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o r i g i n a l a r t i c l e

The Effect of Adding Comorbidities to Current Centers for Disease
Control and Prevention Central-Line–Associated Bloodstream

Infection Risk-Adjustment Methodology

Sarah S. Jackson, MPH;1 Surbhi Leekha, MBBS, MPH;1 Laurence S. Magder, PhD;1 Lisa Pineles, MA;1

Deverick J. Anderson, MD, MPH;2 William E. Trick, MD;3 Keith F. Woeltje, MD, PhD;4 Keith S. Kaye, MD, MPH;5

Kristen Stafford, PhD, MPH;1 Kerri Thom, MD, MS;1 Timothy J. Lowe, PhD;6 Anthony D. Harris, MD, MPH1

background. Risk adjustment is needed to fairly compare central-line–associated bloodstream infection (CLABSI) rates between hospitals.
Until 2017, the Centers for Disease Control and Prevention (CDC) methodology adjusted CLABSI rates only by type of intensive care unit
(ICU). The 2017 CDC models also adjust for hospital size and medical school affiliation. We hypothesized that risk adjustment would be
improved by including patient demographics and comorbidities from electronically available hospital discharge codes.

methods. Using a cohort design across 22 hospitals, we analyzed data from ICU patients admitted between January 2012 and December
2013. Demographics and International Classification of Diseases, Ninth Edition, Clinical Modification (ICD-9-CM) discharge codes were obtained
for each patient, and CLABSIs were identified by trained infection preventionists. Models adjusting only for ICU type and for ICU type plus
patient case mix were built and compared using discrimination and standardized infection ratio (SIR). Hospitals were ranked by SIR for each
model to examine and compare the changes in rank.

results. Overall, 85,849 ICU patients were analyzed and 162 (0.2%) developed CLABSI. The significant variables added to the ICU model
were coagulopathy, paralysis, renal failure, malnutrition, and age. The C statistics were 0.55 (95% CI, 0.51–0.59) for the ICU-type model and
0.64 (95% CI, 0.60–0.69) for the ICU-type plus patient case-mix model. When the hospitals were ranked by adjusted SIRs, 10 hospitals (45%)
changed rank when comorbidity was added to the ICU-type model.

conclusions. Our risk-adjustment model for CLABSI using electronically available comorbidities demonstrated better discrimination than
did the CDC model. The CDC should strongly consider comorbidity-based risk adjustment to more accurately compare CLABSI rates across
hospitals.

Infect Control Hosp Epidemiol 2017;1–6

Central-line–associated bloodstream infections (CLABSIs) are
responsible for substantial morbidity and mortality among
hospitalized patients. Patients with CLABSIs are at a higher risk of
death, have longer hospital stays, and incur more healthcare costs
than patients without CLABSIs.1 Since January 2012, hospital
reimbursement by the Centers for Medicare and Medicaid
Services (CMS) has depended on public reporting of CLABSI
rates. CMS hospitals use the operational system of the Centers for
Disease Control and Prevention (CDC) National Healthcare
Safety Network (NHSN) to facilitate reporting.2

The CDC uses risk adjustment tomore fairly compare CLABSI
rates across hospitals. Until 2017, the CDC NSHN adjusted
CLABSI rates only by type of intensive care unit (ICU). In 2017,

the CDC added hospital size (ie, number of licensed beds) and
medical school affiliation as additional risk-adjustment variables.3

However, neither of these CDC models adjust for individual
patient level factors, including comorbid conditions. We
hypothesized that risk adjustment could be improved by includ-
ing demographics and comorbid conditions from electronically
available hospital discharge codes.

methods

Using a cohort design, we retrospectively analyzed ICU
patients admitted between January 1, 2012, and December 31,
2013, to 22 US hospitals. Facilities were recruited as part of a

Affiliations: 1. Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland; 2. Duke Center for
Antimicrobial Stewardship and Infection Prevention, Duke University Medical Center, Durham, North Carolina; 3. Collaborative Research Unit, Cook County
Health and Hospitals Systems, Chicago, Illinois; 4. Division of Infectious Diseases, Department of Internal Medicine, Washington University School of
Medicine, St Louis, Missouri; 5. Division of Infectious Diseases, Department of Clinical Research, University of Michigan Medical School, Ann Arbor,
Michigan; 6. Premier, Inc, Charlotte, North Carolina.
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partnership between Premier, Inc, the Society for Healthcare
Epidemiology of America (SHEA) Research Network, and
the University of Maryland School of Medicine. Institutional
review board and facility consent were obtained from facilities
that voluntarily participated in the study.

