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Genetic loci associated with heart rate variability
and their effects on cardiac disease risk
Ilja M. Nolte et al.#

Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with

greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide

association studies for three HRV traits in up to 53,174 individuals of European ancestry, we

detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs

(in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11,

RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node

(GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance.

Significant genetic correlation is found for HRV with heart rate (�0.74orgo�0.55) and

blood pressure (�0.35orgo�0.20). These findings provide clinically relevant biological

insight into heritable variation in vagal heart rhythm regulation, with a key role for genetic

variants (GNG11, RGS6) that influence G-protein heterotrimer action in GIRK-channel induced

pacemaker membrane hyperpolarization.
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H
eart rate variability (HRV) is a physiological variation in
cardiac cycle duration. When measured under supine or
sitting conditions, resting HRV is most prominently

centred around the frequency of respiration (B0.25 Hz) and the
intrinsic blood pressure rhythm (B0.1 Hz). This reflects
modulation of tonic activity in the cardiac vagal nerves
originating in cortical and subcortical nuclei1 by oscillatory
input at the brainstem level from cardiorespiratory coupling, lung
stretch-reflexes, and arterial chemo- and baroreceptors1,2.
This vagal gating gives rise to oscillatory vagal effects on
the pacemaker potentials in the sinoatrial node that scales with
the tonic activity in the vagal nerves and provides a source of
beat-to-beat variation in heart rate. Due to its good
reproducibility3 and ease of measurement, HRV is a widely
used non-invasive research and clinical tool to quantify the
degree of vagal control of heart rate4.

Loss of cardiac vagal control as indexed by low HRV is
associated with mortality in patients with cardiovascular disease5.
Animal research further supports a role for cardiac vagal activity
in preventing sudden death and ventricular fibrillation6. In
addition, hypertension7, end-stage renal disease8 and diabetes9

are all associated with low HRV. Although the above associations
may partly reflect impaired cardiac vagal control caused by these
diseases, lowered HRV does not simply indicate disease severity
as it also predicts all-cause mortality10 and cardiac morbidity and
mortality11,12 in apparently healthy individuals.

Large inter-individual differences in HRV exist in the basal
resting state. Family and twin studies have uniformly confirmed a
substantial genetic contribution to resting HRV with heritability
estimates between 25 and 71% (ref. 13). Candidate gene studies
based on current knowledge of parasympathetic nervous system
biology have not yielded results that hold up in replication14.
To improve our understanding of the genetic basis of HRV,
we performed a two-stage meta-analysis of genome-wide
association studies (GWAS) in up to 53,174 individuals
of European ancestry on three HRV traits (the s.d. of the
normal-to-normal inter beat intervals (SDNN), the root mean
square of the successive differences of inter beat intervals
(RMSSD) and the peak-valley respiratory sinus arrhythmia or
high frequency power (pvRSA/HF)). These HRV traits were
measured during resting, basal recordings ranging in length from
ultrashort 10-s electrocardiograms (ECGs) to up to 90 min of
sitting or from 2 to 12 h of daytime recording. Relevance of the
identified loci for other ethnicities was examined in data from
11,234 Hispanic/Latino and 6,899 African-American individuals.
In silico post-GWAS analyses were performed to test for
association with cardiac disease risk factors and disease
outcomes and to provide insights into the biological
mechanisms by which the identified loci influence cardiac vagal
control and its effect on HRV.

We detect 17 SNPs in eight loci harbouring several genes
preferentially expressed in the sinoatrial node and significant
negative genetic correlations of HRV with heart rate and blood
pressure. These findings provide clinically relevant biological
insight into heritable variation in vagal heart rhythm regulation,
with a key role for genetic variants in proteins (RGS6, GNG11)
known to influence G-protein heterotrimer action in
GIRK-channel induced pacemaker membrane hyperpolarization.

Results
New loci associated with HRV. We meta-analysed results from
GWAS on three HRV traits (see Methods section for details)
performed by 20 cohorts of European ancestry in up to 28,700
individuals (Fig. 1; Supplementary Figs 1–3; Supplementary
Tables 1–4). Using a significance threshold of 1� 10� 6,

23 single-nucleotide polymorphism (SNPs) in 14 loci that were
associated with one or more of these HRV traits were taken
forward for wet-lab genotyping or in silico replication in 11
cohorts including up to 24,474 additional individuals of European
ancestry, followed by a second stage meta-analysis
(Supplementary Data 1).

After stage 2, we identified 17 lead SNPs (11 independent)
in eight loci (Table 1) that reached genome-wide significance
(Po5� 10� 8). The loci on chromosomes 14 and 15 contained
three and two independent signals, respectively, (Supplementary
Fig. 3). Conditional analysis confirmed the presence of
independently associated variants in these loci (Supplementary
Table 5). In total, nine independently associated SNPs in seven
loci were detected for SDNN, nine independently associated SNPs
in eight loci for RMSSD, and five independently associated SNPs
in five loci for pvRSA/HF. Many of the SNPs were associated with
at least two of the HRV traits (Supplementary Data 1). In four
loci, the lead SNPs differed between traits but were in linkage
disequilibrium (LD) with each other (0.24or2o0.90) (Table 1).
Forest plots show little heterogeneity in the genetic associations
across the entire set of cohorts for all SNPs (Supplementary
Fig. 4). Sex-stratified analyses did not show differences in SNP
effects between men and women for the genome-wide associated
loci (Supplementary Table 6). Separately meta-analysing across
cohorts with short laboratory rest recordings versus longer term
ambulatory recordings did not suggest sensitivity of the results to
these different recording methods (Supplementary Table 7).
Results of VEGAS gene-based analyses corroborated those of the
SNP-based analyses (Supplementary Note 1).

Variance explained. Weighted genetic risk scores based on the
independent SNPs that reached genome-wide significance after
the second stage meta-analysis were computed for the three HRV
traits and used to predict RMSSD, SDNN and pvRSA/HF in
adults from the Lifelines (n¼ 12,101) and NESDA (n¼ 2,218)
cohorts, adolescents from the TRAILS-Pop cohort (n¼ 1,191),
and children from the ABCD cohort (n¼ 1,094) (Table 2).
The multi-SNP genetic risk scores were all significantly associated
with HRV and the percentages of variance explained for the
corresponding traits were 1.0–1.4% for SDNN, 1.1–2.4% for
RMSSD, and 0.9–2.6% for pvRSA/HF. Cross-trait explained
variances of genetic risk scores were close to those for the
corresponding trait.

To test the contribution of SNPs that did not reach
genome-wide significance, we performed polygenic risk score
analyses using increasingly more lenient significance thresholds
and determined the percentages of explained HRV in the same
four cohorts (Supplementary Fig. 5; Table 3). Maximal variance
explained by the polygenic risk score was 0.8–1.4% for SDNN,
0.9–2.3% for RMSSD and 0.9–2.3% for pvRSA/HF. This was
reached at relatively small numbers of SNPs (r71) with
additional SNPs adding more noise than signal.

The total variance explained by common SNPs (SNP-based
heritability) estimated by Genomic Restricted Maximum
Likelihood or LD score regression analysis varied between 10.8
and 13.2%, with only small differences in estimates across
methods and HRV traits (Supplementary Note 2).

Generalization to other ethnicities. In data from up to 11,234
Hispanic/Latino individuals, five SNPs in five of the eight loci
identified for RMSSD, seven SNPs in six of the seven loci for
SDNN and three SNPs in three of the five loci for pvRSA/HF
showed a statistically significant association that was consistent in
direction with the association in individuals of European ancestry
(Table 4). In data from 6,899 African–Americans, four SNPs from
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four of the eight loci were associated with RMSSD, three SNPs in
three of the seven loci with SDNN and none with pvRSA/HF. In
the combined meta-analysis in a maximum of 71,675 participants
from all ethnicities, one SNP (rs6123471 on chromosome 20) was
no longer significant (Table 4).

Correcting HRV for heart rate. The strong inverse association
between HRV and heart rate reflects the well-established
simultaneous biological effect of cardiac vagal activity on heart
rate15 and HRV16, but it also expresses a mathematical
dependency of the variance in inter beat interval (IBI) on the
mean IBI that is unrelated to the underlying biology. We
conducted three analyses to test whether the association of the
HRV SNPs was robust to correction of the HRV traits for heart
rate (Supplementary Table 8). First, we used a recently developed
analytical technique17 to obtain the meta-analysis for the
coefficient of variation of SDNN and RMMSD from the
summary statistics of the HRV and resting heart rate
meta-analyses18. The coefficient of variation detects the amount
of IBI variability relative to the mean IBI of each subject, and
deals with the proportionality-based dependence of HRV on
heart rate19. Second, we established the effect of the 17 HRV
SNPs on the coefficients of variation for SDNN and RMSSD in
the Lifelines, NESDA and TRAILS-Pop cohorts, and
meta-analysed the results. Third, we use a mediation analysis in

these same cohorts to see how much of the SNP effects on the
three HRV measures was mediated by heart rate. In all three
analyses, we find some attenuation of the HRV SNP associations.
The average mediation of the association by heart rate was
B28%. However, the correction for heart rate left most of the
HRV SNP associations intact, particularly in the first analysis that
used the full discovery sample.

Association of the HRV SNPs with resting heart rate. Because
the HRV traits reflect cardiac vagal activity, we expected the HRV
SNPs to have an effect on resting heart rate. We performed a
lookup of the 17 HRV SNPs in a GWAS meta-analysis on resting
heart rate in 85,787 individuals18. Out of the 17 HRV lead SNPs,
11 were associated with heart rate after correcting for multiple
testing (Supplementary Table 9, panel a). All effects were in the
expected direction such that the HRV decreasing allele was
associated with higher heart rate (Supplementary Fig. 6). Six of
the HRV SNPs were not significantly associated with heart rate,
including our top hit on chromosome 19 (rs12974991 in
NDUFA11: p RMSSD¼ 4.6� 10� 46; p heart rate¼ 0.18).
Analysis of summary statistics of the HRV and heart rate meta-
analyses as implemented in the gtx R package showed that multi-
SNP genetic risk scores for HRV were significantly associated
with heart rate (Supplementary Table 9, panel b).

