assignment Objective of the assignment is to minimize
total transportation cost while satisfying all the supply and demand restrictions. Given
two list of customers (willing to share the ride and those who choose single-rider trip), the
assignment aims to match available vehicles to waiting customers. This task is performed as
described in Algorithm 4.1.

Algorithm 4.1: High level algorithm for the fleet assignment.

input : accepted SingleRiderTrips, accepted SharedTrips, availableVehicles
output :Vehicle2Passenger assignment

1 if no vehicles available then
2 break
3 end
4 if no booking queue then
5 break
6 end
7 for SharedTrips do
8 pair customers for shared trip
9 match available vehicles to paired customers

10 end
11 remove assigned vehicles
12 for SingleRiderTrips do
13 match available vehicles to single-riders
14 end
15 dispatch assignedVehicles
16 erase dispachedVehicles from the list of availableVehicles

Algorithm 4.1 describes the high level model for matching vehicles with customers. Vehicle
assignment is run as two separate optimizations: for single-rider and shared trips. Input
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for the algorithm (list of customers willing to share the ride, list of customers not willing to
share, list of available vehicles) comes from the output of Algorithm 2.1, which is described
in Section 2.5.1. The output consists of the assignment of vehicles to trips. If there is no
vehicle available (line 1) or no booking queue (line 4), the algorithm breaks. Otherwise lines
7-16 are executed. For shared trips (line 7-10) we first pair the customers, which is detailed
in Section 4.4, and after finding a pair, we search for a vehicle to service the trip. For the
trips with one customer (line 12-14), we perform assignment as described in Section 4.3.
Next, we dispatch vehicles to the assigned trips and update the list of available vehicles.

The next two sections, Section 4.3 and Section 4.4, describe approach and algorithms for
matching without ride-sharing and with ride-sharing, respectively.

4.3 Assignment without Ride-sharing

In this Section we develop optimization-based approaches for finding optimal matches in
a standard problem setting, with the goal of minimizing total assignment cost, which is
equivalent to minimizing travel time to pick-up all customers.

Assignment, or matching, without ride-sharing aims to match vehicles to the customers,
who are single-riders. Single-riders are the bookings with one origin (pick-up point) and
one destination (drop-off point). Note, that in a single-rider booking, there may be more
than one person on board. We propose two methods to match vehicles to single-riders: (i)
greedy assignment, which is introduced in Section 4.3.1, and (ii) minimum weight bipartite
matching, which is described in Section Section 4.3.2.

4.3.1 Greedy Matching

To gain some understanding of the value of optimization-based approaches in the vehicle to
customer assignment problem, we compare our optimization-based methods with a greedy
algorithm. The greedy matching algorithm that we propose is a straightforward approach to
match riders and drivers without solving any optimization problem. The greedy algorithm
works as follows. Given a set of active bookings, we go over all bookings in the order of their
booking time. For each booking we determine which vehicle can pick-up the customer for the
smallest cost. If the vehicle in found, we assign it to the trip. In other words, we prioritize
the order of booking requests and therefore, whoever requests the ride first, is assigned to a
vehicle first (for each request we assign the nearest—in terms of the travel cost—available
vehicle).
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Algorithm for solving greedy matching Greedy matching is solved as presented in
Algorithm 4.2. This is a simple first-in-first-out, FIFO, algorithm.

Algorithm 4.2: Greedy matching for vehicles to single-riders assignment.

input : accepted SharedTrips, availableVehicles
output :Vehicle2Passenger assignment

1 if no vehicles available then
2 break
3 end
4 if no booking queue then
5 break
6 end
7 for SharedTrips do
8 findNearestVehicle
9 dispatch assignedVehicles

10 update the list of availableVehicles

11 end

4.3.2 Bipartite Matching

Suppose that an optimization procedure seeks to find the best vehicle to customer matches
from within the current set of open bookings. Therefore, we have two disjoint sets: open
bookings and available vehicles. If the total cost of all matches can be expressed as the sum
of the individual cost, we can represent this assignment problem using a maximum-weight
bipartite matching model. The bipartite matching problem can be solved using any linear
programming or network optimization tool. In our model we solve the bipartite matching in
batches, i.e., we collect the bookings for a period of time �t and at the end of each interval
we execute the bipartite algorithm. If we do not assign all open bookings at current iteration
(e.g., due to a limited number of the available vehicles), we leave them in a queue and consider
them during the next iteration, or until they exceed the maximum acceptable waiting time.
Note, that the waiting time may be taken into consideration when each individual assignment
cost is being calculated.

Formulation Let P and V define the number of passengers in the queue and the number
of available vehicles, respectively. For every time interval we solve optimization problem
which minimizes the cost of picking-up passengers. The cost of picking-up is a function of
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the expected passenger’s waiting time to be picked-up, which is described by Equation 4.1.

cij = td + fwtw (4.1)

Cost of assigning vehicle i to customer j, cij [sec], is the sum of waiting time from the
successful match (assignment) to the pick-up, td [sec] plus waiting time from opening the
booking request until the assignment, tw [sec]. Figure 4.4 shows partitions of the waiting
time. The waiting time, td = dij

save
is proportional to the distance between locations i and j,

Figure 4.4: Waiting time taken for the matching problem. Note that the total waiting
time consists of two parts: (i) the waiting time from booking announcement until vehicle
assignment, and (ii) from vehicle assignment until being picked-up.

dij [meter], and divided by the average speed, save = 8.2 m
s . The average speed was assumed

based on the Singapore statistics [Sun et al., 2014] for the arterial roads in Singapore. The
waiting time, tw, is the time the customer had to wait from the booking confirmation until
the vehicle assignment. Factor fw takes values between 0.0 and the positive infinity to
express the value of time before the assignment. This factor was established to highlight
importance of time before the assignment as the customers who are in the queue without
getting a vehicle are more likely to leave the system.

In formal definition of the problem, we introduce binary variable xij , which is true if vehicle i
is assigned to passenger j, and 0 (false) otherwise. The minimization problem is formulated
as follows:

minimize
X

ij

(cijxij �R)

subject to
X

i

xji  1 j 2 P

X

j

xji  1 i 2 V

xij � 0, integer

(4.2)

where R = max(cij) + 1 is the maximum cost of assignment increased by one (1). In the
objective we minimize a negative value (due to the subtraction of R) of the assignment cost,
which implies that we always search for the smallest value of cij . First constraint ensures
that each passenger is assigned to at most one vehicle. Second constraint ensures that each
vehicle is assigned to at most one passenger. Last constraint is the integrality constraint.
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Finally, we state that the problem always terminates with the best solution, i.e., we always
want to add another client in the objective function—which makes our objective function to
decrease—while each passenger and each vehicle can only be assigned ones. The objective
function in Equation 4.2 is equivalent to maximizing the sum of an inverted cost defined in
Equation 4.3.

max
X

ij

1

cij + 1
xij (4.3)

Replacing the objective function in 4.2 for 4.3 gives us the maximization problem with the
same constraints.

Algorithms Our goal is to find the maximum matching in a graph. Note that, a maximal
matching can be found very easily by just adding edges to the matching until no more can be
added. Moreover, it can be shown that for any maximal matching M, we have |M | � 1

2 |M
⇤|,

where |M⇤| is the maximum matching. Therefore we can easily construct a 2-approximation
to the maximum matching.

Hungarian algorithm for solving bipartite matching The bipartite matching prob-
lem is a special case of the binary integer linear programming, which is NP-hard. However,
due to the specifics of the problem, there are algorithms to solve this problem. One of
the best known algorithms for bipartite matching in a graph is the Hungarian method, or
Kuhn-Munkres algorithm [Kuhn, 1955, Mills-Tettey et al., 2007]. We find two different imple-
mentations of the Hungarian algorithm [Mills-Tettey et al., 2007]. Both are graph theoretic,
one runs at O(n4) complexity, and the second one, which is harder to implement, runs at
O(n3) complexity. Our implementation of the Hungarian algorithm solves the assignment
problem in O(n3) time, where n is the size of the biggest partition of the bipartite graph.

We formally state prerequisites for implementation of the Hungarian algorithm. Let G(X,E),
where X = V [ P be a bipartite graph, where vertices V \ P = ? and edges E ✓ V ⇥ P

and w(v,p) is a weight of edge v,p. For each vertex we assign a label such that l : V ! R.
The labeling is feasible if l(v) + l(p) � w(v, p). A spanning subgraph of G, Gl = (V, P,El),
is called an equality subgraph iff it contains edges (v,p) such that (v, p) 2 El , (v, p) 2
E ^ l(v) + l(p) = w(v, p). Finally, if M⇤ is a perfect matching in the equality subgraph Gl,
then M⇤ is a maximum-weighted matching in graph G. Consider we have matching M and
M ✓ E. Vertex x 2 X is matched if 9v 2 V : (v, p) 2 M _ 9p 2 P : (v, p) 2 M . Otherwise
the vertex is exposed, or unmatched. Path P is called alternating if its edges alternate
between M and E \M . If both, the first and last vertex, in alternating path are exposed,
then the path is called augmenting path. If an augmenting path is found, we can increment
the size of the matching by flipping matched and unmatched edges along this path. A tree
which has a root in an exposed vertex, and a property that every path starting in the root is
alternating, is called an alternating tree.
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Pseudo-code for our implementation of the Hungarian algorithm is presented in Algorithm 4.3.
A general idea of the algorithm is to maintain both, matching M and equality graph Gl.
We start with M = ? and a valid labeling l. We continue until M becomes perfect
matching on Gl. At each step we either augment M or improve the labeling l ! l0.

Algorithm 4.3: Hungarian algorithm for vehicles to single-riders assignment.

input :A bipartite graph (V,P,E ), where |V | = |P | = n and n⇥ n edge cost
matrix

output :A complete Vehicle2Passenger matching
1 Initialize:
2 M = ?
3 8v 2 V : l(v) = max(v,p)2E(w(v, p))), 8p 2 P : l(p) = 0

4 repeat
5 find augmenting path
6 if no augmenting path found then
7 improve labeling l ! l0

8 end

9 until M is perfect matching on Gl

Algorithm 4.4 describes the procedure to find augmented path. Note that, to find augmented
path some exposed v 2 P, v /2 M must exist.

Algorithm 4.4: Algorithm finding augmented path.

input :V, P
output : augmented path

1 repeat
2 find exposed vertex v 2 P, v /2 M

3 if no vertex found then
4 continue;
5 end
6 create augmenting path ↵ from v to p
7 Flip the matching by replacing the edges in M with the edges in the augmenting

path that are in El \M
8 until augmented path found

In Algorithm 4.4, since we start and end unmatched, this increases the size of the matching
|M 0| > |M |.
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To improve labeling, we build alternating tree (Algorithm 4.5).

Algorithm 4.5: Algorithm finding alternating tree.

input :V, P, l
output : l’

1 repeat
2 Create array S ✓ V and array T ✓ P such that S and T represent the current

augmenting alternating path between the matching M and outside other edges
in El \M

3 if Jl(S) = T then
4 Compute �l = minv2S,p/2T {l(v) + l(p)� w(v, p))}
5 Improve l ! l0 based on Eq. 4.4

6 end

7 until l’ is a valid labeling and El ⇢ El0

l0(r) =

8
>>>>><

>>>>>:

l(r)� �l r 2 S

l(r) + �l r 2 T

l(r) otherwise

(4.4)

Analysis of the complexity of Algorithm 4.3 is the following. We increment matching n
times. At each iteration we search for augmenting path, which takes O(|X|) to find an
unmatched vertex and O(|X|) to flip the matching. During labeling we update �l, which
takes at most O(|X|) operations. Finally, updating labels takes another O(|X|) operations if
no augmenting path is found. So the total of O(|X|) rounds work O(|X|)2 times in a single
round. Therefore, the total complexity of this implementation is O(|X|)3 = O(n3).

Assignment with impatient customers In this assignment method we perform exactly
the same matching as described in 4.3.2 and 4.3.1, but we assume that if customer is not
matched within a short period of time, e.g., 30 seconds, he or she leaves the queue immediately
(and we call him or her an impatient customer). Performance of this assignment is evaluated
based on the number (percentage) of satisfactorily served customers.

4.4 Assignment with Ride-sharing

In the formulation presented in Algorithm 2.1 and Algorithm 4.1 we operate a static ride-
sharing model by maintaining a list of customers who are willing to share a ride. If two trips
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from the list are matched, we dispatch a single AMOD vehicle. To match customers to shared
rides, the network is discretized into zones. If two customers’ origin and destination are in
the same zones, respectively, then we assign a single vehicle to service the trip (Figure 4.5).
Pairing customers within the zone is solved by solving closest pair of point problem. The
algorithm is executed for trip origins. Vehicles to paired customers’ matching is solved as

Figure 4.5: Discretization for pairing customers.

described in Algorithm 4.6.

Algorithm 4.6: Vehicle to paired customers assignment

Data: pairedTrips; availableVehicles
Result: Assignment and routing for paired trips

1 if no vehicles available then
2 break
3 end
4 for each pair of customers do
5 vehicle1 = findNearestVehicle(customer 1)
6 vehicle2 = findNearestVehicle(customer 2)
7 if vehicle1 == vehicle2 then
8 findShortestRoute for the vehicle
9 else

10 findBestVehicle
11 findShortestRoute for the best vehicle

12 end

13 end

For each customer from the pair, the algorithm finds a vehicle which can service him/her in
a shortest time (line 4–6). If we find a vehicle, then the trip order is scheduled (line 7–11),
e.g., pick-up customer1, pick-up customer2, drop-off customer1, drop-off customer2.
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4.5 Assignment with Priorities

It is a common practice in the assignment problem to prioritize some recipients over others
based on priority structure. More formally, priority assignment is to decide who, when and
over whom should be assigned to available vehicle. This question is particularly important
when the demand exceeds supply (and side payments are not allowed). In the priority
structure, each new customer comes with a ranking which describes who is to be prioritized
over whom. Ranking usually ranks classes of customers, where everyone within the same
class is deemed in a tie [Ehlers and Erdil, 2010]. Note that, stable matches with strict
rankings fail when ties are introduced [Ehlers and Erdil, 2010]. In our implementation, there
is no possibility for ties as we rank everyone individually, not in groups.