Using Premier’s Quality Advisor database, we obtained
demographic and International Classification of Diseases, Ninth
Edition, Clinical Modification (ICD-9-CM) discharge codes for
each adult ICU patient. Patients with CLABSIs were identified
by trained infection preventionists at each hospital using CDC
NHSN definitions.4 We also obtained information on the size
of the hospital (ie, number of beds) and whether the hospital
was associated with an academic medical school.

Risk-adjustment models were built using discrete survival
analysis, a method that accounts for time at risk.5 Specifically,
acquisition of CLABSI on each day in the ICU was used as the
outcome of a binary regression model with a complementary
log-log link. A random intercept for hospital was included in
the model to account for the clustering of patients within
hospitals.

We constructed 2 models: (1) a model containing only ICU-
type (ie, CDC methodology prior to 2017) and (2) a model
containing ICU-type plus patient case-mix variables. For the
latter model, we identified candidate comorbidity variables using
expert consensus, which has been reported elsewhere.6 Using a
modified Delphi method, 9 infectious disease and infection
control experts were asked to rate the 35 comorbid conditions
found in the Charlson and Elixhauser comorbidity indices from
1 (not at all related) to 5 (strongly related), based on perceived
relatedness to CLABSI. These experts rated the following 14
conditions in terms of causality with CLABSI as 3 (somewhat
related) or higher: coagulopathy, dementia, diabetes without
complications, diabetes with complications, drug abuse,
hemiplegia or paraplegia, HIV/AIDS, lymphoma, malignancy,
solid tumor with metastasis, severe liver disease, obesity, renal
disease, and weight loss (malnutrition). These 14 conditions
(identified using ICD-9-CM codes), along with ICU type, age,
gender, race, hospital size, and medical school affiliation
were entered into the model as potential predictors of CLABSI.
Hospital size was defined in the 2017 CDC NHSN model as a
binary variable indicating that the number of beds in the hospital
was ≥276.3 Variables were retained using backward selection if
they met the significance level of α< 0.05.

For both models, we estimated the marginal predicted
probabilities of a CLABSI for each patient day in the ICU
without including the random effect in the prediction so that
hospital characteristics did not influence these values. These
predicted probabilities were then used to generate the C
statistic and 95% confidence interval (CI) for both models.
The C statistic is a measure of discrimination, or the model’s
ability to discriminate between those with and without
the outcome. The C statistic is the chance that the model
will assign a higher probability to patients with CLABSIs
than without.7 Values for the C statistic range from 0.50, a
probability no different from chance, to 1.0, which is perfect

prediction. Calibration, the model’s ability to accurately
quantify the probability of the outcome, was assessed with a
calibration plot. The predicted probabilities were plotted
against the observed proportion of CLABSI in deciles, and a
45° line was added to visually inspect how well the model was
calibrated. In a perfectly calibrated model, the points would
rest exactly on the 45° line, implying that the predicted risks
are equal to the observed rate.8,9

Unadjusted CLABSI rates were calculated for each hospital by
dividing the number of CLABSIs by the total number of ICU
days. To calculate risk-adjusted rates, the predicted probabilities
from the risk-adjustment model were summed to estimate the
expected number of CLABSI events for each hospital. Standar-
dized infection ratios (SIR) for each hospital were calculated by
dividing the observed number of CLABSI by the expected
number predicted by the ICU-type plus patient case-mix model.
An SIR above 1 indicated that the hospital reported a greater
number of CLABSIs than expected, while an SIR below 1
indicated that the hospital reported a lower number of CLABSIs
than expected by the model.10 Hospitals were then ranked by the
case-mix risk-adjusted SIRs and compared to the rankings when
ordered by the ICU-type–only risk-adjusted SIRs.
All analyses were conducted using SAS version 9.4 software