40a

b

c

30

20

–l
og

10
 P

 v
al

ue

10

0

1 2 3 4 5 6 7 8

Chromosome

PPIL1

PPIL1

PPIL1

GNG11

GNG11

GNG11

LINC00477

LINC00477

LINC00477

SYT10

SYT10

SYT10

RGS6

RGS6

NDUFA11

NDUFA11

NDUFA11

KIAA1755

HCN4

NEO1

9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6 7 8

Chromosome

9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6 7 8

Chromosome

9 10 11 12 13 14 15 16 17 18 19 20 21 22

40

30

20

–l
og

10
 P

 v
al

ue

10

0

40

30

20

–l
og

10
 P

 v
al

ue

10

0

Figure 1 | Manhattan plots of the meta-analyses of stage 1 GWAS results. (a) SDNN, (b) RMSSD and (c) pvRSA/HF in up to 28,700 individuals of

European ancestry. Only SNPs with a minor allele frequency 41% and that were present in at least 1/3 of the sample are plotted. Significant loci are shown

in blue, suggestive ones in red. The blue horizontal line represents the genome-wide significance threshold. Genes closest to the lead SNPs are indicated for

the loci that were genome-wide significantly associated with the trait after the stage 1þ 2 combined meta-analysis.
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In addition, genetic risk scores based on the independent
genome-wide significant HRV SNPs from the combined stage 1
and 2 meta-analysis were tested for association with heart rate in
the Lifelines, NESDA, TRAILS-Pop and ABCD cohorts
(Supplementary Table 9, panel b). The three multi-SNP risk
scores of the HRV traits explained a small, but mostly significant
percentage of variance in heart rate (0.09–1.13%). Polygenic
risk score analysis showed that adding HRV SNPs below the
genome-wide significance threshold did not further increase the
variance explained in heart rate (Supplementary Fig. 5;
Supplementary Table 9, panel c).

The reverse question, whether SNPs with effects on heart rate
are associated with HRV, was also investigated. The 21 heart rate
SNPs identified by the GWAS meta-analysis on heart rate18

explained between 0.2 and 0.9% of the variance in the three HRV
traits (Supplementary Table 10).

Association with cardiometabolic traits and diseases.
In addition to heart rate, we examined the association of the 17

HRV-associated SNPs with other confirmed risk factors for
cardiac, metabolic and renal disease traits and endpoints using
data from large-scale GWAS meta-analyses (Supplementary
Table 11). Multi-SNP risk scores were computed based on our
17 top SNPs and we tested their association with the outcomes.

No effects of risk scores using the 17 HRV SNPs were observed
for systolic or diastolic blood pressure, body mass index,
renal function, heart failure, sudden cardiac death, coronary
artery disease, atrial fibrillation or type 2 diabetes. Only for
atrial fibrillation we observed individually significant SNPs. These
two highly significant SNPs (rs10842383 near LINC00477,
P¼ 3.45� 10� 7 and rs2680344 in HCN4, P¼ 4.34� 10� 7

(Supplementary Table 12) had large opposite effects on atrial
fibrillation, while both decreased HRV. In addition to these
lookups that were restricted to genome-wide significant SNPs, we
employed bivariate LD score regression20 that uses the full GWAS
summary statistics of the HRV and cardiometabolic traits and
diseases to compute genetic correlations. The genetic correlations
systematically pointed to an overlap in the genetic variants
causing low HRV and increased risk for disease (that is, negative

Table 1 | Stage 1þ 2 combined meta-analysis results for SDNN, RMSSD and pvRSA/HF of loci that were genome-wide significant
(Po(5� 10�8)/3) in the analysis of individuals of European ancestry.

Locus Chr SNP Position
(bp)

(build 36)

Closest gene Annotation Trait Allele Stage 1þ2

E/O N EAF b (s.e.) P value

1 19 rs12974991* 5845584 NDUFA11 IN RMSSD A/G 43,205 0.078 �0.116(0.008) 4.57E-46
rs12974440* 5845386 IN pvRSA/HFw A/G 29,527 0.073 �0.244(0.019) 1.91E-41
rs12980262* 5844058 M SDNN A/G 46,046 0.076 �0.060(0.006) 2.30E-23

2 12 rs10842383 24663234 LINC00477 (C12orf67) IG, HRi SDNN C/T 47,808 0.863 �0.049(0.004) 9.33E-31
RMSSD 43,223 0.862 �0.065(0.006) 2.45E-29

pvRSA/HFw 31,085 0.865 �0.124(0.013) 1.20E-25

3 6 rs236349 36928543 PPIL1 IG SDNN G/A 51,379 0.651 �0.033(0.003) 3.70E-25
RMSSD 46,795 0.655 �0.035(0.004) 9.10E-17

pvRSA/HFw 33,654 0.645 �0.069(0.009) 3.16E-15

4 12 rs7980799z 33468257 SYT10 IN, HRii RMSSD A/C 44,210 0.390 �0.039(0.004) 3.19E-20
rs1351682z 33490042 IG, HRiii pvRSA/HFw G/A 30,643 0.437 �0.073(0.009) 5.70E-15
rs1384598z 33514166 IG, HRiv SDNN T/A 47,358 0.432 �0.023(0.003) 7.37E-13

5 7 rs4262y 93389364 GNG11 UTR5, Q, HRv SDNN C/T 49,005 0.390 �0.028(0.003) 4.26E-17
pvRSA/HFw 31,281 0.388 �0.050(0.010) 1.84E-11

rs180238y 93388383 UP, Q, HRvi RMSSD C/T 44,420 0.333 �0.034(0.004) 7.99E-16

6 14b rs4899412|| 71534015 RGS6 IN, Q SDNN T/C 48,252 0.253 �0.026(0.004) 3.13E-13
rs2052015|| 71556806 RMSSD T/C 45,492 0.165 �0.036(0.006) 3.56E-10

14c rs2529471 71883022 IN SDNN C/A 49,619 0.429 �0.021(0.003) 1.88E-12
14a rs36423 71422955 IG SDNN T/G 48,182 0.129 �0.033(0.005) 6.25E-13

RMSSD 45,419 0.127 �0.040(0.006) 5.36E-11

7 15a rs2680344 71440538 HCN4 IN, HRvii SDNN A/G 51,370 0.777 �0.024(0.004) 4.88E-11
15b rs1812835 71294557 NEO1 IN, Q RMSSD A/C 44,421 0.418 �0.025(0.004) 5.18E-10

8 20 rs6123471 36273570 KIAA1755 UTR3, HRviii RMSSD T/C 46,789 0.534 �0.024(0.004) 1.30E-08

Allele E/O, effect allele/other allele; bp, base pair position based on build 36 (hg18); Chr, chromosome; EAF, effect allele frequency; HR, HRV SNPs that are in pairwise LD (based on SNAP, HapMap
release 22 CEU) with identified loci associated with heart rate (HR) from den Hoed et al.18; IG, intergenic variant; IN, intronic variant; N, sample size; M, missense variant; Q, associated with an eQTL;
s.e., standard error of b; UTR3, variant in the 30 untranslated region; UTR5, variant in the 50 untranslated region; UP, upstream variant (within 2kb); b, effect size.
NOTE: Only SNPs that were independently associated (that is, lead SNPs) to the traits are shown. At some loci lead SNPs were the same for the different traits, at other loci there were different
(dependent) lead SNPs for the different traits. SNPs are sorted according to P value of the combined meta-analysis per locus. Genome-wide significant association (two-sided Po5� 10�8), corrected for
testing three traits (that is, Po5� 10�8/3), is shown in bold. Effect alleles were chosen to reflect an increased risk for low levels of HRV, hence b’s are all negative.
i r2¼ 1 between rs10842383 and rs17287293[HR]; ii same SNP; iii r2¼0.782 between rs1351682 and rs7980799[HR]; iv r2¼0.695 between rs1384598 and rs7980799[HR]; v r2¼0.570 between
rs4262 and rs180242[HR]; vi r2¼0.893 between rs180238 and rs180242[HR]; vii r2¼0.505 between rs2680344 and rs4489968[HR]; viii r2¼ 1 between rs6123471 and rs6127471[HR].
*these SNPs are all in perfect LD (r2¼ 1).
wP value, allele, EAF, N from P value weighted meta-analysis of all cohorts using METAL and b, s.e. from inverse-variance meta-analysis of only HF cohorts using GWAMA.
zr2¼0.782 between rs7980799 and rs1351682; r2¼0.695 between rs7980799 and rs1384598; r2¼0.903 between rs1351682 and rs1384598.
yr2¼0.600 between rs4262 and rs180238.
||r2¼0.237 between rs4899412 and rs2052015.
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correlations with systolic and diastolic blood pressure, coronary
artery disease, heart failure, sudden cardiac death, BMI and type 2
diabetes) compatible with clinical relevance of the HRV SNPs
identified, although significance was reached only for systolic and
diastolic blood pressure after correction for number of outcomes
tested (Supplementary Table 11).

Potential functional impact of the HRV variants. To identify
functional variants tagged by the 17 HRV SNPs, we performed
various post-GWAS annotation (Supplementary Fig. 7). In silico
annotation (Supplementary Data 2) showed that the lead SNP for
SDNN on chromosome 19 was a non-synonymous SNP
(rs12980262 in NDUFA11) and that the lead SNPs for RMSSD
(rs12974991) and pvRSA/HF (rs12974440) were in perfect LD
with this SNP (Table 1; Supplementary Data 2). SNP rs129080262
was characterized as deleterious, with a sorting intolerant from
tolerant (SIFT) score of 0.01 and a polymorphism phenotyping
(PolyPhen) score of 0.753 indicating a possibly damaging effect.
Functional variant analyses using RegulomeDB confirmed that
rs12980262 and rs12974440 in NDUFA11 on chromosome 19
likely have functional consequences (Supplementary Table 13) by
binding to transcription factors or influencing the chromatin
state. SNP rs6123471 in the locus on chromosome 20 was in
high LD with two non-synonymous SNPs in the KIAA1755
gene (rs3746471 [r2¼ 0.94] and rs760998 [r2¼ 0.55]) that are
predicted to yield tolerated, benign amino acid changes
(Supplementary Data 2).

We examined if the 17 HRV SNPs were eQTLs in a large whole
blood database. Four of the HRV SNPs were significantly (false
discovery rate o5%) associated with gene expression in blood
(Supplementary Table 14): rs1812835 with expression of NEO1,
rs4899412 with expression of RGS6, and rs180238 and rs4262
with expression of GNG11. These four SNPs were all in strong LD
with the top eQTL SNPs for these genes (r240.70) and lost
significance after conditioning on the corresponding top eQTL.
The eQTLs for NEO1 and RGS6 were replicated in at least one
other whole blood eQTL study (Supplementary Table 14). The
eQTL for GNG11 was replicated in the medulla (P¼ 2.8� 10� 4)
and the anterior tibialis artery (P¼ 8.1� 10� 9). None of the 17
SNPs reached significance in a smaller heart eQTL database.