In the AMOD system, if the demand exceeds supply, we may decide to change the rules for
assignment and give priority to customers who are waiting long to be matched with vehicles.
To do that, we modify the assignment cost cij introduced in Equation 4.1 by giving a higher
weight to waiting time tw. Alternatively, we force FIFO priority, i.e., in bipartite matching,
instead of adding slack variables to set of vehicles V, we truncate list of customers, P, to
make it of equal size as V. Therefore, we perform assignment only for customers who are
waiting in the queue for the longest time.

Other than setting priority for some customers, the operator may prefer to set priorities
for vehicles, i.e., in order to maximize profit. This problem is left for the future work.
Additionally, it is within our interest to further generalize priority structure to prioritize
certain group of customers, e.g., frequent customers, or vehicles, e.g., loyalty drivers.

4.6 Demand Management with Price Incentives

Demand management with price incentives, or dynamic pricing, aims at adjusting cost of
service based on certain criteria. The goal of dynamic pricing is to allow AMOD service for
real-time modifications of price to better meet demand. It is a very common approach in
many industries. Similarly, this approach is receiving a growing popularity in shared-mobility
services, e.g., for bike-sharing systems it is common that the system operator gives credits
for returning the bike to a less popular destination, e-hailing transportation apps charge
more during the peak hours to discourage customers from taking service during high-demand
period and encourage drivers to come on road, or airlines change prices depending on the
day of the week and number of days before the flight.

In the AMOD service we follow a similar intuition. If we have not sufficient number of
vehicles to service current demand, we start surcharging single-riders (indirectly encouraging
people to take share rides).

Please note, that our dynamic pricing model is not the main subject of this dissertation. The
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building block is basic, but easily expendable to handle more sophisticated choices, which is
left for the future work.

In the following section (Section 4.6.1) we present our model for the demand management
through the price incentives.

4.6.1 Dynamic Pricing in AMOD Controller

Dynamic pricing in AMOD is formulated as a function of booking queue, which is a list
of customers who are not assigned to vehicles, yet). Based on the queue we define cost of
single-rider and shared trip. Price of a single-rider trip, PP , is a function of distance between
origin and destination dOD times peak period surcharge Speak:

PP = 4 + 0.53dOD ⇤ Speak (4.5)

Based on the Singapore’s taxi market the booking fee is set at 4$ and 1 km of travel costs
0.53$. Price for shared rides, PS , is assumed to be cheaper than a single-rider trip. :

PS = Sshared ⇤ PP (4.6)

Discount factor for shared ride, Sshared, is constant and equal to 0.7.

Surcharge factor, Speak gives disincentive to customers for traveling during the peak hours
and is calculated based on the relation of current queue and the number of available vehicles,
as shown in Equation 4.7.

Speak =

8
><

>:

1.0 if 0.8Vavail �Q > 0

1.0� 0.8Vavail�Q
Q+1.0 if 0.8Vavail �Q  0

(4.7)

Surcharge factor varies from 1.0 to 2.0.

4.6.2 Choice Modeling

Choice modeling represents the decision process of customers. It uses discrete choices in order
to infer the decisions. We consider an individual choosing among the available transportation
modes. The customer has a set of alternatives and must choose exactly one, known as
discrete choice. We assume that once the customer has decided on a mode, she or he utilizes
that mode and makes no changes to the decision.

More formally, Customer i has J modes (j=1,2...,J ) to choose from. There is a vector
of observable characteristics of each mode. The choice set, or the set of available modes,
consists of
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(i) AMOD single-rider trip,

(ii) AMOD shared trip, and

(iii) not AMOD trip.

We assume that there are K observables for each mode:

(i) expected waiting time, tw,

(ii) expected travel time, tt, and

(iii) estimated fare to be paid, fe.

We assume that each customer makes her or his choice in two steps:

1. Calculating the characteristics of each mode in the choice set, and

2. Selecting the mode with the highest value of the utility.

Each customer i is characterized by two parameters: (i) value of time, pt, and (ii) value
of money, pm. Both factors take values from interval < 0, 1 >, where 0 means the highest
sensitivity and 1 that the customer is not sensitive to a given observable. The utility function
u for each mode j is designed as presented in Equation 4.8.

uj =
tw + tt
tmax

pt +
fe

fmax
pm (4.8)

where, tmax and fmax are the maximum time allowed for the trip and maximum fare which
can be paid, respectively.

The customer makes the choice, cc, which is to select the mode with the highest utility,
based on Equation 4.9.

cc = max(uj) (4.9)

Decision process In this dissertation, we model decision process in two ways: fixed (a
priori) decision and decisions based on customer’s characteristics. In the fixed decision
model, we assume that a specific percentage of customers always takes shared rides (refer to
analysis presented in Chapter 6). The fixed decision model helps us to evaluate how different
percentage of the shared trips influences the network performance. The model, which takes
customers’ decisions is set to test different pricing strategies.

4.7 Results

In this section we present performance comparison for different assignment algorithms.
Comparison of the assignment methods is evaluated in terms of (i) number of customers
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served, and (ii) total distance traveled for the assignment. For each assignment method, we
analyze two cases, where:

1. the number of vehicles is sufficient to serve the trips (off-peak period), and

2. the number of vehicles is not sufficient to serve the trips (peak hours).

Finally, we check how the performance changes if the network information is not perfect,
i.e., we perform matching based on the Euclidean distances instead of the current network
travel times (please refer to our paper [Meghjani and Marczuk, 2016]). Note, that a complete
analysis of the the performance of an AMOD system is presented in Chapter 6.

Data We use the Household Interview Travel Survey 2012 (HITS 2012) data for the entire
city of Singapore. HITS is a comprehensive survey in Singapore which is conducted every
four to five years, that provides relevant indicators on household travel patterns. A total of
about 10,500 households participated in the 2012 survey, which accounted for about 1% of the
total number of households (1,14 million). The survey represented 84% of total population.

We run the analysis on the network of 5424 nodes. To evaluate performance of the matching
algorithms, 50 vehicles are initialized at 50 stations, which implies that we initialize 1 vehicle
per station. Stations locations are optimized as described in Chapter 3. For the case where
the number of vehicles is sufficient to serve the trips, 50 trips are sampled from the the
synthetic population of SimMobility Mid-Term. For the case where the number of vehicles is
not sufficient to serve the trips, 75 trips are sampled from the the synthetic population of
SimMobility Mid-Term. Note, that we only sample the trips which are performed on mode
taxi. Each trip request consist of origin and destination location and time when the booking
was made. We limit sampling to the period of 30 minutes during the morning peak hours, so
that the maximum waiting time is bounded within that period.

Algorithm For this analysis we use the static, or benchmark, algorithms for Greedy and
Bipartite Matching. We adjust parameters in the cost function (Equation 4.1) to account for
the waiting time. We assume, that there is no booking lead-time, meaning that the customers
are not allowed for the advanced booking. Therefore, the time from a booking request to
customer pick-up is referred as the waiting time for being serviced. We also assume that
customers do not leave the system if a vehicle is assigned to their booking. However, if a
booking remains in the queue for over 10 minutes without any vehicle being assigned, then
this customer leaves the system. If a customer drops his or her booking, the supply side
is penalized by the maximum waiting time (assumed to be equal 10 minutes) added in the
objective function.

Results and discussion Mean and median distance traveled to pick-up customers for
both cases, with sufficient and insufficient number of vehicles, are presented in Figure 4.6.
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In the case with sufficient number of vehicles (Figure 4.6a and Figure 4.6b) we simulate 50
booking requests and 50 available vehicles. In the second case (Figure 4.6c and Figure 4.6d)
we increase the number of bookings by 50% to simulate 75 customers and 50 vehicles. For
each case we generate 40 sets of data and present averaged distance for each algorithm.
Figure 4.6 shows the mean and median distance traveled to pick-up all assigned customers.
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Figure 4.6: Mean and median distance traveled to pick-up 50 customers. Note that, the
number of customers is equal to the number of available vehicles. BWS—bipartite matching,
waiting time included, distances based on the SimMobility’s network; BWE—bipartite
matching, cost based on the Euclidean distance and waiting time; BDS—bipartite matching,
cost based on the distances from SimMobility; BDE—bipartite matching, cost based on the
Euclidean distance; FDS—greedy matching, cost based on the distances from SimMobility;
FDE—greedy matching, cost based on the Euclidean distance; The total distance of each
matching is in meters and considers all distances vehicles have to traverse to pick-up customers
on SimMobility’s network, regardless of the assignment cost.

We perform assignment based on Greedy Algorithm (FDS—greedy matching in SimMobility
’s network, FDE—greedy matching in Euclidean space) and Bipartite Algorithm (BWS—
bipartite matching with cost based on distances from the SimMobility’s network and waiting
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time, BWE—cost based on the Euclidean distance and waiting time, BDS—cost based on
the distances from SimMobility, BDE—cost based on the Euclidean distance). We evaluate
performance of each algorithm based on the SimMibility’s network distances. Note, that total
distance for each algorithm is presented in meters and considers the sum of SimMobility’s
distances, which vehicles have to drive to pick-up customers.

As presented in Figure 4.6, for each case, the mean distance is longer than the median,
which indicates that there are some trips which take very long time with a fewer number
of very short trips. In the sufficient supply case without considering waiting time when
performing assignment, on average, each vehicle has to travel 4.4 km to pick up a customer.
In the insufficient supply case, an average distance reduces to 3 km. This may be due to
a bigger choice of customers to select from. However, when we match based on Greedy
Algorithm, the average driving distance to pick up all customers increases almost twice. This
finding highlights importance of the optimization techniques in modeling the assignment
problem. Furthermore, We can see in Figure 4.6 a general trend across different cases that
deterministic greedy algorithm (last two columns in each figure) yields on the average 17%
increase in the distance traveled to pick-up customers as compared to any more sophisticated
optimization. Taking into account waiting time (first two columns) always makes the total
distance traveled worse. Mean distance to pick up all customers increases by 2% on average,
if we give priority to customers who are longer in the queue. Therefore, from the operator’s
perspective, it is ultimate to assign vehicles based on the bipartite matching with a perfect
knowledge of the network. From the customer’s perspective, the waiting time is a crucial
factor describing reliability of the service. The average waiting time for the unbalanced
case shows the opposite trend to the one for the driving distance. Note, that in the case
of not sufficient supply, both metrics driving distance and waiting time are not correlated.
If we consider waiting time in the objective function, we serve long-waiting customers first
preventing them from dropping the booking. The average waiting time is smaller in the case
where the cost function accounts for queuing time. This decrease is explained by a smaller
number of penalties due to dropped bookings. Finally, different cost function force us to
select different set of customers, e.g., if we consider waiting time, the customers are selected
with the consideration of the time they have already spent in the queue. If we assume to
perform BDS assignment (cost function based on the network distance only), the mean
waiting time of customers increases by 12% compared to the assignment which accounts
for the waiting time. This translates to increase in the average waiting time of nearly 1.8
minutes, and savings in driving distance of almost 50%. Concluding, we believe that it is
not desired to include waiting time in the objective function because it increases the driving
distance significantly, which in a long run may reduce vehicles’ availability.
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4.8 Summary

In this chapter we present the assignment methods to match vehicles and customers. We
define assignments methods for single-rides as well as for multiple-riders trips. We also
present algorithms for demand management through price incentives, which aim at realigning
demand and supply. Our simulation results indicate that the use of optimization methods
instead of simple greedy matching techniques substantially improves the performance of
AMOD systems. Furthermore, including waiting time in the objective function decreases the
average waiting time by 12% and increases driving distance by almost 50%. Based on our
results, it is not desired to include waiting time in the objective function because it increases
driving distance significantly, which in a long run may reduce vehicles’ availability.

In our future work we are interested in extending the concept of providing door-to-door
transportation to integrate it with other modes of transportation, such as public transit. We
believe that the idea of an AMOD system may provide a very effective alternative to increase
the usage of public transportation systems, i.e., by providing solution to first and last mile
problem. In such a setting, an AMOD vehicle would bring rider(s) from their origins to
a public transport hub, i.e., MRT station in Singapore, then the riders would use public
transit to get close to their destinations, and finally they would walk or use another AMOD
vehicle to travel from the transit stop to their destinations.

We are also interested in improving our priority assignment. Other than setting priority for
some customers, we may prefer to set priorities for vehicles, i.e., in order to maximize profit.
We can further extend our priorities to prioritize certain group of customers, e.g., frequent
customers or certain vehicles, e.g., with higher fuel economy. It is also within our interest to
extend the assignment model to account for the vehicle’s battery level before dispatching it
to a customer.





Chapter 5

Rebalancing

Efficiency of an AMOD system is related to many operational issues. As the distribution
of the demand varies over the day, vehicles become unbalanced, accumulating at popular
destinations and becoming depleted at less popular locations. To mitigate this issue we
propose rebalancing polices which aim in moving vehicles based on the fluctuating demand.
Empty vehicle rebalancing aims in finding optimal control policies for realigning demand
and supply by minimizing the total cost of rebalancing. Rebalancing is known from variety
of transportation problems, e.g., empty container repositioning in shipping industry, rail car
redistribution in rail transportation, rebalancing in bike-sharing and car-sharing systems.
Self-driving vehicles hold a great promise in mobility on demand, because they can rebalance
themselves without hiring drivers.

Contribution of this chapter is the following:

(i) We develop optimization approaches of the static and dynamic rebalancing policies for
an AMOD system. Static rebalancing solves for the total number of vehicles required
to operate the system and the number of rebalancing trips between different locations
for the course of the entire day. Dynamic rebalancing solves rebalancing problem at
real-time.

(ii) We integrate our optimization techniques within a simulation environment and test
the algorithms for the case studies placed in Singapore.

(iii) We demonstrate the value of optimization-based rebalancing policies in the operation
of the AMOD system.

This chapter is organized as follows. Section 5.1 provides background information relaed
to rebalancing of mobility on demand services. Section 5.2 describes our approach to solve
rebalancing for an AMOD system. Details of the static and dynamic models are presented in
Section 5.3 and Section 5.4, respectively. Section 5.5 presents results for different rebalancing
policies and Section 5.6 summarizes the chapter.