(SAS Institute, Cary, NC). The calibration plots were gener-
ated using the “ggplot2” package in R studio version 0.99.902
software (R Foundation for Statistical Computing, Vienna,
Austria).

results

In total, 22 hospitals contributed ICU data. The analysis included
85,849 ICU patients, of whom 162 (0.2%) developed CLABSIs.
Of the 22 hospitals, 16 (73%) were large (≥296 beds), 11 (50%)
were affiliated with medical schools, and 20 (90%) were located
in urban areas. Across hospitals, 22,560 (26%) patients were
from 9 medical cardiac critical care units, 18,157 (21%) were
from 8 medical critical care units, 34,537 (40%) were from 14
medical/surgical critical care units, and 10,595 (12%) were from
6 surgical critical care units based on CDC ICU definitions. All
patients had aminimumof 9 ICD-9-CM codes, with amedian of
27 and a maximum of 65 codes.
Table 1 presents a bivariate analysis of the relationship

between CLABSI and patient demographics and comorbidities.
Intensive care unit type, age, coagulopathy, paralysis, liver
disease, renal failure, and malnutrition were significant at the
P< .10 level in the bivariate analysis. Using the medical cardiac
care ICU as the reference category, medical/surgical critical care
ICU (P= .06) and surgical critical care ICU (P= .03) were
predictive of CLABSI, but the medical critical care ICU (P= .40)
was not. Table 2 presents the results of the ICU-type plus patient
case-mix model. The following variables were added to the ICU-
type–only model: coagulopathy (P= .01), paralysis (P= .03),
renal failure (P< .01), malnutrition (P< .01), and patient
age in 10-year increments (P< .01). Facility hospital size
(P= .33) and medical school affiliation (P= .152) were not
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table 1. Characteristics of 85,849 Patients With and Without Central-Line–Associated Bloodstream Infection
(CLABSI) Admitted to the Intensive Care Unit Between January 1, 2012, and December 31, 2013

Variable
CLABSI

(n= 162), n (%)
Non-CLABSI

(n= 85,687), n (%)
Hazard Ratio
(95% CI) P Value

Age, y, mean (SD) 60.2 (17.2) 63.0 (16.9) 0.99 (0.98–1.00) .012
Female 71 (0.17) 39,094 (99.8) Reference .793
Male 91 (0.18) 46,590 (99.8) 0.96 (0.70–1.31)

Race
Black 42 (0.29) 13,225 (99.7) 1.70 (1.15–2.52) .008
Other 17 (0.17) 6,998 (99.8) 1.44 (0.85–2.42) .175
White 103 (0.15) 65,364 (99.8) Reference

ICU type
Medical cardiac 36 (0.14) 22,524 (99.8) Reference
Medical critical care 32 (0.16) 18,125 (99.8) 1.52 (0.85–2.70) .156
Medical/surgical critical care 64 (0.18) 34,473 (99.8) 1.82 (1.03–3.22) .040
Surgical critical care 30 (0.24) 10,565 (99.7) 1.98 1.14 (3.46) .016

Coagulopathy 52 (0.39) 12,258 (99.6) 1.70 (1.22–2.37) .002
Dementia 2 (0.24) 751 (99.7) 1.36 (0.34–5.12) .665
Diabetes uncomplicated 39 (0.15) 23,236 (99.8) 0.87 (0.61–1.26) .468
Diabetes complicated 17 (0.23) 6,696 (99.8) 1.22 (0.74–2.01) .446
Drug abuse 9 (0.15) 5,726 (99.8) 0.79 (0.40–1.55) .489
Paralysis 17 (0.45) 3,659 (99.5) 1.89 (1.14–3.14) .013
HIV/AIDS 2 (0.45) 411 (99.5) 1.58 (0.39, 6.40) .524
Lymphoma 4 (0.34) 1,057 (99.6) 1.60 (0.59–4.31) .355
Malignancy 9 (0.11) 6,773 (99.9) 0.63 (0.32–1.24) .185
Metastatic cancer 10 (0.24) 3,538 (99.7) 1.42 (0.75–2.70) .281
Liver disease 31 (0.37) 7,667 (99.6) 1.68 (1.13–2.49) .010
Obesity 32 (0.20) 14,956 (99.8) 1.02 (0.69–1.50) .927
Renal disease 56 (0.28) 19,822 (99.7) 1.38 (1.00–1.92) .050
Weight loss (malnutrition) 55 (0.47) 10,804 (99.5) 1.74 (1.25–2.42) .001