Nine of the 17 HRV SNPs were in high LD (r240.70) with
SNPs associated with methylation level of one or multiple CpG
sites (methylation quantitative trait loci [mQTLs]) in whole blood

(Supplementary Table 15). Two of the HRV SNPs that were
eQTLs also influenced methylation of the same gene in whole
blood, strongly suggestive of a regulatory function for those SNPs.
eQTL rs1812835 in NEO1 was associated with methylation level
of cg11357013, cg19281068, cg11552023 and cg17150474. eQTL
rs4262 was associated with methylation level of cg08038054 and
cg06439941 in GNG11. The other two eQTL SNPs did not
achieve genome-wide significance level for an association with
methylation, but eQTL rs4899412 in RGS6 was in high LD with a
proxy SNP (rs2238280) that was associated with methylation level
of cg19493789, which is located in a CpG island shelf near RGS6.

Five other HRV SNPs were (in high LD with) mQTLs but were
not themselves eQTLs. For example, HRV SNPs rs12974991,
rs12974440 and rs12980262 (chromosome 19) were associated
with methylation level of multiple CpG sites (cg22854549,
cg03715305 and cg19211619) located in or nearby NDUFA11,
but were not associated with expression level of NDUFA11 in
whole blood. Such mQTLs may well exert a regulatory effect on
NDUFA11 in other tissues. DEPICT tissue enrichment analysis
(Supplementary Data 3; Supplementary Table 16, Supplementary
Fig. 8) showed NDUFA11 expression was weak in blood, but
enriched in heart, sensory and endocrine tissues.

Discussion
This meta-analysis of GWAS for HRV yielded 17 lead SNPs
(11 independent) in eight loci that were genome-wide
significantly associated, six of which generalized to individuals
of African-American and Hispanic/Latino ethnicity. Various
ways that correct HRV for its mathematical dependency on
resting heart rate attenuated the SNP effects, but largely left the
associations intact. Together, the hits in the eight loci explained
0.9–2.6% of the variance in resting HRV in four independent
cohorts of European ancestry. Details of known biological
functions of the genes closest to these loci are given in the
Supplementary Note 6.

We noted a strong enrichment of our HRV loci in a
previously conducted meta-analysis of GWAS for resting heart
rate18, a known risk factor for cardiac morbidity and
mortality21,22. SNPs in five of the 21 resting heart rate loci
(that is, LINC00477 (C12orf67), SYT10, GNG11, HCN4 and
KIAA1755) were associated with HRV at genome-wide
significance level and six more attained nominal significance,
with associations always in the expected direction. Genetic risk

Table 2 | Explained variance in HRV traits in the Lifelines (n¼ 12,101), NESDA (n¼ 2,118), TRAILS-Pop (n¼ 1,191) and ABCD
(n¼ 1,094) cohorts by the weighted multi-SNP genetic risk score based on the independent genome-wide significant SNPs in the
stage 1þ 2 meta-analysis.

Lifelines NESDA TRAILS-Pop ABCDTrait Risk score

No. SNPs P value DR2 No. SNPs P value DR2 No. SNPs P value DR2 No. SNPs P value DR2

SDNN SDNN 9 6.3E-33 1.00% 9 4.9E-10 1.39% 10 8.0E-05 1.28% 10 7.8E-04 1.03%
SDNN RMSSD 7 1.1E-30 0.93% 11 7.5E-10 1.35% 11 6.3E-06 1.69% 11 3.5E-05 1.56%
SDNN pvRSA/HF 5 6.4E-25 0.75% 5 5.2E-07 0.89% 5 8.7E-07 1.99% 4 4.3E-03 0.75%

RMSSD SDNN 9 8.3E-37 1.13% 9 2.0E-11 1.54% 10 4.4E-06 1.73% 10 4.7E-04 1.11%
RMSSD RMSSD 7 8.8E-37 1.13% 11 6.1E-12 1.62% 11 5.3E-08 2.42% 11 2.5E-06 2.01%
RMSSD pvRSA/HF 5 1.5E-30 0.93% 5 2.0E-11 1.54% 5 2.1E-09 2.92% 4 8.1E-04 1.02%

pvRSA/HF SDNN 7 NA NA 9 1.5E-13 1.58% 10 4.3E-05 1.38% 10 2.0E-03 0.87%
pvRSA/HF RMSSD 6 NA NA 11 7.1E-14 1.62% 11 1.3E-06 1.93% 11 1.5E-05 1.70%
pvRSA/HF pvRSA/HF 5 NA NA 5 7.7E-17 2.01% 5 1.4E-08 2.64% 4 1.8E-03 0.89%

NA, not available.
NOTE: DR2 is the difference in percentage of explained variance by the multi-SNP genetic or polygenetic risk score between the models with and without the risk score while adjusting both for age, sex
and principal components.
For Lifelines, NESDA and TRAILS-Pop the weights (that is, effects sizes) and number of genome-wide significant SNPs included in the risk score were adjusted by analytically extracting the cohort’s effect
size and s.e. from the meta effect size and s.e., respectively, and recalculating the P value based on these adjusted effect sizes and s.e.’s, since these cohorts were included in stage 1 and/or 2.
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scores for HRV traits were also significantly associated with
heart rate and LD score regression confirmed that the allelic
variants that decrease HRV in parallel increase heart rate. This
suggests to us that part of the HRV SNPs exert their effect on
heart rate through oscillatory modulation of pacemaker activity
by the vagal nerves.

Supplementary Fig. 9 depicts the two routes by which
acetylcholine released by the vagal nerves in the sinoatrial node
is known to influence heart rate, both of which are supported
by our results in GNG11, RGS6 and HCN4. By binding
the muscarinic type 2 receptor (M2R) and dissociating the
G-protein heterotrimer (Gabg) into a Gai/o subunit and a Gbg
component, acetylcholine inhibits the ongoing depolarization
of the pacemaker cells by b1/b2-adenylatecyclase activation of
funny (If) channels and calcium channels23. In parallel, it acts
to actively hyperpolarize the pacemaker cells by activation of
the GIRK1/4 channel. Each route accounts for about half of the

tonic decrease in heart rate upon vagal stimulation23, but
the response time for M2R-GIRK effects on the sinus rate is
much shorter than for the M2R-HCN2/4 or the
b1/b2-adenylatecyclase signalling pathways. Only signalling
through the Gbg component is fast enough (B0.3 s) to rapidly
track changes in vagal outflow to the sinoatrial node, for
example, as they occur within the duration of a single
respiration (B4.5 s), whereas signalling through the a subunit
is too slow (43 s) to track such phasic changes in acetylcholine
release1,24. GIRK signalling, therefore, accounts for most of
HRV due to the phasic oscillation in vagal activity24, but it
accounts for only half of the tonic vagal effects on heart rate.

The above leads to HRV only partially capturing the vagal
effects on heart rate. Additional reasons for the imperfect relation
between HRV and vagal effects on heart rate1,2 are individual
differences in: (i) resting respiration rate and depth; (ii) the
amplitude of the intrinsic 0.1 Hz oscillations related to both vagal

Table 3 | Explained variance in HRV traits in the Lifelines (n¼ 12,101), NESDA (n¼ 2,118), TRAILS-Pop (n¼ 1,191) and ABCD
(n¼ 1,094) cohorts by the optimal polygenic risk scores computed at the P value threshold that explained the largest percentage
of phenotypic variance.

Trait Risk score Cohort P cutoff No. SNPs P value DR2

SDNN SDNN Lifelines o5E-7 13 6.8E-27 0.82%
NESDA o5E-8 6 2.6E-08 1.16%

TRAILS-Pop o5E-5 64 1.1E-04 1.23%
ABCD o5E-5 71 9.4E-05 1.39%

SDNN RMSSD Lifelines o5E-8 8 2.4E-23 0.71%
NESDA o5E-6 23 1.2E-07 1.05%

TRAILS-Pop o5E-8 8 1.2E-04 1.23%
ABCD o5E-7 13 2.8E-06 2.00%

SDNN pvRSA/HF Lifelines o5E-8 7 3.1E-19 0.58%
NESDA o5E-8 4 3.5E-05 0.64%

TRAILS-Pop o5E-7 6 9.7E-06 1.61%
ABCD o5E-5 67 9.2E-04 1.01%

RMSSD SDNN Lifelines o5E-7 13 8.9E-31 0.95%
NESDA o5E-8 6 1.6E-10 1.46%

TRAILS-Pop o5E-8 7 8.3E-06 1.63%
ABCD o5E-5 71 1.6E-04 1.30%

RMSSD RMSSD Lifelines o5E-7 12 2.8E-30 0.94%
NESDA o5E-7 10 2.7E-10 1.43%

TRAILS-Pop o5E-7 11 3.4E-07 2.13%
ABCD o5E-7 13 3.8E-07 2.34%

RMSSD pvRSA/HF Lifelines o5E-8 7 1.4E-25 0.78%
NESDA o5E-8 4 3.6E-09 1.25%

TRAILS-Pop o5E-7 6 3.7E-08 2.47%
ABCD o5E-8 67 8.4E-04 1.02%

pvRSA/HF SDNN NESDA o5E-8 6 1.1E-12 1.52%
TRAILS-Pop o5E-8 7 5.0E-05 1.36%

ABCD o5E-5 71 5.4E-04 1.09%

pvRSA/HF RMSSD NESDA o5E-7 10 5.6E-14 1.69%
TRAILS-Pop o5E-7 11 3.3E-06 1.78%

ABCD o5E-7 13 1.9E-06 2.06%

pvRSA/HF pvRSA/HF NESDA o5E-8 4 4.4E-13 1.58%
TRAILS-Pop o5E-7 6 1.6E-07 2.25%

ABCD o5E-5 67 1.6E-03 0.90%

NA, not available.
NOTE: Weighted polygenic risk score was determined based on independent SNPs in the stage 1 meta-analysis. For NESDA and TRAILS-Pop the weights (that is, effects sizes) and P values were adjusted
by analytically extracting the cohort’s effect size and s.e. from the meta effect size and s.e., respectively, and recalculating the P value based on these adjusted effect size and s.e., since these cohorts were
included in stage 1.
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and sympathetic blood pressure regulation through the baroreflex
loops; (iii) mechanotransduction or intracellular pathways
stimulated by sinoatrial stretch or (iv) the efficiency of the
actual vagal gating process. These processes can have a strong
impact on HRV, but less so on mean heart rate. We found six
SNPs in four loci, including our top hit (rs12974991 in
NDUFA11), that may act on the individual differences in these
processes as they had no discernible effect on heart rate, in spite
of their significant impact on HRV.