87
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5.1 Introduction to the Rebalancing Problem

A crucial factor in the success of any mobility-on-demand system is its ability to meet the
fluctuating demand for service [Raviv et al., 2013]. In order to reduce shortages, operators
of shared systems are responsible to regularly transfer vehicles from some locations to others.
We refer to this activity as rebalancing, or repositioning, of vehicles. The goal of this
operation is to minimize the shortage of vehicles incurred by moving people in the system.
Example of an imbalanced system is presented in Figure 5.1. In the figure, we can observe

Figure 5.1: A simple example of an unbalanced AMOD system, i.e., we can observe that
the top right station is heavily underserved, while there are vehicles available at the bottom
right station. The rebalancing aims to align the demand with the supply.

that the top right (TR) station is heavily underserved, while there are vehicles available at
the bottom right (BR) station. The rebalancing is to keep the system in balance and to
maintain accessibility from different locations. In our example we should move vehicles from
BR to TR station.

5.1.1 Terminology, Definitions and Assumptions

There is a promise, that rebalancing can be automated in the coming decades as the research
on autonomous vehicles is very active [Spieser et al., 2014, Pavone, 2015, Le Vine et al.,
2015]. On the academic side, algorithms for automated vehicle redistribution are beginning
to be explored [Barrios and Godier, 2014].

There are various approached to solve the rebalancing problem. Here, we distinguish between
static and dynamic rebalancing mode. In static mode we solve the rebalancing for the entire
day and given the knowledge of a general daily trip pattern. In the static version, a snapshot
of the level of occupation at the stations is taken and then used to plan the redistribution.
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Dynamic mode is solved during operation of the system and serves as adjustment to the
static solution. In the dynamic version, the real-time usage of the system is taken into
account, and the rebalancing counts are updated as soon as the information required to
make decisions is available. Static mode of operation benefits from a practical advantage
of pre-computed decisions and when combined with dynamic repositioning, it reduces the
amount of work required in the latter mode. Dynamic repositioning takes place during the
day in order to cope with looming shortages. Usually, static rebalancing is associated with a
redistribution process that is performed during the night, when the system is kept closed
or the demand is very low, whereas dynamic rebalancing is associated to redistributions
operated during the day, when demand may be high. In practice, many operators work in
both modes.

For each model we have different rebalancing policies which are based on the amount of
rebalancing:

1. Zero rebalancing, where an AMOD system does not have a systematic redistribution
strategy;

2. Periodic redistribution, where we perform rebalancing one time (or a few times) a
day, e.g., overnight or before or after peak hours (periodic repositioning is usually
performed during the night, when the system is nearly idle); and

3. Continuous redistribution, which involves relocating cars while the system is in opera-
tion.

In this dissertation we test different rebalancing models and strategies for an AMOD system.
The AMOD system is understood as one-way, free-floating mobility on demand service with
autonomous vehicles. We assume that autonomous cars can rebalance themselves without
the need to hire drivers. We test our models in simulation environment of SimMobility. The
detailed simulation results are provided in Chapter 6. The following section describes related
work on rebalancing for mobility on demand services.

5.1.2 Related Work

In order to increase reliability of shared-use mobility systems the operators are responsible
to regularly rebalance their fleet of vehicles, e.g., in bike-sharing schemes the rebalancing is
referred to removing bicycles from the most popular destination stations and transferring
them to the most popular origin stations, using a dedicated fleet of trucks. In car-sharing
schemes, the process is more challenging because vehicles (cars) can not be easily loaded
on the trucks and the operator needs a dedicated staff to perform repositioning. For all
shared-use mobility services, the goal of the rebalancing is to minimize the number of
shortages incurred in the system and the fleet operational costs. Consequently, empty vehicle
repositioning involves (i) routing decisions concerning which vehicles should be sent and
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to where, and (ii) inventory decisions concerning the number of vehicles to be removed or
placed in each station (zone).

Research on empty vehicle rebalancing for mobility on demand services is growing in
popularity, especially in the last few years. It is shown that one of the main complaints from
the bike-sharing users relates to unavailability of bicycles at origins and unavailability of
lockers at their destinations [Raviv et al., 2013]. This pushed many researchers and operators
to look for solutions to the problem. [Raviv and Kolka, 2013] discusses that meeting the
demand for bicycles and vacant lockers is challenging due to inherent imbalances in the
renting and return rates at the stations. The authors claim that BSS may be used as a partial
substitute for other transportation modes, which in turn may cause vehicle imbalances. The
rebalancing issue, especially for BSS, has been research quite widely. [Vogel and Mattfeld,
2010] model the repositioning activities with the help of a system dynamics approach which
is solved with a simulation tool. This contribution assesses the prospects of operational
repositioning services by means of an aggregate feedback loop model. The authors adopt
a clearing function to model the probability of successful rentals under a certain number
of requesting users in the system. They model two, short- and mid-term, rebalancing
approaches: direct repositioning activities and indirect customer based distribution through
pricing and incentives. They conclude that more effort spent on repositioning leads to a
better performance in terms of satisfied customers. Their model, however, is useful for
strategic planning but is not detailed enough to support repositioning operations. [Farahani
et al., 2014] explore efficient operation of BS system. The authors propose algorithms for
relocation of empty bikes and a scheme that uses price incentives to encourage users to
change the destination of their trips in a way to reduce the rebalancing effort. [Sayarshad
et al., 2012] demonstrates discrete formulation of rebalancing problem for a bike-sharing
system. To minimize the fleet size and maximize the usage of bicycles, the proposed model
distributes bicycles between stations to better meet the demand. A case study of a four
stations in the city of Tehran shows that the model minimizes the unmet demand as well
as number of rebalancing vehicles. However, the authors did not evaluate the model for a
large-scale network. [Bruglieri et al., 2013] formulates a generalization of the many to many
pickup and delivery problem to solve the rebalancing problem for a bike-sharing system. The
authors propose a branch-and-cut algorithm and tabu search for solving a relaxation of this
problem. This work restrains to the rebalancing problem with one vehicle and in the static
case. The authors in their formulation perform rebalancing once a day during the night
when the number of moving bikes is negligible. They divide the city into districts. Each
district is covered by a single truck that has to redistribute the bikes in order to respond to
the morning peak at best. Te authors optimize the route for each vehicle which is performing
redistribution of the bikes. They show that solution of the relaxation problem provides a
good lower bound of the optimal solution of the original problem. [Erdogan et al., 2012]
extend the above studies by allowing the final inventory at each station to be within a
pre-specified interval instead of at a given target value. [Raviv and Kolka, 2013] introduces a



Chapter 5. Rebalancing 91

closed-loop inventory model suited for the management of bike rental stations. The authors
introduce a user dissatisfaction function (UDF) to measure the performance of each station
and present a dynamic inventory model of a bike-sharing rental station. UDF is the initial
inventory function and measures the expected penalty caused by a shortage of bicycles and
lockers at a station. They model each single station neglecting interactions between different
stations as the goal is to find an optimal inventory for each station separately. The main
goal of the static repositioning in Tel-O-Fun is to reduce the amount of repositioning work to
be done during the day. Therefore, the authors evaluate quality of the solution by counting
surplus or deficit bicycles at each station. Although their model considers only a single
station system, they demonstrate through simulation that their results are robust to the
inherent interactions between stations in a large real system. They run the repositioning by
incorporating the UDF into the mixed integer programming formulation presented in [Raviv
et al., 2013]. [Raviv et al., 2013] extends work presented in [Raviv and Kolka, 2013] focuses
on the static mode of rebalancing for bike-sharing system. The input of the problem is a set
of stations, initial inventory, capacity, penalty function for each station, travel-time between
stations, and a set of nonidentical capacitated repositioning vehicles. A solution is defined by
a route for each vehicle and the quantity of bicycles to load or unload at each station along
this route. The authors demonstrate that their MILP formulations are capable of solving
problems of a moderate size of up to 60 stations with acceptable optimality gaps. [Caggiani
and Ottomanelli, 2012] presents a fuzzy decision support system for redistribution process in
BSS. The aim of the proposed method is to minimize the redistribution costs for bike-sharing
companies, determining the optimal bikes repositioning flows, distribution patterns and time
intervals between relocation operations, with the objective of a high level users satisfaction.
The core of the forecasting demand method in the proposed approach is based on Artificial
Neural Networks (ANN) and Fuzzy Logic. Method presented by the authors determines
the relocation time windows, the optimal carrier vehicles route and the number of bikes
to be repositioned. The approach has only been tested on a small networks. [Caggiani
and Ottomanelli, 2013] extends work presented in [Caggiani and Ottomanelli, 2012] and
presents a simulation model for dynamic bikes redistribution process. The proposed model
considers dynamic variation of the demand, for both bikes and free docking slot. Their
simulation-based solution determines the optimal repositioning flows, distribution patterns
and time intervals between consecutive rebalancing by explicitly considering the route choice
for trucks among the stations. The results are compared to those based on fuzzy decision
support system [Caggiani and Ottomanelli, 2012]. Authors show that for the case of low
demand their model with constant relocation time intervals performs better (in terms of
number of satisfied users) than the method with variable rebalancing time window. As the
congestion increases, the model based on the fuzzy decision support system, shows better
performance. [Ciari et al., 2014a] addresses the static bike-sharing rebalancing problem as a
special case of one-commodity pickup-and-delivery capacitated vehicle routing problem. In
this problem a fleet of capacitated vehicles is employed in order to redistribute the bikes. The
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authors present four mixed integer linear programming formulations of this problem and solve
them by branch-and-cut algorithms. They test their mathematical formulations using data
obtained from twenty two (22) different bike-sharing systems and show that their formulation
efficiently solves instances with up to 50 stations. [Contardo et al., 2012] formulates dynamic
version of the rebalancing problem for bike-sharing system, allowing the use of more than
one vehicle to perform repositioning. An arc flow formulation working on a discretized
time horizon is proposed and solved with Dantzig Wolfe and Benders decomposition. This
methodology uses decomposition techniques to move the difficult variables and constraints
into the subproblems, which can be solved efficiently. Their formulation, however, cannot
handle medium or large scale instances.

Another approach to rebalancing seen in the literature is offering incentives to encourage
customers to use certain stations. Some operators may also give incentives for user-based
redistribution, i.e., in which the rider performs redistribution, by using demand-based pricing
in which users receive a price reduction or credit for docking bicycles at empty docking
locations [Shaheen et al., 2010, Vogel and Mattfeld, 2010, Fricker and Gast, 2014]. [Fricker
and Gast, 2014] considers a stochastic model with incentives to redistribute bikes in bike-
sharing system. To compensate for real-time congestion problems, an alternative is to use
real-time pricing mechanisms. This type of congestion control mechanism is widely applied
in the transportation or car-rental industry [Yang et al., 2010, Guerriero et al., 2012]. The
authors show that simple incentives, such as suggesting users to return the vehicle to a less
loaded station close to their destination, improve the situation by exponential factor. The
authors compute rate at which bikes have to be redistributed by trucks to ensure a given
quality of service. They also study a variant of the model where users know which stations
are empty or saturated. The customers always arrive to non-empty stations and return their
bikes only to non-saturated stations. They investigate the influence of the station capacities
on the performance of homogeneous bike-sharing systems. Using a stochastic model and a
fluid approximation, they provide analytical expressions for the performance. They prove
that, without repositioning via incentives or trucks, performance is very poor. [Forma et al.,
2015] proposes a 3-step algorithm for the static rebalancing problem. The authors first
cluster the stations according to geographic and inventory considerations. Then, they route
vehicles through the clusters . Finally, the original static repositioning problem is solved for
all stations. [Ji et al., 2014] describes the operational concepts and system requirements of a
fully automated electric bike (e-bike) sharing system demonstrated through a pilot project at
the University of Tennessee, Knoxville (UTK) campus. The authors extend the bike-sharing
literature by incorporating e-bikes into the system, focusing on system configuration, and
managing supply to meet demand through a simulation approach. The e-bike system is
more attractive to casual riders, who may not otherwise consider traditional bicycles as a
viable transport mode. Their study focuses on three demand variables: trip generation,
trip length, and trip duration. The results show that by applying quick-charging (reducing
the recharge time to half of the baseline), the number of batteries out of service can be
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lowered dramatically. However, the service rate for the system does not increase substantially
because of the limited number of available e- bikes. Therefore, a pre-defined duration for
users to return the e-bikes is crucial to the system, balancing system performance, capital
cost, and user convenience. Based on the simulation results, we found that the minimum
number of e-bikes and batteries required by the system are significantly sensitive to trip rate,
trip length, and activity duration.

There are major differences between bike- and car-sharing systems in terms of repositioning.
A car is moved from one location to another by assigning a driver to it, while bicycles
are moved in batches by repositioning vehicles. Today, most CS operators use traditional
station-based system offering round-trip rental [Privat, 2015]. Traditional business model,
which requires cars to be collected and returned at the same location is easier to manage by
the operator than a free-floating, or point-to-point model. The drawback is that it becomes
uneconomical for trips that require lengthy stays at the destination, because the user must
also pay for the time the car is parked. For this reason point-to-point services can quickly
attract three to four times the number of members of a traditional round-trip service [Brown,
2015]. However, for the operator, the cost of point-to-point systems is much higher since
the systems requires larger fleet size to start with [Brown, 2015] and is more challenging
from the operational perspective due to rebalancing issues. The findings summarized in
the literature review presented in [Jorge and Correia, 2013] show that the major issue in
development a one-way car-sharing is how to balance the demand and supply [Jorge and
Correia, 2013]. To estimate the minimum required fleet size, many researchers have focused
on rebalancing strategies for both station-based and free-floating carsharing system [Alshamsi
et al., 2009, Barrios and Godier, 2014, Barth and Todd, 1999, Brownell and Kornhauser,
2014, Ciari et al., 2014b, Correia and Antunes, 2012, Fan et al., 2008, Horn, 2002, Jorge
et al., 2014, Kek et al., 2009, Maciejewski, 2014, Nourinejad and Roorda, 2014, Nourinejad
and Roorda, 2015, Pavone et al., 2011, Smith et al., 2013]. [Barth and Todd, 1999] develop
a simulation model of car-sharing operations and conclude that a sufficient fleet size for
satisfying customers is 3-6 vehicles for every 100 trips but that 18-24 vehicles per 100 trips are
required to minimize relocation costs. This conclusion shows the importance of robustness of
FMS. [Fan et al., 2008] propose a multi-stage stochastic linear integer model which attempts
to capture system uncertainties such as car-sharing demand variation. The objective function
of their model maximizes the revenue obtained from servicing customers while minimizing
the cost of vehicle relocation. [Kek et al., 2009] design a mixed integer linear program
to determine a set of near-optimal manpower and operating parameters for the vehicle
relocation problem. Simulation tests, based on a set of commercially operational data for
the city of Singapore, indicate that optimization of manpower can reduce staff expenses by
up to 50% and zero vehicle time (duration of vehicle shortage at parking stations) by up
to 13%. The model however cannot be applied for a real-time operation. [Pavone et al.,
2011] and [Smith et al., 2013] show a theoretical solution to fleet sizing by introducing
rebalancing assignments that minimize the number of empty vehicles traveling in the network



Chapter 5. Rebalancing 94

and the number of rebalancing drivers needed, while ensuring stability. They introduce a
rebalancing policy based on a fluidic model. Using both theoretical and simulation results,
the authors determined the minimum number of vehicles required to maintain system stability.
[Correia and Antunes, 2012], on the other hand, focus depot location in one-way car-sharing
systems where vehicle stock imbalance issues are addressed. Considering all decision variables
(depot locations, satisfying demand and relocation), the authors present a mixed integer
optimization approach to maximize the revenue of the car-sharing operator while minimizing
operating cost such as vehicle maintenance, parking provision, vehicle depreciation, and
vehicle relocation. Based on the case study of Lisbon, their results show that the depot
location and trip selection schemes have an impact on the profitability of such systems.