NOTE. HIV/AIDS, human immunodeficiency virus/acquired immune deficiency syndrome.

table 2. Hazard Ratios, P Values, and the C Statistic for the ICU-Type Plus Patient Case-
Mix Model

Variable HR (95% CI) P Value C Statistic (95% CI)

ICU type 0.64 (0.60–0.69)
Medical cardiac Reference
Medical critical care 1.28 (0.72, 2.26) .400
Medical/surgical critical care 1.70 (0.98, 2.95) .060
Surgical 1.83 (1.04–3.20) .034

Coagulopathy .004
No Reference
Yes 1.65 (1.17–2.30)

Paralysis .029
No Reference
Yes 1.76 (1.06–2.93)

Renal disease .007
No Reference
Yes 1.59 (1.13–2.22)

Weight loss .010
No Reference
Yes 1.56 (1.12–2.19)

Age per 10-year increase 0.88 (0.80–0.96) .006

NOTE. CI, confidence interval.
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significant predictors of CLABSI and were therefore dropped
from both models.
The C statistics were 0.55 (95% CI, 0.51–0.59) for the ICU-

type–onlymodel and 0.64 (95%CI, 0.60–0.69) for the ICU-type
plus patient case-mix model, with a statistically significant
difference (P< .001) (Figure 1). When the hospitals were
ranked by adjusted SIRs and compared (Table 3), 10 hospitals
(45%) changed rank (4 increased in rank and 6 decreased in
rank) when comorbidities were added to the ICU-type–only
model. Figures 2 and 3 show the calibration of the ICU-
type–onlymodel and the ICU-type plus patient case-mixmodel.
Our final model shows better calibration than the ICU-
type–onlymodel, which overestimated the expected rate relative
to the observed CLABSI rate in some subgroups.

discussion

In this retrospective cohort study, we have illustrated the impor-
tance of adjusting for patient case-mix variables including
comorbid conditions when comparing CLABSI rates across
hospitals. Other than the existing CDC model, this analysis is
the first in developing risk-adjustment models for CLABSI.
Furthermore, the CDC models do not incorporate comorbid
conditions or other significant patient factors such as age.
Although our model incorporating these factors showed modest
discrimination, it showed better discrimination than a model

table 3. Ranking of Hospitalsa With the Intensive Care Unit (ICU)-Type–Only Model and ICU-Type Plus Patient
Case-Mix Risk Adjustment

Hospital
ICU-Type–Only

Model SIR
ICU-Type–Only
Model Rank

ICU-Type + Case-
Mix Model SIR

ICU-Type–Only +
Case-Mix Rank

Difference
in Rank Direction

A 0.15 1 0.15 1 0
B 0.17 2 0.17 2 0
C 0.20 3 0.23 3 0
D 0.38 4 0.44 4 0
E 0.62 5 0.67 5 0
F 0.68 6 0.70 6 0
G 0.83 7 0.83 7 0
H 0.88 8 0.87 8 0
I 1.03 10 0.94 9 1
J 0.93 9 0.95 10 −1 ↓
K 1.06 11 1.00 11 0
L 1.10 12 1.16 12 0
M 1.53 18 1.29 13 5 ↑
N 1.30 13 1.30 14 −1 ↓
O 1.34 14 1.30 15 −1 ↓
P 1.36 16 1.37 16 0
Q 1.61 19 1.38 17 2 ↑
R 1.48 17 1.44 18 −1 ↓
S 1.35 15 1.50 19 −4 ↓
T 2.94 20 2.66 20 0 ↓
U 3.32 22 2.73 21 1 ↑
V 3.29 21 3.50 22 −1 ↓

NOTE. SIR, standardized infection ratio.
aIn order of ICU-type-only model ranking.

figure 1. Receiver operating characteristic (ROC) curves
comparing the intensive care unit (ICU)-type–only model to the
ICU-type plus patient case-mix model.
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using only ICU type (CDC risk model until 2017). The additional
2017 CDC variables of medical school affiliation and facility
hospital size were not statistically significant predictors of CLABSI
in our cohort.