The genome-wide significant SNPs in GNG11, RGS6 and NEO1
were eQTLs and in strong LD with the top mQTLs and eQTLs for
the corresponding genes. Two of these (GNG11, RGS6) readily
provide a biological hypothesis to account for the associations
detected in the meta-analysis. The C alleles of rs4262 and
rs180238 of GNG11 coding for the g11 subunit of the
heterotrimeric G-protein complex Gabg cause decreased
expression of this subunit and were associated with lower HRV.
The effects of the GNG11 eQTLs associated with lower HRV are
likely to lower the availability of the g11 subunit, thereby
reducing Gbg component-induced GIRK activation. This
potentially blunts the heart rate change in response to the
oscillatory changes in cardiac vagal activity.

The regulator of heterotrimeric G-protein complex signalling,
type 6 (RGS6) gene on chromosome 14 was found to be linked
to three independent signals for SDNN and RMSSD. RGS6 acts as
a critical negative regulator of M2R signalling in the sinoatrial
node of the heart rapidly terminating Gbg signalling and thus
curtailing vagal lowering of the heart rate25,26. The results of our
meta-analysis are consistent with a role for RGS6 in decreasing
HRV previously hinted at by animal experimentation23,27 and a
human case report27,28. The T allele of our eQTL RGS6 SNP

(rs4899412) causes increased expression of RGS6. By increasing
RGS6 expression, the T allele acts as a gain-of-function mutation
that gives rise to a decrease in GIRK-channel signalling
and the observed decrease in HRV. Of note, Rgs6� /� mice,
that show the expected increase in HRV, are characterized by
a strong bradycardia and an increased susceptibility to AV
block and atrial fibrillation which is attributed to an enhancement
of GIRK-induced sinoatrial and atrioventricular node
hyperpolarization by removing the negative regulation of Gbg
by RGS6 (refs 23,26,28).

The association of the rs2680344 SNP in HCN4 is puzzling
because HCN signalling does not involve the fast M2R-GIRK
channels and cannot translate rapid vagal fluctuation into
beat-to-beat variation in IBI length, that is, HRV. The effect of
the HCN4 SNP on HRV may be secondary to its effects on the
average slope of the diastolic depolarization29. The HCN4 protein
is a key component of the If channel30–32 that generates the
pacemaker potential by a gradual depolarization of the sinoatrial
myocyte cell membrane during diastole. This ‘pacemaker
depolarization’ phase is known to be slowed by loss-of-function
mutations in the HCN4 that lead to lower heart rate31 and the
If is the known site of action for ivabradine and other therapeutic
agents used to slow heart rate in angina patients32. Of note, both
ivabradine treatment33 and loss-of-function mutations increase
the risk for atrial fibrillation34. In contrast, gain-of-function
mutations in the sensitivity of HCN4 for cAMP lead to higher
heart rate30. This leads us to hypothesize that the A allele of
rs2680344 in HCN4 either is itself a gain-of-function mutation or
tags such a mutation because it increases heart rate18.

High HRV is associated with lower morbidity and mortality in
patients with cardiovascular disease5, hypertension7, end-stage

Table 4 | Meta-analysis results for the identified loci in other ethnicities and combined meta-analysis results with European
ancestry.

Locus Chr SNP Trait Allele Hispanic/Latino African American EURþHISþAfAm

E/O N EAF b (s.e.) P value N EAF b (s.e.) P value P value

1 19 rs12974991 RMSSD A/G 11,233 0.065 �0.162 (0.018) 7.05E-20 6,673 0.455 �0.077 (0.033) 1.10E-02 1.86E-63
rs12974440 pvRSA/HF* A/G 404 0.048 �0.518 (0.174) 3.06E-03 1900 0.019 �0.189 (0.158) 3.41E-01 4.53E-41
rs12980262 SDNN A/G 11,233 0.048 �0.161 (0.070) 1.04E-02 6675 0.093 �0.046 (0.030) 6.48E-02 1.57E-24

2 12 rs10842383 SDNN C/T 11,233 0.854 �0.053 (0.012) 2.45E-06 6676 0.955 0.056 (0.026) 9.83E-01 7.61E-33
RMSSD 11,233 0.854 �0.064 (0.012) 1.38E-07 6673 0.955 0.065 (0.030) 9.86E-01 4.23E-32

pvRSA/HF* 404 0.830 �0.140 (0.095) 1.40E-01 1901 0.959 0.068 (0.104) 6.79E-01 4.98E-25

3 6 rs236349 SDNN G/A 11,234 0.684 �0.034 (0.009) 6.15E-05 6676 0.724 �0.017 (0.011) 6.57E-02 1.76E-28
RMSSD 11,234 0.684 �0.034 (0.009) 1.67E-04 6673 0.724 �0.021 (0.013) 4.79E-02 5.88E-20

pvRSA/HF* 404 0.704 �0.164 (0.080) 4.13E-02 1901 0.729 0.004 (0.043) 4.87E-01 4.64E-15

4 12 rs7980799 RMSSD A/C 11,234 0.269 �0.031 (0.010) 1.23E-03 6488 0.097 �0.029 (0.021) 7.70E-02 1.57E-22
rs1351682 pvRSA/HF* G/A 404 0.348 �0.166 (0.077) 3.19E-02 1901 0.142 �0.082 (0.058) 6.91E-02 2.00E-14
rs1384598 SDNN T/A 11,234 0.307 �0.026 (0.009) 1.80E-03 6676 0.146 �0.024 (0.015) 5.41E-02 2.88E-15

5 7 rs4262 SDNN C/T 11,234 0.427 �0.016 (0.008) 2.39E-02 6676 0.608 �0.028 (0.011) 5.87E-03 5.36E-19
pvRSA/HF* 404 0.410 �0.014 (0.074) 8.46E-01 1901 0.618 �0.055 (0.043) 1.15E-01 1.50E-11

rs180238 RMSSD C/T 11,234 0.367 �0.024 (0.009) 4.05E-03 6673 0.474 �0.032 (0.011) 2.77E-03 8.07E-19

6 14b rs4899412 SDNN T/C 11,234 0.329 �0.012 (0.009) 8.27E-02 6676 0.419 �0.009 (0.010) 1.86E-01 5.96E-13
rs2052015 RMSSD T/C 11,234 0.173 �0.015 (0.012) 9.94E-02 6673 0.098 �0.001 (0.020) 4.83E-01 1.94E-09

14c rs2529471 SDNN C/A 11,233 0.485 �0.018 (0.008) 1.38E-02 6676 0.543 0.003 (0.010) 3.83E-01 2.08E-12
14a rs36423 SDNN T/G 11,234 0.193 �0.021 (0.011) 2.41E-02 6676 0.160 �0.030 (0.015) 1.79E-02 1.60E-14

RMSSD 11,234 0.193 �0.017 (0.011) 7.05E-02 6673 0.160 �0.034 (0.016) 1.72E-02 1.02E-11

7 15a rs2680344 SDNN A/G 11,234 0.681 �0.005 (0.009) 2.97E-01 6676 0.450 �0.024 (0.011) 1.32E-02 2.90E-11
15b rs1812835 RMSSD A/C 11,234 0.426 �0.012 (0.009) 8.83E-02 1388 0.140 �0.009 (0.033) 3.98E-01 5.30E-10

8 20 rs6123471 RMSSDw T/C 11,234 0.560 �0.001 (0.009) 4.40E-01 6673 0.739 0.020 (0.013) 5.67E-02 5.14E-06

AfAm, African American; Allele E/O, effect allele/other allele; Chr, chromosome; bp, base pair position based on build 36 (hg18); EAF, effect allele frequency; EUR, European; HIS, Hispanic/Latino;
N, sample size; s.e., standard error of b; b, beta/effect size.
NOTE: SNPs sorted as in Table 1 according to the European ancestry combined meta-analysis P value per locus. Significant Ps are shown in bold (see text for criteria). Effect alleles were chosen to reflect
an increased risk for low levels of HRV, hence b’s are all negative.
*P value, allele, EAF, N from z-score weighted meta-analysis of all cohorts using METAL and b, s.e. from inverse-variance meta-analysis of only HF cohorts using GWAMA.
wb of participants of European ancestry differs significantly from that of participants from African-American (diff b¼0.044, P¼0.0012) or Hispanic/Latino ancestry (diff b¼ �0.023, P¼0.0195).
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renal disease8 and diabetes9, but also in apparently healthy
individuals11,12. Using LD score regression on meta-GWAS
summary statistics from various risk factors and endpoints
we find some evidence for overlap in the genetic variants causing
low HRV and increased risk for disease, but significance was
reached only for systolic and diastolic blood pressure after
correction for multiple outcomes tested. These genetic
correlations are compatible with causal effects of cardiac vagal
control in the aetiology of disease, but they could also be ascribed
to reversed causality, where the disease process leads to lower
cardiac vagal control. A strength of this study in this regard is that
analyses were confined to individuals in good cardiac health, that
is, cohorts excluded patients with existing cardiovascular diseases
or medication potentially impacting HRV. Because we selected
individuals in good cardiac health reverse effects of disease on
HRV seem less likely, although some latent pathology could have
been present. However, an alternative explanation that is harder
to rule out is that the genetic correlation derives from pleiotropic
effects of genetic variants common to both outcomes.

Further strengths of this study were the consistency of results
across the different HRV traits used to capture cardiac vagal
control and the generalization of the HRV SNP effects to different
ancestries, in spite of known ethnic differences in absolute resting
HRV35. Results also held in men and women separately and
across a very large range of mean cohort ages spanning from early
childhood to the late middle ages; in spite of a strong reduction in
HRV values with aging36. Although effects of age and sex on
HRV were taken into account in the analyses, many other factors
were not. The ideal design would have corrected for the known
effects of respiration depth and rate on HRV, which are
independent of vagal activity37. These could not be added as
covariates because they were not available in most cohorts. We
were liberal in excluding other covariates like BMI, smoking and
exercise in the GWAS analyses. These traits are substantially
heritable themselves and adjusting for heritable covariates can
bias the genome-wide association effects38 or even induce
non-existing associations through collider bias39. Finally,
instructions on pre-ECG recording behaviours like physical
activity, and caffeine, alcohol or nicotine use were not
rigorously standardized across cohorts.