5.2 Rebalancing in AMOD Controller

As described in details in Section 2.3, the core component of AMOD Controller is responsible
for the fleet management of AVs, i.e., assignment, routing, and rebalancing. The basic idea
is that AMOD Controller sends dispatches to a microscopic simulator, which handles vehicle
movements and provides tracking information for all vehicles in the system. In this framework
we do not treat each decision level separately as the strategic and tactical decisions influence
directly operational decisions. When considering strategic and tactical decisions, we take
into account operational matters. In this settings we implemented two models of rebalancing:
static and dynamic model (Figure 5.2).

Figure 5.2: Rebalancing models. Our rebalancing problem consists of two submodules:
static and dynamic rebalancing. In our approach, the dynamic model is solved during
operation of the AMOD system and serves as an adjustment to the static solution.

Approaches to solve rebalancing In this dissertation we analyze static and dynamic
rebalancing model. In the static version, a snapshot of demand for the entire day at the
stations is taken and then used to plan redistribution. In the dynamic version, the real-time
usage of the system is taken into account, and the rebalancing counts are updated as soon as
the information required to make decisions is available. In our approach, the dynamic model
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is solved during operation of the system and serves as adjustment to the static solution.
From the perspective of the system manager, the static model solves problem of strategic
planning and long-term operation, specifically what is the number of vehicles needed and how
to distribute them between stations. The dynamic model solves for the short-term operating
decisions, specifically how to move vehicles based on the current situation on the network.
Both models are described in details in the following sections (static model is described in
Section 5.3 and the dynamic model in Section 5.4)

Rebalancing strategies For each, static and dynamic, model we have different rebalancing
policies which are designed based on rebalancing frequency. In our methodology we distinguish
three rebalancing policies:

(i) No rebalancing, in which vehicles are only moving when assigned to customers and are
parked at the destination of the trip. This is our baseline scenario for the analysis.

(ii) Periodic rebalancing, where we perform rebalancing one time a day, e.g., overnight or
before peak hours (periodic repositioning is usually performed during the night, when
the system is nearly idle).

(iii) Continuous rebalancing, which involves relocating cars while the system is in operation.

The next two sections will describe optimization models for static and dynamic formulation
of rebalancing for an AMOD system, respectively.

5.3 Static Rebalancing and Fleet Size

The static rebalancing model presented in this section evaluates a dispatching strategy that
makes decisions by finding an exact solution of the offline problem at each decision epoch.
This model extends the linear program introduced in [Pavone et al., 2011]. The objective
of our model is to find the minimum number of vehicles at each station at the beginning
of the day (Fig. 5.1). As proven in [Pavone et al., 2011] this is equivalent to minimizing
the rebalancing effort. This policy requires a priori knowledge of the demand dij(t). We
assume that this knowledge is available through the estimated demand. Note that, the
demand cannot be validated because the service is yet not in operation. This strategy is
meant to serve as a benchmark for real-time, or dynamic, strategies. In this model, we plan
the number of rebalancing trips between stations based on the estimated demand for the
entire day. The static model is solved at the tactical level and solution to the model gives us
an estimate of the fleet size required to run the service. We use n number of discrete time
intervals, t, and evaluate the trips within each interval. In the static model we assume that
all trips occur between stations, i.e., all customers board and alight at stations (or centroids
of the zones) and all rebalancing trips are from and to the same station. Additionally, we
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assume deterministic travel time between all stations.

The mathematical model is formulated as follows. Let vi(t) and dwi (t) be the number of
vehicles owned by station i at time t and the anticipated number of vehicle arrivals with
customers at station i at time t such that dwi (t) =

P
j [dji(t� ⌧ji)� dij(t)]. Note that dwi (t)

is the sum of vehicle arrivals minus departures for each station. It can be understood as
a trip flow at each station. Two decision variables are the number of empty (rebalancing)
vehicles to send from station i to station j at each rebalancing period, rij(t), and the
total number of vehicles owned by each station i at time t, vi(t). The total number of
vehicles at each rebalancing period, N(t) =

P
i vi(t) +m(t) where m(t) is defined as the

number of vehicles in transfer between stations during interval t. This formulation guarantees
that N is constant over time. Our objective is to minimize the total number of vehicles,
N, at each period of time i. The number of vehicles owned by station i, at any time t,
vi(t) = vi(t��t) +

P
j

h
dji(t� ⌧ji)� dij(t)

i
+
P

j

h
rji(t� ⌧ji)� rij(t)

i
for all i,t, where ⌧ji

is defined as the travel time between station i and station j. In the definition of vi(t), we
sum all vehicles arriving at station i, which is equivalent to summing over all vehicles which
have departed for station i, ⌧ji ago, and we subtract all vehicles which are departing from
station i during current rebalancing interval. We define vrebi (t) =

P
j

h
rji(t� ⌧ji)� rij(t)

i

and assume that the travel time from station i to station j is known and given as ⌧ij . ⌧ij is
constant over time for any i and j, i 6= j. Length of the rebalancing interval, �t, is assumed
to be equal or shorter to an average travel time on the network (if the rebalancing interval is
too short or too long, then we may be performing too many or too little rebalancing trips,
respectively).

The problem is formulated in Equation 5.1.

min N(t = 0)

s.t. N(t) =
X

i

vi(t) +m(t)

N(t) = N(t+�t) 8t

vi(t) = vi(t��t) + dwi (t) + vrebi (t) 8i, t

m(t) = m(t��t)�
X

j

h
dwi (t)� vrebi (t)

i
8i, t

vi(t = 0) = vi(t = Tp) 8i

rij(t = 0) = rij(t = Tp) 8i, j

m(t = 0) = m(t = Tp)

rij(t), vi(t),m(t), N(t) � 0 8i, j, t

(5.1)

The objective of this problem (Eq. 5.1) is to minimize the total number of vehicles in the
system while satisfying all trip requests. This objective is solved to answer the tactical
decision of estimating the fleet size required to run the AMOD service. The first constraint
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tells us that total number of vehicles at each rebalancing interval is equal to vehicles owned
by all stations plus the vehicles in transfer. The second constraint is set to ensure that the
number of vehicles in the system is constant over time. The third constraint is the flow
conservation at each station and the fourth constraint is the flow conservation for vehicles in
transfer. The fifth and sixth constraints describe the periodicity, i.e, the number of vehicles
in transfer at the end of the day is equal to the number of vehicles at the beginning of the
next day. The last set of constraints are the non-negativity constraints.

The model solves for the number of vehicles required to service given booking requests and
the rebalancing counts between different intervals. The number of vehicles at the beginning of
the simulation and the rebalancing counts resulted from the model were fed to the simulator
and later compared against the solutions of the online model.

5.4 Dynamic Rebalancing Problem

The dynamic, or real-time, model proposed in this dissertation is based on the fluid model
first introduced in [Pavone et al., 2011, Spieser et al., 2014]. The model repeatedly solves
the optimization formulated in [Azevedo et al., 2016] and finds the rebalancing counts to
match the anticipated demand at all stations. We use the rolling horizon approach which
provides us high quality solution to the dynamic rebalancing problem. Rolling horizon is a
common practice for decisions in a dynamic stochastic settings [Sethi and Sorger, 1991]. In
essence, this practice involves immediate decisions based on a (deterministic or stochastic)
forecast for a certain number of periods in the future. The term horizon refers to the number
of periods for which we perform forecasting. The number of periods for the forecast (the
horizon) is of a great interest to the decision maker in order to make an optimal decision. In
our case we study the time horizon of one period ahead as we perform rebalancing to satisfy
customers in the next time horizon. This procedure repeats every period justifying the term
rolling horizon.

In the dynamic model, the number of excess demand at station i, d̂i, is the number of
customers that cannot be served using only the vehicles available at station i, i.e., d̂i = vi�di.
A negative d̂i indicates that there are vehicles available to send. We assume that the cost of
sending one vehicle from station i to station j is equivalent to the travel time between i and
j and given as cij , which is constantly updated by SimMobility (online and time-varying
travel time). Our decision variable rij is the number of empty (rebalancing) vehicles to send
from station i to station j. Note that d̂i(t) is the predicted number of excess demand for the
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next time period. The objective function minimizes the rebalancing effort.

min
X

ij

cij(t)rij(t)

s.t.
X

j

(rji(t)� rij(t)) � d̂i(t) 8i, j

X

j

rij(t)  vi(t) 8i

rij(t) � 0 8i, j

(5.2)

The first constraint ensures that the number of rebalancing counts is greater or equal to the
excess demand. The second constraint prevents us from sending more vehicles than we have
available in at station i at the current time t. The third constraint is the non-negativity
constraint.

The dynamic model is solved during operation of an AMOD system. In AMOD Controller
the model is executed at every time �t.

5.5 Results

In this section we present comparison of the performance analysis for different rebalancing
strategies in an automated mobility on demand system. Comparison of the rebalancing is
evaluated in terms of (i) number of customers served, and (ii) total distance traveled for the
rebalancing.

5.5.1 Fleet Size Estimation

Fleet size estimation is a tactical decision problem. The optimal number of vehicles in a
fleet varies with time depending on aspects such as market demand or the service level one
wants to achieve. Therefore, the operator has to establish when to calculate the optimal
number of vehicles that are required for a certain period of time. We estimate the optimal
fleet size to operate an AMOD system based on the estimated demand for the service for a
typical day. Our results for the fleet size are shown in Figure 5.3. The fleet size is evaluated
as a function of customers’ waiting time.

5.5.2 Comparison of Rebalancing Policies

We evaluate the following four policies:

1. No rebalancing policy, which serves as a lower bound on the performance.
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2. Predictive dynamic rebalancing, where we optimize the rebalancing counts based on
the demand predictions.

3. Static rebalancing which provides an upper bound on the performance where we
perform rebalancing with the perfect information of the future state of the system.

Network and demand data To evaluate performance of the three rebalancing policies,
we use a 56km2 network of the Central Business District in Singapore. The network consists
of 1229 nodes, 14948 lanes and 313 traffic signals. The demand generation process for AMOD
is based on integration of SimMobility MT with SimMobility ST. The simulated population
in SimMobility MT was estimated based on the Household Interview Travel Survey for 2012
(for more details please refer to [Azevedo et al., 2016]). Given the output from SimMobility
MT, we replaced all transport modes except of the Mass Rapid Transit (subway) and public
buses with the AMOD service. If only a part of the trip was inside the CBD, then we cut
the trip and simulated it from or to the border of the network. We run the simulation for
the period of 3am-12pm. The total number of AMOD trips for this period was 363,859.
Customers do not drop the booking requests and leave the system only when they finish
their trips.

Facility location Locations of the stations are optimized based on the set covering model
(detailed description in [Azevedo et al., 2016]). For this analysis, we assumed that the
coverage radius of a station is 1000 meters, which is equivalent to 2-3 minute ride at the
average speed of 30 km/h (based on the Land Transport Authority’s data, the average
speed for arterial roads during peak hours in Singapore is 28.9 km/h [Land Transport
Statistics, 2015]). Solution of the model is 34 stations within the analyzed zone as presented
in Figure 6.7.

Simulation setup In the dynamic model, we initialized stations with equal number of
vehicles across the stations. We simulated fleet sizes of 10,000 to 40,000 vehicles. In the static
model, the stations were initialized with the number of vehicles based on the optimization
output for the fleet size. Note that, the static model solves for the fleet size and initial
vehicle distribution, while the dynamic model is solved during the simulation time and only
for the rebalancing counts. Both models are sensitive to the rebalancing interval. Therefore,
the interval for the static model is 15 minutes, while for the online model is 1 hour. The
reason of this difference is the following: too long interval in the offline model results in
overestimation of the fleet size (as the travel time is discretized based on the interval size).
On the contrary, too short interval in the dynamic model results in rebalancing during the
period when there is a booking queue. All simulations are run in SimMobility ST, which
simulates the individual decisions and the transportation network at the sub-second level
(microscopic level).
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Results Results are presented in Figure 5.3. Performance of different rebalancing policies

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Number of AMOD Vehicles #104

0

10

20

30

40

50

60

70
W

ai
tin

g 
Ti

m
e 

(m
in

s)

No rebalancing
Online rebalancing every 1hr
Offline rebalancing every 15 mins

Figure 5.3: Mean waiting time for different rebalancing policies. Performance of different
rebalancing policies expressed in terms of the customers’ waiting time across different fleet
sizes. The no-rebalancing policy (the blue line) performs quite poorly compared to the static
and dynamic rebalancing methods. Both rebalancing methods help in reducing the fleet size,
i.e., we need 35,000 vehicles without rebalancing for the average waiting time to be below 10
minutes and only 25,000 if we perform rebalancing. This finding translates to significant
savings in the number of required parking lots.

is expressed in terms of the customers’ waiting time across different fleet sizes. The results
show a trend the more vehicles, the shorter waiting time valid across different models. Our
objective is to run the service as efficient as possible, and therefore we aim to satisfy all
customers at certain level of service with the smallest possible fleet size. For that reason we
are looking at the waiting time of customers from the time they make the booking until they
are picked-up by an AMOD vehicle. In our analysis, the no-rebalancing policy (the blue
line in Figure 5.3) performs quite poorly compared to the static and dynamic rebalancing
methods (also called offline and online, respectively). In general, rebalancing help in reducing
the fleet size, i.e., we need 35,000 vehicles without rebalancing for the average waiting time
to be below 10 minutes and only 25,000 if we perform rebalancing. This finding translates
to significant savings in the number of required parking lots.
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5.6 Summary

A crucial factor in the success of any mobility-on-demand system is its ability to meet the
fluctuating demand for service. In order to reduce shortages, operators of shared systems
are responsible for regular rebalancing, or transferring, vehicles from some locations to
others. In this chapter we provided liner optimization models for solving static and dynamic
rebalancing problems. Our simulation results indicate that the use of optimization methods
for the rebalancing substantially improve the performance of AMOD systems.