We have further demonstrated the importance of risk
adjustment by showing the change in rankings of the hospitals
that resulted when the risk adjustment model including
comorbid conditions was applied. Hospitals with a large
burden of patients with more comorbid conditions are
expected to have larger CLABSI rates, and their rankings will
improve once the risk adjustment model is applied. Likewise,
hospitals that serve healthier patients with fewer comorbidities

may decline in their performance rankings when SIRs are
adjusted for patient case mix. These shifts may have con-
sequences regarding payments and penalties for individual
hospitals when all US hospitals are included in this ranking, as
is currently done by the CMS.
The CDC models prior to 2017 only adjusted for type of

ICU.10 The new 2017 CDC model added medical school
affiliation and facility hospital size as variables.3 Although these
variables are unlikely causally related to CLABSI occurrence,
they were probably selected as proxy variables for patient case
mix. However, while medical school affiliation may represent a
case mix of patients who have more comorbid conditions and
higher severity of illness that merits risk adjustment, it may also
represent more inexperienced providers that should not be
adjusted for when the intent is to use those adjusted rates for
quality-of-care comparisons. Similarly, facility hospital size is
likely associated with several patient case-mix and care delivery
factors, which make the direction of influence on CLABSI
difficult to predict. Indeed, in our large and diverse cohort,
neither medical school affiliation nor facility hospital size were
significantly associated with CLABSI. Therefore, we suggest that
it is better to directly adjust for patient demographics and
comorbid conditions when possible.
Our analysis has several strengths. Infection preventionists

used standardized CDC NHSN criteria to identify CLABSI
such that outcome assessment is comparable across hospitals.
We used comorbid conditions from discharge codes already
collected routinely for other purposes; therefore, the incorpora-
tion of these variables into current national risk adjustment
would not require any additional data collection burden on
the part of hospitals. In fact, ICD diagnostic codes are already
routinely transmitted to CMS by hospitals. The use of discharge
codes may also encourage the use of risk adjustment because
ICD diagnostic codes are easier to access and are collected on
every patient by trained individuals in a standardized fashion.
Our approach has some limitations. Most of our sample

consisted of large, urban facilities, which may limit the
generalizability of our findings to other hospitals. The Premier
database did not have data on central-line days, so we were unable
to use this measure for our denominator or to account for
patients with >1 line. Our use of ICU days as the denominator
may have underestimated the overall CLABSI rate in each unit,
which may have misclassified patient time at risk, but we have no
reason to believe that thismisclassification is differential.Work by
Horstman et al11 has shown that ICU days correlate strongly with
device days and that hospital performance rankings using either
measure are also strongly correlated. A criticism of the use of
ICD-9-CM codes in research is that they fail to capture all
patient comorbidities and could reflect codes that maximize
reimbursement.12,13 Research comparing the Charlson and
Elixhauser comorbidity indices derived from ICD-9-CM codes to
those same scores extracted from chart review revealed that the
sensitivity of the individual components varies greatly but that
specificity is nearly 100%.14,15 Therefore, while some patient
comorbidities may have been missed due to low sensitivity of the

figure 2. Calibration curve for the intensive care unit (ICU)-
type–only model.

figure 3. Calibration curve for the intensive care unit (ICU)-
type plus patient case-mix model.
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ICD codes, a condition assigned to a patient is likely to be
correct.14–16 Therefore, we may have underestimated the pre-
valence of these conditions in our study, resulting in smaller rank
changes after adjustment. Despite this limitation, our models still
demonstrated good discrimination. Another limitation is that we
used ICD-9-CM codes and hospitals have recently switched to
ICD-10 codes; however, this change is unlikely to affect the
discrimination of our model because the identified comorbid
conditions can be directly compared between ICD-9-CM and
ICD-10.17

Our analyses demonstrate the importance of using indivi-
dual demographic data and comorbidities in risk-adjustment
models. We believe that the CDC and CMS should strongly
consider incorporating comorbid conditions obtained by
electronically available ICD codes into their risk adjustment
models for CLABSI.
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