Direct clinical relevance of most current GWAS findings is still
low and our study is no exception. Potential future clinical use of
our findings hinges on the ability of our genetic variants to
capture (sub)cortical, brainstem and medullary transmission of
tonic vagal activity to the sinoatrial node, not just the impact of
that activity on heart rate. Subcortical generation of tonic vagal
activity is an important biomarker for cardiovascular health and
potentially modifiable by interventions on psychosocial stress40

and lifestyle habits41. It can even be a transdiagnostic biomarker
for psychopathology and executive cognitive functioning possibly
by reflecting the integrity of prefrontal cortex functioning42.
Genetic markers for HRV may prove useful as instrumental
variables in Mendelian randomization43 to test causal hypotheses
on the effects of centrally generated vagal activity on behavioural
and health outcomes.

In conclusion, this meta-analysis detects a critical role for
genetic variation in Gbg and HCN signalling in explaining
individual differences in HRV. The HRV variants detected can
help guide further investigations of the functional consequences
and potential therapeutic implications of individual differences in
sinoatrial Gbg signalling.

Methods
Study cohorts. Appropriate IRB approval and informed consent from participants
in all participating cohorts was obtained. Full information on consent procedures
and details of the IRB boards are provided in the Supplementary Note 8.

HRV measurement. In this study, we investigated three HRV traits: SDNN, the
RMSSD and pvRSA or HF. SDNN and RMSSD were derived from the IBI time
series obtained from the R waves in the ECG4. HF was calculated from Wavelet or
Fourier decomposition with power obtained from a high frequency band of either
0.15–0.40 Hz or 0.15–0.50 Hz. A time domain measure of RSA was derived by
pvRSA using a respiratory signal co-registered with the ECG. Estimates of pvRSA
are obtained by subtracting the shortest IBI during heart rate acceleration in the
inspiration phase from the longest IBI during heart rate deceleration in the
expiration phase.

HRV traits were extracted from the IBI time series preferably based on
2–10 min periods of ECG in a standardized setting, at rest and in a sitting/supine
position. If ambulatory data were available, we advised cohorts to extract a period
of sitting still in the evening, when this proved feasible. Supplementary Table 2 lists
the actual way HRV was assessed by the participating cohorts. For the cohorts
analysed in stage 2, we extended our HRV measurements to include cohorts with
10 s and/or 20 s ECG recordings, as RMSSD and SDNN based on these ultra-short
recordings have shown a good agreement with 4–5 min recordings3. Furthermore,
since IBI time series require reliable detection of the R-wave only, a three-lead ECG
was considered sufficient while the use of more leads was encouraged. For pvRSA,
an additional respiration signal of sufficient quality to detect beginning and end of
inspiration and expiration was needed.

SDNN and RMSSD have prevailed in epidemiological studies because they are
more easily assessed in large cohorts and, as noted above, can be obtained even
from short ECG recordings. HF and pvRSA were available in fewer cohorts, but
they better reflect the cardiorespiratory coupling that drives the oscillatory
modulation of vagal effects in the sinoatrial node. In the typical resting respiratory
frequency range, these time- and frequency-domain measures of RSA are much less
contaminated by oscillations in cardiac sympathetic control than SDNN (and other
measures of HRV that span a broader frequency range). This is due to the temporal
dynamics of the sinoatrial node signalling pathway that acts as a low pass filter
allowing only oscillations in vagal effects to translate into HRV, whereas for
sympathetic effects or vagal effects at progressively higher respiratory frequencies
the node acts as a leaky integrator causing more tonic changes in heart rate1. Phasic
modulation of vagal effects is therefore captured most purely by pvRSA or HF.
Because pvRSA and HF are conceptually similar and highly correlated with each
other (r40.80) across a wide range of values for respiration and heart rates44,
we grouped the analyses on pvRSA and HF under the label pvRSA/HF.

Study population. Cohorts that had data on at least one of the three HRV traits
and genome-wide data were invited to participate in the first (discovery) stage of
the Genetic Variance in Heart Rate Variability (VgHRV) consortium. The stage 1
discovery analysis was performed in up to 28,700 individuals of European ancestry
from a maximum of 20 cohorts. Independent cohorts with either genome-wide or
gene-centred array data or with the ability to perform wet-lab genotyping on the
single-nucleotide polymorphism (SNPs) taken forward from the first stage were
included in the second (replication) stage. This stage included additional data from
up to 24,474 individuals from 11 cohorts of European ancestry (see Supplementary
Tables 1–4 for cohort descriptions and details).

Association analysis: stage 1 (discovery). The following exclusion criteria were
applied a priori: (1) individuals with heart disease (for example, angina, past
myocardial infarction, left ventricular failure) and (2) individuals known to use
antidepressants (particularly tricyclic antidepressants) and all anticholinergic
agents (for example, digoxin, atropine and acetylcholinesterase inhibitors) because
of the strong effects that these drugs have on HRV. Individuals reporting over the
counter use of anticholinergic agents were not excluded.

Imputation of SNPs was done to extend and create similar SNP databases
between cohorts using different genotyping platforms. Most of the cohorts used the
HapMap Phase II release 22 CEU panel as reference, but later releases (for example,
release 24) or other reference data sets (for example, 1000 Genomes) were also used
(Supplementary Table 4).

Each cohort performed linear regression analyses on all available HRV traits
using an additive SNP model adjusting for age at the time of ECG recording,
sex, principal components—to adjust for population stratification—and other
study-specific parameters; all HRV traits were log-transformed because of the
skewness of their distributions. Only autosomal associations were examined.
Analyses were performed for all individuals as well as for men and women
separately.

Stage 1 meta-analysis. Before meta-analysis, quality control of all uploaded
cohort files was performed using the QCGWAS package45. In case of issues the
cohorts were notified and problems were solved. Using the QCGWAS results,
specific imputation quality and allele frequency thresholds were set for each cohort.

An inverse-variance, fixed-effects meta-analysis was performed for RMSSD and
SDNN for which SNPs of the different cohorts were merged based on rs-id. For
pvRSA/HF, we performed a sample size weighted meta-analysis using z-scores with
METAL46, since we combined results of two HRV phenotypes (pvRSA and HF)
that have different units and ranges, and therefore incomparable SNP effect sizes.
To get an idea of the size of the SNP effect on pvRSA/HF, we obtained effect sizes
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and s.e.’s from an additional fixed-effect meta-analysis on the GWAS results of the
(majority of) cohorts that measured HF. Results of the meta-analyses were double
genomic control corrected47 to control for potential inflation as a result of
population stratification within and between cohorts. The results included all SNPs
that met the following selection criteria: (a) a minor allele frequency in the meta-
analysis of 41%, and (b) present in at least one third of the cohorts. This resulted
in 2,555,913 SNPs being analysed for SDNN, 2,534,714 SNPs for RMSSD and
2,628,894 SNPs for pvRSA/HF. For each trait separately, SNPs with a Po1� 10� 6

were clumped for LD using pairwise LD checking in SNAP48 to ascertain
independent primary and secondary signals (r2o0.1). A total of 23 lead SNPs in 14
loci were selected for follow-up in the second (replication) stage.

Stage 2 meta-analysis. Stage 2 cohorts applied the same exclusion criteria and
performed the same association analysis as in the discovery stage, but analyses were
restricted to the 23 lead SNPs. If a SNP was not available in a cohort, the best
available proxy was used instead based on strongest LD according to the 1000
Genomes database. To verify homogeneity of the results in the stage 2 cohorts with
those in the stage 1 cohorts, the stage 1 meta-analysis effect sizes of the 23 SNPs
were correlated to the effect sizes obtained in each cohort for each of the HRV
traits. If a negative correlation (ro0) was found, the cohort/trait pair was excluded
from stage 2 analysis. For this reason results from one cohort for SDNN were
excluded. The replication results were then meta-analysed per trait using an
inverse-variance fixed-effects meta-analysis for RMSSD and SDNN and a sample
size P weighted meta-analysis using z-scores in METAL46 for pvRSA/HF. SNPs
were matched based on rs-id. Next the association results from both stages were
combined in the same way. A SNP was only considered to be significantly
associated to HRV if it satisfied the following criteria: (1) it had Po1� 10� 6 in
stage 1, (2) it had a one-sided Po0.05 in the stage 2 meta-analysis congruent with
the direction of effect in the stage 1 meta-analysis and (3) it had a genome-wide
significant Po5� 10� 8/3 (two-sided) in the combined meta-analysis of stage 1
and 2 results, correcting for the testing of three separate traits.

Conditional analysis. In the discovery stage independent SNPs were selected
for follow-up based on LD clumping (r2o0.1). To confirm independence between
these SNPs within the loci on chromosome 14 and 15, we applied the
conditional-and-joint analysis as implemented in the Genome-wide Complex Trait
Analysis software package49 to the stage 1 summary statistics of RMSSD and
SDNN with the genotype data of the NESDA cohort50 of 1,925 individuals as the
LD reference data set. In addition, cohort-level individual data on log-transformed
RMSSD and SDNN of 12,101 individuals from the Dutch Lifelines cohort51 were
analysed using linear regression analysis with age and sex as covariates conditioned
on the other associated SNP(s) within the locus.

Gene-based association analysis (VEGAS). We performed gene-based testing
with the full set of B2.5 M HapMap SNPs from GWAS results of all three
phenotypes, using VEGAS (Supplementary Table 17). This software has the
advantage of accounting for LD structure and the possibility to define a range
beyond the gene bounds to include promoter, 50UTR, intronic and 30UTR regions
into the analysis. We defined a 50 kb extra window beyond the genes, considered
every SNP in this window for the gene-based analysis, and ran the analyses per
chromosome with up to 106 permutations. A Po2.5� 10� 6 (¼ 0.05/B20,000
genes) was considered as the threshold for significance.