Our future plan is to design congestion-aware rebalancing methods. It is also within our
interest to extend the rebalancing model to account for the battery level before dispatching
vehicle for the empty trip.





Chapter 6

Large Scale Implementation

In this chapter we provide simulation results for large-scale implementations of an AMOD
system. We analyze two scenarios for the city of Singapore:

1. Introduction of an AMOD system as an alternative to private vehicles. In this case-
study we introduce a new policy restricting private vehicle usage within the high-traffic
Central Business District (CBD) area in the city of Singapore (Section 6.1).

2. Introduction of an AMOD system in the extended CBD in Singapore. In this case-study
we assume that all trips within the analyzed zone are replaced by the AMOD trips
(Section 6.2).

For each case-study we analyze four performance metrics:

1. Number of customers served by our service as a percentage of the total number of
requests.

2. Customers’ waiting time, which is measured from the booking time until the customer
is picked-up,

3. Vehicle utilization rate, which is a ratio of the time when vehicles are servicing customers
to the total time of the simulation. The time vehicles are busy includes time which is
required to arrive and pick up the customer.

4. Amount of rebalancing, which is defined as the ratio of the distance vehicles drive for
rebalancing and the total distance driven on the network.

6.1 Case Study of the Central Business District in Singapore

In this section, we describe case-study simulations designed to evaluate the effect of a new
policy restricting private vehicle usage within the high-traffic Central Business District
(CBD) area in Singapore (Fig. 6.1). The 14km2 network consists on 1229 nodes, 14948 lanes
and 313 traffic signals. In the analyzed policy private vehicles are not allowed to enter the
restricted area and the AMOD service is introduced as an alternative. In other words, only
taxis, public transportation and AMOD vehicles were permitted to enter the analyzed area.

103
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Figure 6.1: Case study of the Central Business District in Singapore. The analyzed zone,
size of 14km2, is highlighted in green. In the analyzed policy private vehicles are not allowed
to enter the restricted area and the AMOD service is introduced as an alternative.

6.1.1 Simulation Setup

We use SimMobility Mid-Term and Short-Term extended by AMOD Controller to perform
analysis of an AMOD system. Details on modeling methodology within SimMobility Mid-
Term and Short-Term are provided in Appendix D.

In the scenario analyzed in this section, private vehicles are not allowed to access a 14 km2

restricted zone in the CBD and AMOD is introduced as an alternative mode of transport,
which operates only within the zone. Yet, the access to this area was granted to the existing
bus lines, Mass Rapid Transit (MRT) trains and taxis. Analysis of this policy is of the great
interest to the local governments in Singapore as the land is limited and over 12% of the total
area of Singapore is occupied by the road infrastructure. Therefore, the policy-makers are
looking for alternatives to owning vehicles, which is a part the car-lite vision of Singapore.
In our case study we provide AMOD system with single-class autonomous electric compact
vehicles. We allow single-rider assignment, i.e., one vehicle is assigned to one booking. The
simulations are run for a 2-hour period during evening peak (5:00pm to 7:00pm).

Demand generation The demand generation process of AMOD is based on integration
of SimMobility MT simulator with SimMobility ST simulator. SimMobility MT simulates
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agents mobility decisions that includes their activity and travel patterns along with mode,
time-of-day and route choices. Description on midterm simulator can be found in [Lu et al.,
2015]. For this study the SimMobility MT model assumes all private vehicle trips as a
combined modal trip (i.e., Private vehicle + AMOD) if part of the trip is inside CBD. The
mode choice model in SimMobility MT is modified by making it sensitive to AMOD waiting
time and additional cost terms, which actually fed back by SimMobility ST in an iterative
framework to bring consistency. Further parking prices for private vehicle are reduced as now
they have been parked outside the CBD region. The cost of the AMOD service was assumed
as 40% less than the regular taxi service in Singapore, which is due to lower employment
cost. This assumption results in an average cost of about SGD 3 per trip within the analyzed
area, which is three times more expensive than the trains and four times more expensive
than buses. The other modes were assumed to remain unchanged, i.e., buses and trains kept
their frequencies, fares and capacities and the taxi fleet and cost remained the same. using
the year 2012 configuration as reference. We performed two different simulation time setups:

1. The simulations are run for the period of two hours, 5pm–7pm, during the evening
rush hours with the total number of AMOD trips equal 28,525 (referred as Case 1,
detailed description in [Marczuk et al., 2015]).

2. The simulations are run for the period of twelve hours, 3am–3pm, catching the morning
rush hours with the total number of AMOD trips equal 90,144 (referred as Case 2,
detailed describtion in [Azevedo et al., 2016]).

Evening peak hours within the Central Business District (case 1) are very representative
due to the fact that most of the taxi bookings (calls) after office hours are from CBD, so
we are simulating the highest demand. In the second case, we simulate a longer period of
time (12 hours) which overlaps with morning peak hours. We start the simulation earlier to
mitigate influence of initialization, e.g., initial location of vehicles, on the system performance.
We select morning peak hours because—alongside many performance metrics—we evaluate
mode choice. In the mode choice analysis, activities related to work and school generate the
most rigid constraints for the arrival time at the destination. Therefore, we were interested
to look at the performance of the system, where agents are constraint to the transportation
modes they can use while performing their usual work-related trips. The transportation
system has changed (restricted zone with AMOD service), but the activity schedules remain
unchanged.

For more details about validation of modal shifts within SimMobility, the reader is directed
to Appendix E.1.

Facility location models In the station-based model, 4 different sets of facility locations
were analyzed. The first set consisted of 10 nodes, which were selected based on the highest
frequency of originating trips (high-demand nodes). The remaining three sets consisted of
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the top 20, 30 and 40 high-demand nodes, respectively. There was no capacity constraint on
the facilities, i.e., the facility could hold as many cars as required. In the free-floating model,
initial stations were assumed in the same manner as for the station-based model; however, in
the free-floating model, cars were not required to return to these stations. Twelve different
fleet sizes were simulated, i.e., from 2000 to 7500 AMOD vehicles in the system. At the
beginning of the simulation, vehicles were uniformly distributed over the facilities.

Assignment, rebalancing and post-service routing In this case-study we assign
single booking to single vehicle (no ride-sharing is allowed). The assignment is based on the
bipartite matching algorithm which is introduced in 4.3.2. As presented in Chapter 5 the best
performance in terms of the shortest average waiting time for the Central Business District
case-study is to perform dynamic rebalancing every 1-hour. Therefore, in this analysis we
show the results for the dynamic rebalancing every 1-hour. Note, that in this analysis we
do not implement the static rebalancing model. Without static rebalancing we have no
information on the optimal vehicles allocation, so all vehicles were initialized evenly across
the stations. In this study, we evaluated two post-service routing alternatives, that is, how
the autonomous vehicles behaved after dropping-off passengers:

1. In station-based model, after servicing a trip, AMOD vehicles always drove back to the
nearest station and waited for new requests (and re-charge if necessary).

2. In free-floating model, AMOD vehicles self-parked at drop-off locations, where they
waited for new requests. It is assumed that all drop-off locations contained parking
facilities where the vehicles could wait and optionally recharge.

Finally, both models assume that customers make immediate reservations (no advance
booking is allowed) and that AMOD vehicles pick-up and drop-off passengers at any node in
the road network.

6.1.2 Results

For non-autonomous MOD systems, the free-floating scheme is arguably more preferable
for the consumer since it alleviates him/her from the costs associated with returning the
vehicle. For autonomous systems, vehicles can self-return to station, but this return leg
constitutes an empty trip (which may increase road congestion and fuel-use). Furthermore, if
the station is further away from the next requested service, the vehicle would be making an
unnecessary trip. On the other hand, in the free-floating model, vehicles can become severely
unbalanced leading to longer waiting times for consumers. The station-based model requires
use of car-parks, which contributes to increased land-use. Our study seeks to evaluate the
effects of both models in the densely population island nation of Singapore during a peak
travel period.
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Number of customers served Figure 6.2 shows the percentage of customers served
versus the AMOD fleet size in the system under (a) free-floating and (b) station-based
models. Trip served is referred to a trip of a customer who (i) successfully booked a ride, (ii)
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(a) Free floating model.
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(b) Station-based model.

Figure 6.2: Percentage of customers served versus the AMOD fleet size in the system for
the free-floating model (left) and the station-based model (right). Trip served is referred
to a trip of a customer who (i) successfully booked a ride, (ii) was picked up by an AMOD
vehicle, and (iii) was successfully dropped off at the destination. Using the free-floating
model we could serve as much as 70% of the total demand (with 7000 vehicles and more),
while using station-based model we could only serve up to 48% of the demand. Note that
not all trips have arrived at the destination before the simulation end time.

was picked up by an AMOD vehicle, and (iii) was successfully dropped off at the destination.
Note that not all the generated trips were served because a proportion of the passengers had
not yet arrived at the destination by the end of the simulation. In both models (free-floating
and station-based), increasing the vehicle fleet size resulted in a linear increase in the number
of passengers served, with gradient coefficients of 0.037 for the free-floating model and 0.022
for the station-based model. In other words, every additional 100 cars provisioned increased
the average demand served by 3.7 percent (1055 people-trips) in the free floating scheme.
For the station-based model, this increase was smaller at 2.2 percent (627.55 people-trips).
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The free-floating model was able to serve as much as 70% of the total demand, which is
significantly more than the station-based model (48% of the requested trips). The low service
rate in station-based model was likely caused by heavier traffic due to empty vehicle rides.
This is consistent with the average travel time (which can be seen as a proxy metric for
road congestion) of both models. The average travel time in the station-based model was on
average longer than in the free-floating model, e.g., with 40 stations and 7500 vehicles the
average travel time for the station-based model was 14.17 minutes, which accounts for about
30% increase when compared against the station-based model (10.59 minutes).

Customer waiting time The waiting time analyzed here is defined as the time difference
between the trip request time and the pick-up time. Figure 6.3 shows the median customer
waiting times (with upper and lower quartiles) versus the number of AMOD vehicles under
the free-floating model. As expected, increasing the AMOD fleet size resulted in a fall in
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(a) Free floating model, 10 stations.

1000 2000 3000 4000 5000 6000 7000 80000

10

20

30

40

W
ai

tin
g 

Ti
m

e 
(m

in
s)

Number of AMOD Vehicles

(b) Station-based model, 20 stations.
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(c) Free floating model, 30 stations.
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(d) Free floating model, 40 stations.

Figure 6.3: Customer waiting time in the free-floating model.

waiting times, since more vehicles were available to service the requested trips. For example,
with 20 initial stations, the median waiting time decreased from 20.74 to 1.80 minutes as
the fleet size grew from 2000 to 7500 (similarly, the variance in the waiting times decreased
from 31.38 to 6.09). Unlike the effect on total demand served, this waiting time change is
non-linear and shows that the rate of improvement decreases with increasing fleet size and
appears minimal beyond 6000 vehicles. The initial distribution of vehicles also influenced the
performance of the system. Based on our results, increasing the number of initial stations
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decreased passenger waiting times. The biggest difference is between 10 and 20 stations,
where we observed an average improvement of approximately 4 minutes across fleet sizes.
However, further increases in the number of stations resulted in the decreases in waiting
times below 1.5 minute.

Vehicle utilization rate Results for the vehicle utilization rate are presented in Figure 6.4.
As expected, we observe a trend that the larger the fleet size, the smaller the utilization rate.

Figure 6.4: Vehicle utilization rate for the CBD case-study (12-hour simulation for the
period from 3am–3pm. We observe a trend that the larger the fleet size, the smaller the
utilization rate.

For the fleet size which is not sufficient to serve the entire demand (below 2’500 vehicles),
the vehicle utilization rate is equal to over 20 trips per vehicle and it constantly drops as
we increase number of vehicles, reaching less than 10 trips per vehicle with the fleet size of
4’000 vehicles and more. For the fleet size of 2500 each vehicle serves 16.7 trips on average.
The explanation of this trend may be the following: 1’500 and 2’000 vehicles serves smaller
number of customers than a fleet of 2’500 vehicles and above. However, the overall vehicle
utilization rate is higher than for larger fleets, which are providing service to about 18%
more customer.

6.2 Case Study of the extended CBD in Singapore

In this section, we describe case-study simulations designed to evaluate the effect of intro-
ducing an AMOD system in the high-traffic Extended Central Business District (ECBD)
in Singapore (Fig. 6.5). The analyzed 56km2 zone consists of 1178 nodes. The zone is
highlighted in pink. It is important to notice that the analyzed area is a high-traffic area,
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Figure 6.5: Case study of the Extended Central Business District in Singapore. The
analyzed zone, size of 56km2, is highlighted in pink. The network consists of 1178 nodes.

which is a significant trip attractor generating over 40% of all trips in Singapore [Marczuk
et al., 2016]. For the assessment of the AMOD system and its impact on traffic in Singapore,
we run the ECBD network in SimMobility ST. To help the reader to visualize our approach,
a screen-shot of the simulation in SimMobility is presented in Figure 6.6. The illustration
shows a detailed network representation, which includes lanes and traffic signals. As show in
the figure, the AMOD service is simulated alongside regular buses, taxis and private vehicles.