Variance explained. The Lifelines and NESDA cohorts were used for genetic risk
score and polygenic risk score analyses to determine the percentage of variance
explained by independent HRV SNPs that were genome-wide significant, and by
SNPs meeting increasingly lenient significance thresholds, respectively. Lifelines
and NESDA represent examples of a population-based cohort and a cohort
ascertained on case-control status (for major depressive disorder). Both recruited
adult participants. To test the stability of explained variance across the life span, we
repeated this analysis in two other Dutch cohorts, the adolescent TRAILS-Pop
cohort52 (age 10–18) and the ABCD cohort consisting of young children (age 5–7)
(ref. 53).

For the genetic risk score, stage 1þ 2 summary statistics were used for the
selection of HRV SNPs. No correction was needed for ABCD as genotyping in this
cohort had finished only after completion of the meta-analyses. However, the
NESDA cohort had been included in both stage 1 and 2, TRAILS-Pop in stage 1,
and Lifelines in stage 2, so the effect sizes and s.e.’s of the HRV SNPs were
corrected to subtract the effects of those cohorts to obtain independent validation
cohorts54. Also, only SNPs were used in the genetic risk score if they remained
genome-wide significant after analytically subtracting these cohort’s effects from
the meta-analysis. Genetic risk scores of the remaining SNPs (Lifelines: SDNN(9),
RMSSD(7), pvRSA/HF(5); NESDA: SDNN(9), RMSSD(11), pvRSA/HF(5);
TRAILS-Pop: SDNN(10), RMSSD(11), pvRSA/HF(5)) weighted by the adjusted
effect size were calculated for the participants of all four cohorts and regressed on
the three HRV traits (pvRSA/HF was not available in Lifelines). Explained variance
was computed as the change in R2 from a model with and without the genetic risk
score, while adjusting both for age, sex and principal components.

To compute the polygenic risk scores, the imputed genotypes were first
converted to best-guess genotypes. This was done regardless of the imputation
quality, since it was previously shown that even low-quality SNPs might contribute
to the variance explained by SNPs (ref. 54). The SNP set was further pruned for LD
using PriorityPruner (http://prioritypruner.sourceforge.net/) to select independent
SNPs, taking the significance of the SNP in the discovery meta-analysis of each of
the HRV traits into account. This provided three LD-pruned SNP sets. Polygenic
risk scores were then calculated in PLINK55 using significance thresholds of
5� 10� 8, 5� 10� 7, 5� 10� 6, 5� 10� 5, 5� 10� 4, 0.005, 0.05, 0.5 and 1 and
associated with the three HRV traits and resting heart rate in the Lifelines, NESDA,
TRAILS-Pop and ABCD cohorts. For NESDA and TRAILS-Pop pruning and
polygenic risk score analysis was based on analytically corrected results, since these
cohorts were part of stage 1 of our study54.

Heritabilities and genetic correlations. We applied genomic restricted
maximum likelihood analysis implemented in the Genomic Complex Trait
Analysis software package56 in the Lifelines cohort (Supplementary Table 18) to
estimate the percentages of additive phenotypic variance that can be explained by
common SNPs (that is, common SNP heritability denoted as h2

SNP). For this
analysis, SNPs from the HapMap Phase 3 project were selected to obtain a set of
independent SNPs. We further used LD score regression to estimate the
heritabilities of the three HRV traits and the genetic correlation among HRV traits
and with heart rate20. The GWAS meta-analysis summary statistics for RMSSD,
SDNN and pvRSA/HF were obtained from stage 1 of the current study, and the
GWAS meta-analysis summary statistics for heart rate from the discovery stage of a
recent GWAS meta-analysis for heart rate18. The LD scores required by the method
were computed using 1000 Genomes data of Europeans. The heritabilities of the
three HRV measurements were estimated using the univariate model of this
method. Cross-phenotype LD score regression analysis was performed using the
LDSC tool (LD SCore) to estimate genetic correlations between pairs of
phenotypes20.

In addition, we used the Oman Family Study57 to perform univariate and
bivariate analyses in five multigenerational highly inbred pedigrees to estimate the
heritabilities for and the genetic correlations between log-transformed RMSSD,
SDNN, HF and heart rate using SOLAR (v7.2.5) (ref. 58).

Generalization to other ethnicities. We further examined the generalization of
loci identified after meta-analysis of stage 1 and 2 results to other ethnicities using
data from 11,234 individuals of two Hispanic/Latino cohorts, and 6,899 individuals
from five African-American cohorts (Supplementary Tables 1–4). Stage 3
meta-analyses were performed in the same way as in stage 2 of this study to assess
the effect of the HRV-associated SNPs in individuals of Hispanic/Latino and
African-American ancestry, in the combined set of European and Hispanic/Latino
ancestry, in the combined set of European and African-American ancestry, and in
all three ethnicities combined. Here, we applied the same criteria for significance as
in stage 2 described above, that is, a SNP was only considered to be significantly
associated to HRV if: (1) it had Po1� 10� 6 in stage 1 meta-analysis in European
individuals, (2) it had a one-sided Po0.05 in the new ethnicity specific
meta-analysis congruent with the direction of effect in the stage 1 meta-analysis in
European individuals and (3) it had a genome-wide significant Po5� 10� 8/3
(two-sided) in the combined meta-analysis.

Correcting HRV for heart rate. The well-known inverse association between
HRV and heart rate in part reflects a dependency of the variance in IBI on the
mean IBI that is unrelated to cardiac vagal activity59. That is, the slower the heart
rate, the longer the IBI, and therefore, any proportionally minor beat-to-beat
differences in IBI are more pronounced at slower heart rates. This occurs on top of
the well-established dual effect of cardiac vagal activity that lowers heart rate and
increases HRV15,16. Although these two mechanisms (biological, mean-variance
dependency) are impossible to completely separate, we conducted three analyses to
test whether the HRV SNPs were robust to correction for the mean IBI.

First, we corrected SDNN and RMSSD for their dependency on mean IBI by
using the coefficient of variation, which is a more parsimonious solution19 than the
logarithmic approach suggested by Monfredi et al.29. We obtained the summary
statistics for the resting heart rate GWAS meta-analysis18 from: https://
walker05.u.hpc.mssm.edu/ and used the GWIS procedure17 to infer a GWA
analysis of the coefficient of variation of the SDNN and the RMSSD. We
approximated the coefficients of variation by (SDNN/X)� 100% and
(RMSSD/X)� 100%, respectively, where X equals 60,000 per heart rate.
Transformation from heart rate to IBI is required as both terms in the coefficient of
variation (HRV and IBI) are in milliseconds, whereas the heart rate GWAS
meta-analysis used heart rate in beats per minute. As the coefficients of variation
were skewed, we used a log-transformation. As an example of the linear
approximation by GWIS we assume that the increaser effect of one allele for an
SDNN SNP is þ 0.2 with the same SNP reducing heart rate by � 0.1. Given a
mean SDNN of 100 and mean heart rate of 60, we can then approximate (omitting
some nuances adequately explained in Nieuwboer et al.17) the effect of the SNP on
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the coefficient of variation of the SDNN as:

ln
100þ 0:2

60;000=ð60� 0:1Þ

� �
� ln

100
60;000=ð60Þ

� �
¼ 0:00033

We used the delta method to approximate a s.e. for the effect of the SNP given that
we know the s.d.’s for the SNP effects on SDNN and HR, and their dependence. We
obtain the dependence from analysis with LD score regression20.

Second, we performed association analyses for our 17 top SNPs on the actual
log-transformed coefficients of variation of SDNN and RMSSD computed in the
Lifelines, NESDA and TRAILS-Pop cohorts and then meta-analysed these results.
Because pvRSA and HF are expressed on different scales, such a meta-analysis was
not feasible for pvRSA/HF.

Third, we repeated the association analysis for our 17 top SNPs on SDNN,
RMSSD and pvRSA/HF in the Lifelines, NESDA and TRAILS-Pop cohorts with
and without adjusting for heart rate as a covariate and performed mediation tests
with the Sobel test to assess the mediation effect of heart rate on the HRV SNP
association. Significance of the Sobel t-value was determined using a bootstrap
procedure (n¼ 10,000 permutations). The mediation P values of the three cohorts
for SDNN and RMSSD and two for pvRSA/HF (as this was not available in
Lifelines) were next meta-analysed to determine the significance of mediation and
to compute the percentage of the SNP effect on HRV that was mediated through its
effects on heart rate. We note that this is likely an overcorrection because the HRV
SNPs are expected to influence heart rate through a common biological
mechanism, that is, changes in cardiac vagal activity.

Association of the HRV SNPs with heart rate. We conducted a lookup of the 17
(11 independent) HRV lead SNPs identified in this study using the results of a
recent GWAS meta-analysis for heart rate18. A HRV-associated SNP was
considered to be significantly associated with resting heart rate if the GWAS
meta-analysis result for heart rate was o0.05/11¼ 0.0045. Three separate HRV
weighted multi-SNP genetic risk scores were calculated from 10 (SDNN), 11
(RMSSD) and five (pvRSA/HF) HRV SNPs, respectively, (based on all
genome-wide significant SNPs for the respective HRV trait in the stage 1þ 2
meta-analysis). These were tested for their effect a on resting heart rate using the
gtx package in R (https://cran.r-project.org/web/packages/gtx), which
approximated a by (So�b� seb� 2)/(So2� seb� 2) with seaDO(1/So2� seb� 2),
where o is the effect of the SNP on HRV, b is the effect of the SNP on heart rate
and seb is the s.e. of b. This approximation requires only single SNP association
summary statistics extracted from GWAS results60. The effects of the multi-SNP
genetic risk scores were considered as statistically significant when the P was less
than 0.0045 (correcting for 11 traits; heart rate and the 10 cardiometabolic traits
described below).

In addition to these lookups that were restricted to genome-wide significant
SNPs, we employed LD score regression20 that uses the full summary statistics of
the HRV and heart rate GWAS meta-analyses to compute genetic correlations.

We further examined the variance in resting heart rate explained by multi-SNP
genetic risk scores (based on the lead SNPs only) and of the full polygenic risk
scores for HRV in the four Dutch cohorts Lifelines, NESDA, TRAILS-Pop and
ABCD. The identical approach was used as done previously for the computation of
variance explained in the HRV traits themselves.

Association of heart rate SNPs with HRV. We also performed reverse analyses to
detect the effects of heart rate SNPs on the HRV traits. In our GWAS meta-analysis
results for SDNN, RMSSD and pvRSA/HF, we performed a lookup for the 21
previously identified heart rate SNPs by den Hoed et al.18. A heart rate associated
SNP was considered to be significantly associated with HRV if the P was o0.05/
21¼ 0.0024. The 21 heart rate SNPs were tested in a multi-SNP risk score for their
effect on the HRV traits using the gtx approach as described above.

To examine the variance explained in the HRV traits by the 21 heart rate SNPs,
multi-SNP genetic risk scores and polygenetic risk scores based on the heart rate
SNPs were computed in the Lifelines, NESDA, TRAILS-Pop and ABCD cohorts
and these were tested for association with the available HRV traits. For the
multi-SNP genetic risk scores weights were either the original SNP effect sizes on
heart rate (for NESDA, TRAILS-Pop and ABCD) or corrected because of
participation of the cohort in the GWAS meta-analysis (Lifelines). Only 15 of the
21 SNPs were used in the Lifelines cohort because five SNPs lost genome-wide
significance after subtracting the SNP effects of the Lifelines cohort. One other SNP
(rs826838) was removed because it was in LD (r2¼ 0.15) in Lifelines with a more
significant heart rate SNP (rs7980799).

Association with cardiometabolic traits and diseases. We estimated the joint
effect of the HRV SNPs on cardiometabolic and renal disease traits and endpoints.
The traits included were systolic and diastolic blood pressure, body mass index and
urinary albumin excretion as well as estimated glomerular filtration rate based on
creatinine. The clinical outcomes used were heart failure, coronary artery disease,
atrial fibrillation, sudden cardiac death and type 2 diabetes. The relevant consortia
(Supplementary Table 11) and/or corresponding authors of the studies were
contacted with the request to perform a lookup and provide summary GWAS
meta-analysis results for our list of 17 SNPs.

The association analyses consisted of the same three steps as used for heart rate.
First, we checked the P of our HRV SNPs (or their proxies) in the cardiometabolic
trait or disease GWAS meta-analysis results. Second, three separate HRV weighted
genetic risk scores were calculated from 11 (RMSSD), 10 (SDNN) and five
(pvRSA/HF) HRV SNPs, respectively (based on all genome-wide significant SNPs
for the respective HRV trait in the stage 1þ 2 meta-analysis). These were tested for
their effect on the clinical outcomes using a regression model in the gtx package in
R as described above for the association of the HRV SNPs with heart rate. The
effects of the genetic risk scores were considered as statistically significant when the
P was less than 0.0045 (0.05/11, correcting for heart rate and the 10 traits and
diseases).

In addition to these lookups that were restricted to genome-wide significant
SNPs, we employed LD score regression20 that uses the full GWAS summary
statistics of the HRV and cardiometabolic traits and diseases to compute genetic
correlations.

Search for known functional SNPs (in silico annotation). We followed an in
silico bioinformatics-based approach61 to search and annotate SNPs in the regions
surrounding the 17 identified HRV SNPs. For this purpose SNP positions were
converted from National Center for Biotechnology Information (NCBI) build 36,
Human Genome 18, to NCBI build 37, Human Genome 19, (GRCh37/hg19)
using the NCBI Genome Remapping service tool (http://www.ncbi.nlm.nih.gov/
genome/tools/remap). For ±1 Mb regions surrounding the SNPs, we downloaded
the according variance call format file from the 1000 Genomes Project. We used
data of 503 European ancestry individuals from 1000 Genomes Project Phase 3
(version 5.a.) to calculate LD between the HRV SNP and all other SNPs within the
area. SNPs in moderate to high LD (r2

Z0.5) were subsequently selected and
annotated by ANNOVAR software62 for functionality. For all non-synonymous
SNPs loss-of-function and gain-of-function was determined by using the SIFT and
PolyPhen prediction scores. A SNP was categorized as deleterious if the SIFT score
was r0.05 or the PolyPhen score was between 0.957 and 1 (probably damaging).

We used RegulomeDB to integrate results from the RoadMap Epigenomics and
ENCODE projects to identify variants that are likely to have functional
consequences using the lead SNPs identified for the three HRV traits. We distilled
information on transcription factor binding and chromatin states for SNPs that
showed most evidence of being functional, that is, for SNPs with a RegulomeDB
score o4.

Finally, all the HRV SNPs and those that were in high LD (r2
Z0.8) with them

were looked up in the National Human Genome Research Institute GWAS
catalogue to check for association with other complex traits or diseases identified in
previous GWAS studies63.

eQTL analyses. We performed expression quantitative trait locus (eQTL) analysis
in whole blood to identify regulatory variants that were associated with the HRV
SNPs using the gene-expression database from NESDA50 and NTR64 cohorts. The
sample used for this analysis consisted of 4,896 individuals of European ancestry.
For complete details on the sample and the procedures, see65.

eQTL effects were tested with a linear model approach using MatrixeQTL66

with expression level as dependent variable and SNP genotype values as
independent variable. In this study we only tested cis effects for our HRV SNPs,
meaning that the probe was at a distance o1 Mb from the SNP on the genome
according to GRCh37/hg19. For each probe set that displayed a statistically
significant association with at least one SNP in the cis region, we identified the most
significantly associated SNP (top eQTL). Conditional eQTL analysis was carried
out by first residualizing probe set expression using the corresponding top eQTL
and then repeating the eQTL analysis using the residualized data.

All HRV SNPs with significant results in the NESDA/NTR eQTL data were
looked up in two other independent whole blood eQTL databases, eQTLs in
lymphoblastoid cell lines, eQTLs in 10 different brain regions, and a heart eQTL
database.

mQTL analyses. We obtained mQTL results from a previously published study67.
In short, genome-wide DNA methylation data were generated using Illumina 450 k
arrays for 3,841 whole blood samples. Corresponding genotype data were imputed
using the Genome of The Netherlands68 reference panel. To determine the effect of
nearby genetic variation on methylation levels (cis-mQTLs) a Spearman rank
correlation and corresponding P value was computed for each CpG-SNP pair, in
which the CpG and SNP location were no further than 250 kb apart. To control for
multiple testing, we used a permutation procedure to empirically control the false
discovery rate at 5%. The distribution of observed P values was compared to the P
value distribution obtained from the analyses on permuted data. For a permutation
the sample identifiers of the genotype data set were shuffled, breaking the link
between the genotype data set and the methylation data set. This was repeated 10
times to obtain a stable distribution of P values under the null hypothesis. To
determine the false discovery rate only the strongest effect per CpG in both the real
analysis and in the permutations were selected.

Gene prioritization using four bioinformatics approaches. Potentially causal
genes for the associations identified by GWAS were identified using four previously
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described bioinformatics tools: ToppGene, Endeavour, MetaRanker and DEPICT
(Supplementary Table 19). To this end, we first retrieved positional coordinates for
all lead SNPs according to GRCh37/hg19. These coordinates were used to extract
all genes located within ±40 kb of lead SNPs using the UCSC genome browser.
The identified genes subsequently served as input for ToppGene and Endeavour,
together with two genes with established roles in sinus node function (HCN4)
and synaptic signal transmission (ACHE) that served as training genes. For
MetaRanker, we first combined results of the stage 1þ 2 meta-analyses of GWAS
for the three HRV traits, retained the association with the lowest P for lead SNPs
that were identified for multiple traits, and subsequently provided SNPs, P values,
and the same two test genes (HCN4 and ACHE) as input. For DEPICT—arguably
the most powerful and informative of the four methods—we used results from the
stage 1 meta-analysis for all SNPs that reached a P for association o10� 5 as input,
for each of the three HRV outcomes separately. In order for genes to be prioritized
by the combined four approaches, they needed to be either: (1) selected by DEPICT
for at least one of the three HRV outcomes; or (2) identified by at least two of the
three remaining tools (ToppGene, Endeavour and/or MetaRanker).

Network and functional enrichment analyses. We performed gene network and
enrichment analysis using the GeneMANIA algorithm, which uses data resources on
genetic interactions, protein–protein, co-expression, shared protein domains and co-
localization networks. To build a functional interaction network, we selected genes as
input for this analysis using the following criteria: (a) genes implicated by gene
prioritization using the four bioinformatics approaches described above, (b) the genes
closest to our 17 HRV SNPs, (c) genes to which linked (r240.50) non-synonymous
SNPs mapped, (d) genes to which other linked (r240.80) SNPs mapped, (e) genes
identified by VEGAS, and (f) expression probe gene names significantly associated
with HRV eQTLs (false discovery rate o0.01). The input gene list was extended to 100
by their most strongly interacting genes and a weighted composite functional asso-
ciation network was constructed61. Subsequently, functional enrichment analysis of all
genes of the constructed interaction network against Gene Ontology (GO) terms was
performed to find the most enriched GO terms (Supplementary Table 20).
Significantly enriched GO terms (false discovery rate o0.10) were visualized as
highlighted boxes within their corresponding GO tree depicted by the RamiGO R
package69 (Supplementary Fig. 10).

Tissue and gene-set enrichment analyses. We used DEPICT for a tissue
enrichment analysis to tabulate tissues that are enriched for expression of genes
located within ±40 kb of SNPs with a Po10� 5 association with the HRV traits.
DEPICT calculates the likelihood of every known gene to be a member of, amongst
others, KEGG, GEO or REACTOME-based gene sets (N¼ 14,461) to create
reconstituted gene sets. It then determines which of these reconstituted gene
sets are enriched for the HRV genes. A graphical representation of DEPICT’s
reconstituted gene-set enrichment analysis (Po0.05 after Bonferroni correction for
examining three HRV traits) was generated using a script that is based on an
affinity propagation clustering algorithm by Frey et al.70. Interactions between gene
sets are considered significant if the Pearson coefficient, which is based on the
number of genes that are shared between gene sets, is 40.3.

Data availability. Summary statistics of the meta-analyses are available on request
from the corresponding authors after a formal data access request procedure and
approval by the VgHRV consortium.

References
1. Berntson, G. G., Cacioppo, J. T. & Quigley, K. S. Respiratory sinus arrhythmia:

autonomic origins, physiological mechanisms, and psychophysiological
implications. Psychophysiology 30, 183–196 (1993).

2. Eckberg, D. L. The human respiratory gate. J. Physiol. 548, 339–352 (2003).
3. Munoz, M. L. et al. Validity of (ultra-)short recordings for heart rate variability

measurements. PLoS ONE 10, e0138921 (2015).
4. Task Force of the European Society of Cardiology and the North American

Society of Pacing and Electrophysiology. Heart Rate Variability, Standards of
Measurement, Physiological Interpretation, and Clinical Use. Circulation 93,
1043–1065 (1996).