6.2.1 Simulation Setup

To analyze introduction of an AMOD service in the extended CBD region in Singapore, we
use SimMobility as our simulator. Settings of the AMOD Controller are described in the
following paragraphs.

Facility location The facility location for the Extended Central Business District in
Singapore is optimized based on the maximum set covering formulation (Section 3.2.4).
The solution consists of 34 stations which are distributed as presented in Figure 6.7. In
this analysis, we assumed that the coverage radius of a station is 1000 meters, which is
equivalent to 2-3 minute ride at an average speed of 30 km/h (based on the Land Transport
Authority’s data, the average speed for arterial roads during peak hours in Singapore is 28.9
km/h [Marczuk et al., 2016]).
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Figure 6.6: Screen-shot of the SimmMobility ST simulator, which shows detailed network
representation including lanes and traffic signals. As show in the figure, the AMOD service is
simulated alongside regular buses, taxis and private vehicles. AMOD vehicles are represented
as green boxes.

Assignment, rebalancing and post-service routing In this case-study we analyze
two assignment techniques:

1. Single vehicle to single booking assignment (no ride-sharing is allowed). The assignment
is based on the bipartite matching algorithm which is introduced in 4.3.2.

2. Single vehicle to multiple rides assignment (ride-sharing is allowed). This assignment
method is detailed in Section 4.4.

In this case-study we perform both, static and dynamic rebalancing. Static rebalancing
provides us with the results for an optimal vehicle distribution at the beginning of the day
(beginning of the operation) and rebalancing counts based on the estimated demand. Our
benchmark is the simulation with no rebalancing. Both rebalancing models are sensitive to
the rebalancing interval. Based on our simulation results, we set the interval for the static
model at 15 minutes, and for the dynamic model at 1 hour. The reason of this difference is
the following: too long interval in the static model may result in overestimation of the fleet
size (as the travel time is discretized based on the interval size), while too short interval in
the dynamic model may result in rebalancing during the peak period (especially if there is a
booking queue).

We evaluate only one post-service routing alternative, that is, free-floating model. We did not
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Figure 6.7: Facility location map for the Extended Central Business District in Singapore

consider routing vehicles back to the stations after finishing trips as based on our previous
analysis (Section 6.1) routing back to the stations increases waiting time.

Demand generation The demand generation process for AMOD is based on integration
of SimMobility MT with SimMobility ST. The simulated population in SimMobility MT
was estimated based on the Household Interview Travel Survey for 2012 (for more details
please refer to [Marczuk et al., 2016]). Given the output from SimMobility MT, we assign
all trips made on private vehicles (cars, motorbikes), car-sharing and taxis to the AMOD
service. If only a part of the trip was inside the ECBD region, then we cut the trip and
simulate it from or to the border of the network. We run the simulation for the period of
3am-12pm focusing on the morning peak hours. We start simulation at 3am to minimize
the effect of initial conditions for Controller’s performance during peak hours (6:30-10am).
Simulating morning peak hours is within our great interest because usually people have more
time constraints during their trips to offices (or schools). On the evening travel time and
waiting time is less crucial during their decision making process. We therefore analyze how
the system performance during morning peak hours changes as we introduce AMOD mode.

The total number of AMOD trips for the simulation period is 363,859, which is equivalent to
about 40,000 trips per hour on average.

AMOD demand and supply assumptions Vehicles change their roles dynamically
depending on the demand, i.e., the same vehicle can serve single and multiple-riders. Ad-
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ditionally, vehicles do not return to stations after finishing their trips. However, they may
be engaged in rebalancing, which is always sends vehicles back to the stations. Customers
are sensitive to time and they drop their booking requests after queuing for more than
10 minutes. If the customer leaves the system, the operator is penalized for the dropped call.

6.2.2 Results

In this section we present results for the case study of implementing AMOD at the Extended
Central Business District in Singapore.

Stations location Results for the stations location are presented in Figure 6.7. We select
34 facilities optimized based on the set covering formulation. Detailed evaluation of the
facility location problem for the ECBD network is presented in Section 3.3.

Assignment There are two methods for assigning single vehicle to single booking: greedy
and bipartite approach. Figure 6.8 presents comparison, in terms of waiting time, of greedy
and bipartite assignment. Our results for the single-rider assignment suggest that bipartite

Figure 6.8: Waiting time for greedy and bipartite assignment. Regardless of the fleet size,
the greedy assignment results in 1-1.5 minute longer average waiting times for customers.

assignment technique outperforms greedy assignment method. Regardless of the fleet size,
greedy assignment results in 1-1.5 minute longer average waiting times for customers. This,
however, comes at the computational cost as it takes O(n3), where n is the size of bipartite
set, to solve bipartite problem and O(n) to solve the greedy implementation. Our goal is to
keep the average waiting time below 5 minutes, which can be achieved with 6’000 vehicles
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and bipartite model. If we assign vehicles based on greedy model, we have to increase the
fleet size to 10’000 vehicles, or 67%. Without the increased fleet size, waiting time increases
2.1 minutes, or 41%.

In the multiple-riders assignment, more than one customer is assigned to one vehicle. In our
analysis, we allow maximum of two bookings to share the ride. We compare how waiting
time changes as different percentage of customers decides to share their ride. Results for
two fleet sizes, 5000 and 10’000, are presented in Figure 6.9. Note, that in this analysis
we allow customers to wait in the queue for an unlimited time. We evaluate three cases of
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Figure 6.9: Results for assignment with ride-sharing. Note that private is referred to
single-rider trips—AMOD trips with only one customer on board. Assignment to private
rides are computed as described in Chapter 4. 50% shared rides means that every second
customer shares the ride, while in all shared everyone is willing to share the ride. Our results
suggest that ride-sharing reduces waiting time of customers and reduces the required fleet
size to run the service.

ride-sharing:

1. All customers are willing to share the ride,

2. 50% of all trips are shared (every second customer is willing to share the ride),

3. Non of the customers is willing to share the ride (all trips are simulated as single-rider
trips).

Our results show waiting time as a function of the percentage of shared trips and the fleet size.
10’000 vehicles is the fleet size which is sufficient to serve the entire demand of single-rider
requests in the shortest waiting time. 5’000 vehicles is the fleet size which is not sufficient to
serve everyone in the average waiting time below 5 minutes. If everyone is willing to share
the ride, the fleet size of 5’000 vehicles meets the demand in a similar average waiting time as
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a doubled-size fleet for single-rider assignment. This leads us to conclusion that ride-sharing
reduces the number of vehicles required to run an on-demand service significantly. If only
half of our customers share the ride, the average waiting time is 5.3 minutes (fleet of 5’000
vehicles), which is 15% better than for single-rider trips. Additionally, with we increase in
the fleet size to 10’000 the average waiting time drops further to 4.6 minutes. This result is
8% worse than if non of the customers share rides and our fleet size is 10’000 vehicles. This
can be explained by the fact that 10’000 vehicles is sufficient to serve everyone and when we
introduce ride-sharing we increase waiting time. We conclude that in the situation where the
supply is limited and not sufficient to serve everyone, ride-sharing is a crucial factor to ease
waiting queue. However, if the supply exceeds demand, customers are served faster without
ride-sharing.

Rebalancing Here, we analyze how different rebalancing policies influence performance of
the system. Our evaluation of the rebalancing policies consists on two parts:

1. Comparison of static, dynamic and no-rebalancing polices.

2. Comparison of different approaches to model dynamic rebalancing.

First part of the analysis is presented in Section 5.5. Results for the second part (different
dynamic rebalancing approaches) are described in this section and presented in Figure 6.10.
Based on our previous analysis [Marczuk, 2015], rebalancing every 1 hour results in the
shortest waiting times. We tested rebalancing every 0.25, 0.5, 1, 2, and 3 hours in the
dynamic settings and our conclusions are the following. (i) If the rebalancing period is
shorter than 1 hour, the improvement in terms of the average waiting time is not significant
(less than 10 seconds). This may be due to the fact that, in the dynamic settings, too short
rebalancing interval leads to underestimation of peak demand. (ii) Rebalancing period which
is too long, may lead to overshooting the number of required rebalancing trips. Therefore, in
Figure 6.10 we present results for rebalacning performed every 1 hour.

The two graphs in Figure 6.10 summarize performance of different rebalancing methods
introduced in Section 5. Figure 6.10 (a) shows the average customer waiting time for different
rebalancing policies as a function of the fleet size. Figure 6.10 (b) shows the average customer
waiting time for different rebalancing policies as a function of the time of the day. For
both graphs three dynamic rebalancing policies are considered: (i) No-rebalancing policy
(blue line), which is a baseline scenario. (ii) Predictive rebalancing, where we perform
rebalancing based on the demand prediction for the next rebalancing interval (red line).
(iii) Rebalancing based on the current queue at each station (green line). For each policy,
waiting time decreases with an increase in the fleet size. We conclude that rebalancing
reduces required fleet size to serve the demand, e.g., for the average waiting time to fall
below 5 minutes, we need a fleet of 10,000 vehicles operated without rebalancing and as
little as 7,000 with predictive rebalancing. This finding translates to 30% savings in the
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(a) Waiting time as a function of the fleet
size.
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(b) Waiting time as a function of the time of
a day for the fleet of 7,000 vehicles.

Figure 6.10: Waiting time for different rebalancing policies in the ECBD scenario. Waiting
time as a function of the fleet size (left) and waiting time as a function of time time of a day
(right). Rebalancing reduces required fleet size, however requires careful tunings to better
meet peak demand.

required fleet size, while maintaining the same level of service. We observe that for the
fleet of 7,000 vehicles, predictive rebalancing reduces average waiting time by 30 seconds as
compared to the rebalancing based on the current queue. Furthermore, in Figure 6.10(b)
the waiting time from no-rebalancing and queue-based rebalancing during peak hours is
twice longer than for the predictive rebalancing. This may be justified by the fact that
predictive rebalancing moves vehicles in advance, before the cusomters’ queue accumulates,
while rebalancing based on the current queue, moves vehicles only when the demand arrives
in the queue. For the reference, the rebalancing counts for the fleet size of 7,000 vehicles are
presented in Figure 6.11. Note that, presented rebalancing counts are for 1-hour rebalancing
interval. We observe that predictive rebalancing dispatches more empty trips before the
peak period, while the queue-based model sends rebalancing vehicles when the demand is
already high (7am–9am). Therefore, the predictive model is able to better represent the
demand, which leads to a more accurate response to the system dynamics, i.e., vehicles are
prepositioned before the demand appears and as a result they can take more trips within a
shorter period of time (compare Figure 6.10).

We also observe how the travel time (a measure of congestion) changes as we increase the
fleet size. Results for the travel time are presented in Figure ??. We conclude that the
mean travel time is not affected significantly by the number of vehicles in the simulation.
However, standard deviation increases (Figure 6.12 (b)) as we increase the fleet size. This
finding suggests that due to popularity of some origins )or destinations) some of the links
are congested.

Our ultimate goal was to compare waiting and travel times for customers commuting on
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Figure 6.11: Rebalancing counts for different rebalancing policies. Predictive rebalancing
moves vehicles before the peak period, so that the system is ready to take more trips within
a shorter period of time (compare Figure 6.10). Note that there is no rebalancing during
period 3–4AM, which is due to the optimized initial vehicle distribution.

AMOD system against the current transportation modes. Unfortunately, due to SimMobility
still being under development, we could not complete this task and it is left as a future work.

Number of vehicles on the roads In the CBD area we simulate over 14,000 requests
per hour, while in the ECBD region over 30,000 requests per hour. For the given demand,
sufficient fleet size consists of 4’000 and 7,000 vehicles, respectively. This translates to 3.5
trips per hour per vehicle in the 14 km2 zone and 4.3 trips per vehicle per hour in the 56 km2

zone. Note, that these numbers are evaluated for the peak period. In both scenarios we
replaced private vehicle trips with the AMOD trips. For the private vehicle trips, every trip
is equivalent to one vehicle on the road. Therefore, by introducing AMOD service, we reduce
the number of vehicles on roads by 3.5 and 4.3 times for CBD and ECBD, respectively.
Furthermore, we increase the distance traveled by the vehicles due to the rebalancing trips.
Our analysis show that by introducing an AMOD service we do not increase average travel
time on the network, e.g., average travel time remains bounded within 13 minutes for the
fleet size up to 10,000 vehicles in the ECBD scenario. We conclude that a carefully designed
AMOD system does not increase congestion level on the network as it requires smaller
number of vehicles compared to the system with privately owned vehicles. However, we
observe that as we increase the fleet size, the congestion on some links increases, e.g., for the
fleet sizes of 5,000 and 10,000 vehicles the standard deviation for travel time increases from
10 minutes to over 25 minutes, but the average travel time does not change significantly.
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(b) Standard deviation of travel time.

Figure 6.12: Travel time for different rebalancing policies, the ECBD scenario. Mean
travel time as a function of the fleet size (left) and standard deviation of travel time (right).
We conclude that the mean travel time is not affected significantly by the fleet size being
simulated. However, standard deviation increases as we increase the fleet size which suggest
that some of the links are congested.

Run-time Performance Run-time performance of AMOD Controller attached to Sim-
Mobility Short-Term is presented in Figure 6.13. We conclude that run-time performance
of AMOD Controller is a function of the number of vehicles in the simulation and number
of booking requests. As fleet size increases, the run-time is longer until it reaches a stable
state. For the fleet size equal of larger than required to satisfy all booking requests, e.g., in
Figure 6.13 above 6,000, the run-time is not affected by the fleet size. We claim that the
remaining vehicles, e.g., vehicles parked at stations, do not contribute to performance of the
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Figure 6.13: Run-Time of AMOD Controller attached to SimMobility Short-Term.

run-time.

6.3 Summary

In this chapter we provided simulation results for large-scale implementations of an AMOD
system for the city of Singapore. We analyzed two case study scenarios: (i) Introduction
of AMOD system as an alternative to private vehicles in the high-traffic Central Business
District in the city of Singapore. (ii) Introduction of an AMOD system as a new mobility
service in the extended CBD region in Singapore. We provided results for the facility
location, assignment with and without ride-sharing and different rebalancing policies. We
noticed that ride-sharing reduces the fleet size as well as [for insufficient fleets of vehicles] the
average waiting times. We also proved that rebalancing reduces required fleet size, however
requires careful tunings to better meet peak period demand. We show that the predictive
model for dynamic rebalancing is able to significantly better represent the demand than the
queue-based model. The predictive model responses more accurately to the system dynamics,
i.e., vehicles are prepositioned before the demand appears and as a result they can perform
more trips within a shorter period of time.

Our future plans are to evaluate more scenarios for the implementation of AMOD systems.
We are planning to extend the analysis for the rebalancing and assignment through demand
management with dynamic pricing. We are currently working on a real-vehicle implementation
of the controller with a fleet of three multi-class autonomous vehicles. It is within our interest
to extend the controller to handle booking systems of a large-scale real deployments.





Chapter 7

Conclusion and Future Directions

7.1 Conclusion

As planners, we need to have a holistic picture of how the overall system works—from
the moment a person gets out of the house to the destination. For the convenience of the
commuters, we propose an automated mobility on demand service that matches up vehicles
and riders for a ride. The system is fast in response and requires minimal effort from the
customers.

In this dissertation we look at the feasibility of assembling a fleet of autonomous vehicles
for a mobility on demand service in order to ease congestion, increase safety, and reduce
environmental impacts. We consider a new mode of urban transportation, which we refer as
an Autonomous Mobility on Demand (AMOD) system. Specifically, we focus on the issues
related to the fleet management of an autonomous mobility on demand system.

The main contribution of this dissertation is development of framework and related algorithms
to demonstrate the role of autonomy in Mobility on Demand systems and its impact in
terms of feasibility and efficiency through modeling, simulation, algorithm development and
experimental demonstration. The proposed methodologies are applicable to a large-scale
systems in different simulations’ setup. We present our methodology which consists on three
primary levels differentiated by the timeframe: planning, tactical and operational level. In
each pillar we consider different decisions related to design and operation of an AMOD
system:

(i) At the planning level we decide on strategic decisions, such as location and size of
operating area and number and location of stations (zones).

(ii) At the tactical level we decide on long-term operation decisions such as number of
vehicles which are required to run the system (fleet size), home location of the vehicles
at the beginning of the day and static rebalancing.

(iii) At the operational level we decide on short-term operational decisions such as vehicle
to customer assignment, rebalancing policies, and dynamic pricing.

121
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The key part of this undertaking relies on the tests via simulation studies for the city
of Singapore. Simulations are performed with the use of SimMobility—an agent-based
simulation platform.

Contribution of each chapter is the following. In Chapter 1 we survey the related research
models in academic literature. In Chapter 2, we introduce AMOD Controller, which is
designed to manage a fleet of autonomous vehicles. We describe our methodology and sys-
tematically outline the system architecture and functional organization of AMOD Controller.
In Chaper 3, we focus on the most important strategic aspect of management of AMOD
systems—selecting the number and location of new facilities. In this chapter we formulate five
optimization-based approaches for finding the number and location of the AMOD stations.
To assess the merits of our methods we present a simulation study based on private vehicle
travel demand for the Central Business District in Singapore. We conclude that the set
covering formulation gives us the best, in terms of the customers’ waiting and travel times,
results. In Chapter 4, we consider a real-time vehicle to customer assignment methods. We
formulate two types of assignment: (i) for customers who are not willing to share the ride
(called single-riders), and (ii) for customers who are willing to share the ride (multiple-riders).
Our simulation results indicate that the use of optimization methods instead of simple greedy
approaches substantially improves performance of AMOD systems. In Chaper 5, we describe
a core-component of this dissertation, which is empty vehicle rebalancing. Rebalancing
aims in finding optimal control policies for realigning demand and supply by minimizing
the total cost of rebalancing. We propose static and dynamic formulation of the problem.
Static rebalancing solves for the total number of vehicles required to operate the system
and the rebalancing pattern between different locations for the course of the entire day.
Dynamic rebalancing solves rebalancing problem at real-time. We integrate our optimization
techniques within a simulation environment and test the algorithms for the case studies
placed in Singapore. We demonstrate the value of optimization-based rebalancing policies in
the operation of the AMOD system. Finally, Chapter 6 provides the analysis of a large-scale
implementation of the AMOD solution for the city of Singapore.

Our results suggest that introducing AMOD service has a great potential to serve for future
urban mobility. We believe that owning a conventional private car will take a backseat when
the choices for being in a shared self-driving vehicle become available.

7.2 Limitation and Future Directions

To the best of our knowledge, this dissertation is the first work to perform a complete analysis
of autonomous mobility on demand systems.
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7.2.1 Limitations

Although this research was carefully prepared, we are still aware of its limitations and
shortcomings. First of all, there are strong assumptions in our models.

1. We run the system with single-class vehicles, e.g., there is only one type of service
offered (no limo taxis, no vans, etc.).

2. Our facility location models do not consider

(i) Geographic information, which is required for cross-checking of the feasibility of
potential locations;

(ii) Capacity of each station; at the current implementation each station can store as
many vehicles as needed, however we are aware that this assumption should be
released.

(iii) Requirements for charging infrastructure at each station; in real situation electric
vehicles are running on batteries with limited range and therefore they have to
be recharged. In our work, we neglected the battery capacity and range of the
vehicles.

3. Our assignment models allow maximum of two customers to share the ride.

4. Offline rebalancing models do not account for time-varying travel times and uncertain-
ties such as weather conditions and traffic accidents.

Second, we were limited by scalability of the simulator, which is still under development. Due
to very detailed representation of the network and agents’ choices and movement, run-time
was a crucial factor limiting us from performing more simulations.

Third, we could not validate the simulations because autonomous mobility on demand
services are not far beyond being at a conceptual stage with some small scale Research and
Development implementations.

Fourth, we do not provide analysis of robustness of the proposed algorithms, nor comment
on the stability and convergence of the developed control policies.

In addition, impact of AMOD parking locations within the CDB on land-use were ignored
and residents of the CBD area were not given any privilege of driving their own vehicle
within the restricted area. ERP (Electronic Road Pricing, or toll system in Singapore) was
not included in the analysis.

We fully acknowledge all the shortcomings, which could not be released due to time constraints
of the program.
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7.2.2 Future Work

We are planning to extend the AMOD concept—which is currently designed to provide
door-to-door transportation—and integrate it with other modes of transportation, such as
public transit. We believe that the concept of AMOD system may provide a very effective
means to increase the use of a scheduled public transportation system if it is used as a
feeder service. In such scenario, a vehicle would bring rider(s) from their origins to a public
transport hub, i.e., MRT station in Singapore, then the riders would use public transit to
get close to their destinations, and finally they would walk or use another AMOD vehicle to
travel from the transit stop to their destinations.

Further extensions of the proposed solutions for the facility location problem should consider
geographic information, cost of placing new car park sites and the parking capacity of each
station. We are also working towards including the charging requirements when designing
the stations’ location.

For the assignment models, we are interested in setting priority for some customers or
vehicles, e.g., loyalty customers or vehicles with a higher fuel economy. We are also interested
in incorporating the demand management policies in our AMOD Controller, e.g., dynamic
pricing for a better respond to the fluctuating demand. It is also within our interest to
extend the assignment model to account for the battery level before dispatching vehicle to
the customer and to work toward more sophisticated methods for multiple-riders assignment.

Furthermore, we are planning to design congestion-aware rebalancing methods, which is
especially important when rebalancing a large number of vehicles. It is also within our
interest to extend the rebalancing model to incorporate the battery level in our rebalancing
algorithms.

Finally, we would like to test AMOD Controller in different cities and for a real vehicle
implementation.



Appendix A

Input and Output of AMOD Controller

A.1 Input to AMOD Controller

AMOD Controller is designed at three levels: planning, tactical and operational (Figure 2.4).
AMOD Controller Planning Level utilizes demand and network information, which are
provided by (i) SimMobility Mid-Term, and (or) (ii) external sources. The overall process
is described in Figure 2.13. AMOD Controller Tactical Stage uses information on station
location and estimated demand (as presented in Figure 2.14). Both inputs are provided by
AMOD Controller Planning Stage. At the operation level, AMOD Controller is initialized
with estimated demand data, network information, stations location, initial positions of
vehicles and static rebalancing counts (Figure 2.15).

Details on input from SimMobility Mid-Term and external sources are presented in Sec-
tion A.1.1 and Section A.1.2, respectively.

A.1.1 Input from SimMobility Mid-Term

Input from SimMobility Mid-Term is directly utilized by AMOD Controller Planning Stage
and indirectly (as input from Planning Stage) by Tactical and Operational Stage. The input
consists of (i) demand data, and (ii) network information. The data are used as described in
Chapter 6.

SimMobility Mid-Term provides demand in the form of daily activity schedule (DAS). Each
row of DAS consists of the following structure: person id is a unique id for the person;
tour_no describes sequence number of the trip for the person; tour_type describes purpose
of the trip, e.g., work-related trip; stop_no, stop_type, stop_location, which is understood
as trip destination; stop_zone, stop_mode, which is understood as trip mode; primary_stop,
arrival_time, departure_time, prev_stop_location, which is understood as trip origin;
prev_stop_zone, prev_stop_departure_time, which is understood as trip tart time.

Network structure within SimMobility Mid-Term comprises of list of nodes, edges, connec-
tors, traffic signals, etc. Each element is described by a string, e.g., node description for-
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mat: ("node", 0, 12340, {"location":"[(372322.09,142722.57),]", "type":"2",}),
link description format: ("link", 0, 3055, {"name":"ORCHARD ROAD","from":"12896",
"to":"22130", "type":"2","category":"2","fwd-path":"[7037,]",}). Each node is
characterized by a unique node ID and (x, y) coordinates compatible with WGS N48 system.
Each link is characterized by a unique link ID, name of the road, which link is representing,
start and end node ID of the link and additional information such us type and category of
the link.

Given the input, we convert the daily activity schedules and network information into the
format which is accepted by AMOD Controller and we pass it as an input to our simulations.
As described in Section AMOD Controller Operational Level accepts the following format
for the network: list of nodes node_id, position_x, position_y. Each node is described by
unique ID and its coordinates. Coordinates are provided in planar system (WGS coordinate
system; for Singapore, zone N48). The demand accepted by AMOD Controller Operational
Stage consists of list of customers and list of bookings. As customers we understand all
agents who exist in the system. They are initialized at the beginning of the simulation

A.1.2 External Data Sources

External (from outside of SimMobility Mid-Term and Short-Term) data sources which are
input to Controller consist of: (i) Land-use data (ii) HITS 2012 (iii) 4.5 months detailed
GPS data for 15,000 taxis (iv) 3 months EZ-Link data (v) Google transit data (vi) SCATS
traffic light data (vii) Road network data All the sets are fed into SimMobility Mid-Term to
generate daily activity schedules for the trips and trip chains which are passed to AMOD
Controller and SimMobility Short-Term. Detailed description of models within SimMobility
Mid-Term is outside the scope of this thesis, and for more information the reader may
refer to [Lu et al., 2015, Adnan et al., 2016, Azevedo et al., 2016]. Setup and validation of
SimMobility demand model is presented in Appendix E.

Passing input to the Controller takes place at the initialization phase, which is presented in
Algorithm A.1. Note that Algorithm A.1 presents initialization of required parameters only,
i.e., optional parameters are specified as a group of parameters.

The input parameters are read from the configuration file and passed to the controller.
Additional parameters which can be specified within the configuration file of AMOD Controller
include:

(i) Assignment parameters such as assignment algorithm (FIFO, bipartite matching,
shared) distance cost factor, and waiting time cost factor.

(ii) Rebalancing parameters such as rebalancing method, e.g., queue-based, predictive, or
based on offline estimation.



Chapter A. Input and Output of AMOD Controller 127

(iii) Logging parameters such as name of the output file, logging time interval.

(iv) Simulation parameters such as simulator name, e.g., SimMobility, Beta-simulator, and
simulation time, i.e., what period of time do we simulate.

Algorithm A.1: Initialization phase within AMOD Controller Operational Level.

1 if any of the input files is invalid then
2 throw error
3 end
4 load network nodes and edges
5 generate the network
6 load stations
7 if vehicle initialization optimized then
8 initialize vehicles at stations based on optimized allocation
9 else

10 uniformly distribute vehicles
11 end
12 load customers
13 if static rebalancing then
14 load static rebalancing counts
15 end
16 if dynamic rebalancing then
17 load rebalancing interval
18 load demand predictions

19 end
20 if external simulator then
21 establish connection with simulator
22 if connection unsuccessful then
23 throw error
24 end

25 end
26 load additional parameters
27 pass data to update phase

All parameters initialized during the initialization phase are passed to the update phase of
the controller (and simulator) and are stored in-memory for the entire simulation time.
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A.2 Output of AMOD Controller

Output from AMOD Controller consists of all logs reported by AMOD Controller (Section B).
Events which are logged are the following:

• vehicleMoved, which provides information on vehicle location with a time stamp.

• BookingReceived, which contains information about booking id, customer id, booking
time and service requested, e.g., shared ride.

• BookingServiced, which provides details on which vehicle is assigned to which cus-
tomer, and at what time.

• BookingDiscarded, which is logged with the reason, i.e., no path found or customer
waiting time exceeded.

• VehicleDispatch, which can be logged with different type, i.e., dispatch to customer
or dispatch to rebalancing.

• VehicleArrival, which provides coordinates of the location vehicle has reached, and
type of arrival, i.e., arrival for pick-up, drop-off, rebalancing.

• CustomerPickup, describes who was picked up by which vehicle and at what time.

• CustomerDropoff describes who was dropped off by which vehicle and at what time.

Note that each event is logged with the time stamp of the time when event was triggered.

All events can be later analyzed and visualized offline. An example of visualization of
extended CBD region can be found here. In case of any problems with opening the link,
please contact the author.

https://goo.gl/nKm3xd


Appendix B

Update Phase of AMOD Controller

Update phase of AMOD Controller is presented in Algorithm B.1. AMOD Controller performs
update after successful initialization phase at every time tick. Time tick is a parameter
specified at the initialization phase and ranges from 0.1 sec to 10 seconds. Resolution lower
than 0.1 seconds slows down the performance of the controller and simulator. Furthermore,
for any real system implementation, such low latency is almost impossible to be achieved.
Therefore, our simulation were run with time tick of 1 second. Resolution coarser than
3 seconds causes simulator to jump from state to state resulting in problems with driver
behavior model.

At every time tick we check if the current time is less than the maximum simulation time we
are interested to run. If the condition is satisfied, we perform the update.

At each update, we first update the simulator state. We call a function within AMOD
Controller which calls location service within Simulator, e.g., if we use SimMobility, the
AMOD Controller is directly attached to SimMobility. This allows the controller to call some
of the SimMobility classes directly, so to find the locations of all vehicles which are of type
AMOD. Note, that vehicle and customer statuses are maintained within AMOD Controller
only. After updating vehicles position, Controller updates its own state by updating statues
of all vehicles and customers, e.g., if vehicle has arrived at pick up location, the status is
changed from MOVING_TO_PICK_UP, to PICKING-UP, followed by MOVING TO DESTINATION.
A complete list of vehicle statuses is the following:

• FREE,

• BUSY,

• HIRED,

• MOVING_TO_PICKUP,

• MOVING_TO_DROPOFF,

• PICKING_UP,

• DROPPING_OFF,
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• PARKED,

• MOVING_TO_REBALANCE,

• MOVING_TO_FIRST_PICKUP,

• MOVING_TO_SECOND_PICKUP,

• PICKING_UP_FIRST,

• PICKING_UP_SECOND,

• MOVING_TO_FIRST_DROPOFF,

• MOVING_TO_SECOND_DROPOFF,

• DROPPING_OFF_FIRST,

• DROPPING_OFF_SECOND,

• UNKNOWN.

In the next step, the controller logs all events to the output database as presented in
Section A.2. All events can be later analyzed and visualized offline.

At the next step, AMOD Controller performs assignment which is done based on the
algorithms described in Section 4.2. Note, that the assignment can only be done if there are
customers in the queue and available vehicles.

Finally, after the assignment is successful, the controller performs rebalancing. Rebalancing
is only done at specific time intervals, so if the time condition is met, the optimization class
for rebalancing is triggered. As a results, empty vehicles are dispatched to new locations.
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Next, the cuntroller updates the simulator state, which is again, beginning of the loop.

Algorithm B.1: Update phase within AMOD Controller Operational Level.

1 if initialization not successful then
2 throw error
3 end
4 do
5 if simulator is valid then
6 update simulator state
7 update controller state
8 log positions of all vehicles

9 end
10 read demand file
11 log incoming bookings
12 add bookings to booking queue
13 if booking queue not empty then
14 if there are available vehicles then
15 assign vehicles to trips
16 dispatch vehicles to simulator
17 log dispatch orders

18 end

19 end
20 if there are available vehicles then
21 if static rebalancing then
22 read predicted rebalancing counts and make online adjustments
23 dispatch rebalancing vehicles to simulator
24 log dispatches

25 else
26 optimize online rebalancing counts
27 dispatch rebalancing vehicles to simulator
28 log dispatches

29 end

30 end

31 until time exceeds simulation end time





Appendix C

Class Structure for Physical Elements of AMOD

System

Figure C.1: Detailed class diagram for the physical elements of AMOD system.
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Appendix D

Modeling Methodology within SimMobility

The demand generation process for AMOD trips is based on integration of SimMobility MT
simulator with SimMobility ST simulator as described in details in our publications [Azevedo
et al., 2016, Azevedo et al., 2017]. The supply models for AMOD vehicles are based on
driver’s models in SimMobility ST.

To analyze the impacts of specific AV technologies on travel patterns, SimMobility demand
and supply simulation components were extended to account for dedicated AMOD service
and vehicle access restrictions. For the case studies presented in Chapter 6, we limit the
analysis to the ST and MT simulators, because extension of SimMobility LT is still in
progress. SimMobility ST is responsible for advancing agents on the transportation network
according to their respective behavioral and decision models. The behavioral and decision
models within SimMobility ST are based on the open-source microscopic traffic simulation
application MITSIM. SimMobility ST includes probabilistic model to capture drivers’ route
choice decisions and driving behavior parameters. These parameters are randomly assigned
to each driver-vehicle unit. In case of AMOD the parameters are set to be the same for all
vehicles. All vehicles within SimMobility are moved according to route choice, acceleration
and lane changing models. The acceleration model captures drivers’ response to neighboring
conditions as a function of surrounding vehicles motion parameters. The lane changing model
integrates mandatory and discretionary lane-changes in a single structure. The AV decision
making models should, preferably, be based on the motion control algorithms used by the AV
manufacturers. Due to the fact that AVs are still under research and development, we could
not find any readily available specifications of the AVs’ decisions making process. Therefore,
for this implementation, the existing acceleration and lane-changing models in the vehicle
flow model of SimMobility ST were adjusted to exclude human (driver’s) heterogeneity
factors and individual stochastic behavior. All AV behave the same way, and the safety
margins in terms of gap acceptance, safety headway and reaction time were reduced and
equal to 1.0s, 1.0s and 0.5s, respectively.

SimMobility MT simulates daily activities and travels at the individual level. It combines
activity-based microscopic simulation on the demand side with mesoscopic simulation on the
supply side. The demand side comprises two groups of behavioral models: pre-day models
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and within-day models. The pre-day models follow an enhanced version of econometric Day
Activity Schedule approach predicts:

• the activity sequence (including home-based tours, work-based sub-tours, and interme-
diate stops),

• the trip destinations and modes, and

• the departure times (on half-hour slots).

This is based on a sequential application of hierarchical discrete choice models using a Monte
Carlo simulation. Readers are directed to [Lu et al., 2015] to get details of the pre-day
modeling framework. At the pre-day level, the implementation of a car-restricted area
with AMOD service was assumed to affect directly the destination and mode choice. Mode
availability for trips involving origins and/or destinations within the restricted area changed
leading to multi-modal trips that combine private vehicles (in the case those are the modes
restricted) outside the implementation area, and AMOD inside the implementation area. As
transferring between modes is forced for these trips, it is necessary to properly model the
agents’ behavioral response. For this particular case, the utility specification of the AMOD
mode was based on the individual preferences towards taxi due to the lack of AMOD-specific
data for model estimation. For mandatory activities with fixed destination (such as going
to work or school) the agents were only able to change modes, while for non-mandatory
activities (such as shopping) they also had the possibility of changing destination. Once
the daily activity schedules are obtained for all agents, the within-day models predict the
routes for planned trips, transforming the activity schedule into actual trips. Depending on
the traffic conditions and effective travel times, the agents could reschedule the remainder
of the day, cancel an activity, re-route while traveling (including alighting a bus to change
route), or run an opportunistic activity such as shopping while waiting. On the within-day
level, the implementation of the restricted area with AMOD service affected the route choice,
i.e., private vehicles had a smaller number of available paths which may lead to a change in
congestion on alternative paths.

The cost of the AMOD service is assumed as 40% less than the regular taxi service in
Singapore, resulting in an average cost of about $3 SGD within the CBD area. Reduction
of cost for the AMOD service is due to different cost structure for the autonomous taxis
(as compared to human driven ones). Our estimates—which are based on analysis of the
ComfortDelgro Taxi data—suggest that if we eliminate the driver, the operator can make
around 60% savings. Autonomous system, however, brings higher operational cost, i.e.,
control and management offices, which we assumed to be 20% higher than for human driven
cabs.

The cost structure of other modes is assumed to remain unchanged (i.e. buses and MRT kept
their frequencies, fares and capacities and the taxi fleet and cost remained the same) using
the year 2012 configuration as reference. No changes in the road network and traffic control
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systems is assumed for this case study. The impacts of AMOD parking locations within the
CDB on land-use were ignored and residents of the CBD area were not given any privilege
of driving their own vehicle within the restricted area. These strong assumptions allowed us
to test the models and prove that the controller and simulator give us expected results.

With a growing interest in AV technology and mobility on demand systems, we are planning
to relax some of these assumptions, however it falls beyond the scope of this thesis.





Appendix E

Demand Model within SimMobility

SimMobility consists of three pilars: long-term, mid-term, and short-term, each of them
simulating the same agents at different spacial and temporal resolutions. The MT simulator
takes as input a multi-modal network and a population (which may come from the LT
simulator or other population data sets) that contains detailed characteristics of each agent.
As an output, it passes accessibility measures (in the form of Logsums) from the pre-day
component of MT simulator to the LT simulator. The MT simulator provides the ST
simulator with trip chains as input demand to simulate smaller network regions in more
detail. Short-Term simulator simulates vehicles movement at the operational stage. A
snapshot of a mixed traffic within SimMobility Short-Term is presented in Figure E.1. We
observe different classes of vehicles queuing at the intersection. Private vehicles are in red
color, taxis are in blue color, AMOD vehicles are in green color.

Figure E.1: A snapshot of visualization of SimMobility ST showing different classes of
vehicles queuing at the intersection. Private vehicles are in red color, taxis are in blue color,
AMOD vehicles are in green color.
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Figure E.2 presents results for validation of baseline model within SimMobility Short-Term.
The validation is done against HITS 2012 data.

Figure E.2: Validation of baseline model in SimMobility based on our work published
in [Azevedo et al., 2016] and [Azevedo et al., 2017].

Model validation and calibration within SimMobilityST applies several design heuristics to
make modeling and development easier for a heterogeneous user base as described in [Azevedo
et al., 2017]:

1. Entities are isolated from each other, and can only interact through properties that
are shared among them, which is a property of agent-based simulations.

2. The simulator is location-agnostic regarding agents. In other words, an agent’s interface
does not change depending on where it is with respect to the network.

3. Time step within SimMobility is indivisible and agents are assumed to all tick forward
at once.

4. SimMobility is hierarchical and provides sensible defaults, e.g., trip-chains can be filled
in with more information as the agent’s trip progresses.

SimMobility uses an activity-based demand formulation in the form of activity-schedules
rather than the traditional Origin-Destination matrix definition. In such approach, trip
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chains are generated by individuals’ daily schedules instead of aggregated traffic specific
matrices. Demand parameters are calibrated through tuning of the OD flows by calibrating
one parameter for each activity schedule [Azevedo et al., 2017]. Then the updated OD
parameters are converted into trip chains by dis-aggregating through so-called killing-cloning
process for each iteration. There are also parameters related to the route choice, which are
calibrated as described in [Azevedo et al., 2017, Adnan et al., 2016]. Further details on
SimMobility, in terms of modeling details, integration, and calibration can be found in [Lu
et al., 2015, Adnan et al., 2016, Azevedo et al., 2016, Azevedo et al., 2017].

In the case-study of 14 km2 CBD region, we have simulated the background traffic which
includes bus rides, taxi rides, private vehicles rides and MRT rides (MRT were not directly
simulated) alongside the AMOD vehicles.

As SimMobilility is still under development, there were limited data available. In the
case-study of the Extended Central Business District and the entire Singapore, we had
no background traffic information and therefore we performed analysis with AMOD trips
only. Our future work, which is currently being undertaken, is to extend the simulations to
simulate AMOD vehicles alongside other transportation modes in the entire Singapore.

E.1 Analysis of Modal Shift within SimMobility

Analysis of the modal shift has been performed for the 14 km2 CBD region. As described in
our papers [Marczuk et al., 2015, Azevedo et al., 2016] , we evaluated policy of restricting
private vehicles from entering the 14 km2 zone and introducing AMOD within the region.
The baseline traffic was validated against HITS 2012 data as presented in Figure E.2. In
the case study, outside of the region all modes are allowed, while inside the zone we allow
AMOD and public transport including taxis.

As we described ealrier in [Azevedo et al., 2016], we use SimMobility ST and AMOD Controller
to test different fleet sizes for the AMOD service. After running simulations, we compare
waiting and travel times within the restricted zone were we simulated demand in the form of
trip chains from the SimMobility MT simulator, i.e., SimMobility ST simulator simulates
the demand only within the restricted zone. This is done by dividing the private vehicle
trips, which arrive or originate within the CBD region and have their origin or destination
outside the CBD region into two sub-trips, i.e., one sub-trip is inside the CBD region and the
second one is outside the CBD region. The inside CBD sub-trip is simulated using AMOD
service. This is also true for those trips which have their origin and destination within the
CBD region. Travel times on the links within Short-Term simulator are transferred back to
the MT simulator. Within SimMobility Mid-term we combine the two sub-trips (inside and
outside the CBD) into one complete trip. Mid-Term supply model stores trip travel times in
an aggregated manner which is fed back to the pre-day component of SimMobility Mid-Term.
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The pre-day model understands each private vehicle trip as a combined modal trip, i.e.,
private vehicle and AMOD, if part of the trip is inside CBD. This is done by modifying the
utility specification of private vehicle mode in the mode choice model by adding waiting
time into consideration. Parking prices for private vehicles are reduced due to the restriction
for parking within the CBD region. The cost of the AMOD part of the trip is considered
40% lower than the similar taxi trip. Finally, Mid-Term Within-day simulated route choice
of private vehicle trips considering unavailability of routes through the CBD region. With
these assumptions, several iterations were run in two simulators.

This integration allows us to consider the impacts of introducing AMOD within the CBD
region for an entire Singapore transportation network, along with behavioral changes in the
individual’s activity schedules. Our results show a significant change in the travel pattern
due to this scenario, e.g., commuters destination choice for some trips changed, as some
travelers showed preference to shop outside the CBD. The restricted zone affects route choice
of through traffic and the performance of the road network. Based on the simulation output
we conclude that private vehicles users shifted to public transport and taxis due to limited
usage of private vehicles. Furthermore, we can see that the restricted zones causes some
congestion outside of the region. We concluded that it is due to the vehicles which are taking
detours and otherwise, would be traveling through the zone as shown in Figure E.3.

Figure E.3: Effects on through traffic: path attributes for the two selected paths from A
to B, without (left) and with (right) the car-restricted area with AMOD.

We also conclude that after introducting AMOD service within restricted zone, number of
private trips is reduced by 7% as compared to the case without AMOD.

Impact on mode choice for the restricted area is presented in Figure E.4.

We see that most of commuters replaced their trips on private vehicles by combined trips
with AMOD.
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Figure E.4: Impact on the mode choice of the car-restricted area with AMOD.

E.1.1 Limitations

Impact of AMOD parking locations within the CDB on land-use were ignored and residents
of the CBD area were not given any privilege of driving their own vehicle within the restricted
area. ERP (Electronic Road Pricing, or toll system in Singapore) was not included in the
analysis.
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