5. Buccelletti, F. et al. Heart rate variability and myocardial infarction: systematic
literature review and metanalysis. Eur. Rev. Med. Pharmacol. Sci. 13, 299–307
(2009).

6. Schwartz, P. J., La Rovere, M. T. & Vanoli, E. Autonomic nervous system
and sudden cardiac death. Experimental basis and clinical observations for
post-myocardial infarction risk stratification. Circulation 85, I77–I91 (1992).

7. Goit, R. K. & Ansari, A. H. Reduced parasympathetic tone in newly diagnosed
essential hypertension. Indian Heart J. 68, 153–157 (2016).

8. Brotman, D. J. et al. Heart rate variability predicts ESRD and CKD-related
hospitalization. J. Am. Soc. Nephrol. 21, 1560–1570 (2010).

9. Schroeder, E. B. et al. Diabetes, glucose, insulin, and heart rate variability.
Diabet. Care 28, 668–674 (2005).

10. Dekker, J. M. et al. Heart rate variability from short electrocardiographic
recordings predicts mortality from all causes in middle-aged and elderly men.
The Zutphen Study. Am. J. Epidemiol. 145, 899–908 (1997).

11. Tsuji, H. et al. Reduced heart rate variability and mortality risk in an elderly
cohort. The Framingham Heart Study. Circulation 90, 878–883 (1994).

12. Liao, D. et al. Cardiac autonomic function and incident coronary heart disease:
a population-based case-cohort study. The ARIC Study. Atherosclerosis Risk in
Communities Study. Am. J. Epidemiol. 145, 696–706 (1997).

13. de Geus, E. J. C., van Lien, R., Neijts, M. & Willemsen, A. H. M. In: Genetics of
autonomic nervous system activity in The Oxford Handbook of Molecular
Psychology (ed. Canli, T.) 357–390 (Oxford University Press, 2015).

14. Riese, H. et al. Identifying genetic variants for heart rate variability in the
acetylcholine pathway. PLoS ONE 9, e112476 (2014).

15. Levy, M. N. & Zieske, H. Autonomic control of cardiac pacemaker activity and
atrioventricular transmission. J. Appl. Physiol. 27, 465–470 (1969).

16. Katona, P. G., Poitras, J. W., Barnett, G. O. & Terry, B. S. Cardiac vagal efferent
activity and heart period in carotid sinus reflex. Am. J. Physiol. 218, 1030
(1970).

17. Nieuwboer, H. A., Pool, R., Dolan, C. V., Boomsma, D. I. & Nivard, M. G.
GWIS: genome-wide inferred statistics for functions of multiple phenotypes.
Am. J. Hum. Genet. 99, 917–927 (2016).

18. den Hoed, M. et al. Identification of heart rate-associated loci and their effects
on cardiac conduction and rhythm disorders. Nat. Genet. 45, 621–631 (2013).

19. van Roon, A. M., Snieder, H., Lefrandt, J. D., de Geus, E. J. & Riese, H.
Parsimonious correction of heart rate variability for its dependency on heart
Rate. Hypertension 68, e63–e65 (2016).

20. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases
and traits. Nat. Genet. 47, 1236–1241 (2015).

21. Bohm, M. et al. Heart rate as a risk factor in chronic heart failure (SHIFT):
the association between heart rate and outcomes in a randomised
placebo-controlled trial. Lancet 376, 886–894 (2010).

22. Kannel, W. B., Kannel, C., Paffenbarger, R. S., Cupples, P. H. & Cupples, L. A.
Heart rate and cardiovascular mortality: the Framingham study. Am. Heart J.
113, 1489–1494 (1987).

23. Stewart, A., Huang, J. & Fisher, R. A. RGS proteins in heart brakes on the vagus.
Front. Physiol. 3, 95 (2012).

24. Mark, M. D. & Herlitze, S. G-protein mediated gating of inward-rectifier K(þ )
channels. Eur. J. Biochem. 267, 5830–5836 (2000).

25. Yang, J. et al. RGS6, a modulator of parasympathetic activation in heart. Circ.
Res. 107, 1345–1349 (2010).

26. Wydeven, N., Posokhova, E., Xia, Z., Martemyanov, K. A. & Wickman, K.
RGS6, but not RGS4, is the dominant regulator of G protein signaling (RGS)
modulator of the parasympathetic regulation of mouse heart rate. J. Biol. Chem.
289, 2440–2449 (2014).

27. Posokhova, E., Wydeven, N., Allen, K. L., Wickman, K. & Martemyanov, K. A.
RGS6/Gbeta5 complex accelerates IKACh gating kinetics in atrial myocytes and
modulates parasympathetic regulation of heart rate. Circ. Res. 107, 1350–1354
(2010).

28. Posokhova, E. et al. Essential role of the m(2)R-RGS6-I-KACh pathway in
controlling intrinsic heart rate variability. PLoS ONE 8, e76973 (2013).

29. Monfredi, O. et al. Biophysical characterization of the underappreciated and
important relationship between heart rate variability and heart rate.
Hypertension 64, 1334–U386 (2014).

30. Baruscotti, M. et al. A gain-of-function mutation in the cardiac pacemaker
HCN4 channel increasing cAMP sensitivity is associated with familial
inappropriate sinus tachycardia. Eur. Heart J. 38, 280–288 (2015).

31. Baruscotti, M. et al. Deep bradycardia and heart block caused by inducible
cardiac-specific knockout of the pacemaker channel gene Hcn4. Proc. Natl
Acad. Sci. USA 108, 1705–1710 (2011).

32. Bucchi, A. et al. Identification of the molecular site of ivabradine binding to
HCN4 channels. PLoS ONE 8, e53132 (2013).

33. Martin, R. I. et al. Atrial fibrillation associated with ivabradine treatment:
meta-analysis of randomised controlled trials. Heart 100, 1506–1510 (2014).

34. Macri, V. et al. A novel trafficking-defective HCN4 mutation is associated with
early-onset atrial fibrillation. Heart Rhythm. 11, 1055–1062 (2014).

35. Hill, L. K. et al. Ethnic differences in resting heart rate variability: a systematic
review and meta-analysis. Psychosom. Med. 77, 16–25 (2015).

36. Xhyheri, B., Manfrini, O., Mazzolini, M., Pizzi, C. & Bugiardini, R. Heart rate
variability today. Prog. Cardiovasc. Dis. 55, 321–331 (2012).

37. Grossman, P. & Kollai, M. Respiratory sinus arrhythmia, cardiac vagal tone,
and respiration: within- and between-individual relations. Psychophysiology 30,
486–495 (1993).

38. Aschard, H., Vilhjalmsson, B. J., Joshi, A. D., Price, A. L. & Kraft, P. Adjusting
for heritable covariates can bias effect estimates in genome-wide association
studies. Am. J. Hum. Genet. 96, 329–339 (2015).

39. Day, F. R., Loh, P. R., Scott, R. A., Ong, K. K. & Perry, J. R. A robust example of
collider bias in a genetic association study. Am. J. Hum. Genet. 98, 392–393 (2016).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15805 ARTICLE

NATURE COMMUNICATIONS | 8:15805 | DOI: 10.1038/ncomms15805 | www.nature.com/naturecommunications 11

http://www.nature.com/naturecommunications


40. Nolan, R. P. et al. Heart rate variability biofeedback as a behavioral
neurocardiac intervention to enhance vagal heart rate control. Am. Heart J.
149, 1137.e1–1137.e7 (2005).

41. Billman, G. E. Aerobic exercise conditioning: a nonpharmacological
antiarrhythmic intervention. J. Appl. Physiol. 92, 446–454 (2002).

42. Beauchaine, T. P. & Thayer, J. F. Heart rate variability as a transdiagnostic
biomarker of psychopathology. Int. J. Psychophysiol. 98, 338–350 (2015).

43. Davey-Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for
causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).

44. Goedhart, A. D., van der Sluis, S., Houtveen, J. H., Willemsen, G. & de Geus, E. J.
Comparison of time and frequency domain measures of RSA in ambulatory
recordings. Psychophysiology 44, 203–215 (2007).

45. van der Most, P. J. et al. QCGWAS: A flexible R package for automated quality
control of genome-wide association results. Bioinformatics 30, 1185–1186 (2014).

46. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of
genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

47. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55,
997–1004 (1999).

48. Johnson, A. D. et al. SNAP: a web-based tool for identification and annotation
of proxy SNPs using HapMap. Bioinformatics 24, 2938–2939 (1995).

49. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary
statistics identifies addictional variants influencing complex traits. Nat. Genet.
44, 369–375 (2012).

50. Penninx, B. W. J. H. et al. The Netherlands Study of Depression and Anxiety
(NESDA): rationale, objectives and methods. Int. J. Methods Psychiatric Res. 17,
121–140 (2008).

51. Scholtens, S. et al. Cohort Profile: LifeLines, a three-generation cohort study
and biobank. Int. J. Epidemiol. 44, 1172–1180 (2015).

52. Ormel, J. et al. The TRacking Adolescents’ Individual Lives Survey (TRAILS):
design, current status, and selected findings. J. Am. Acad. Child Adolesc.
Psychiatry 51, 1020–1036 (2012).

53. van Eijsden, M., Vrijkotte, T. G., Gemke, R. J. & van der Wal, M. F. Cohort
profile: the Amsterdam Born Children and their Development (ABCD) study.
Int. J. Epidemiol. 40, 1176–1186 (2011).

54. Nolte, I. M. et al. Missing heritability: is the gap closing? An analysis of 32
complex traits in the LifeLines Cohort Study. Eur. J. Hum. Genet. doi:10.1038/
ejhg.2017.50 (2017).

55. Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

56. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-
wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

57. Hassan, M. O. et al. A Family study in Oman: large, consanguineous,
polygamous Omani Arab Pedigrees. Community Genet. 8, 56–60 (2005).

58. Almasy, L. & Blangero, J. Multipoint quantitative-trait linkage analysis in
general pedigrees. Am. J. Hum. Genet. 62, 1198–1211 (1998).

59. Sacha, J. & Pluta, W. Alterations of an average heart rate change heart rate
variability due to mathematical reasons. Int. J. Cardiol. 128, 444–447 (2008).

60. Dastani, Z. et al. Novel loci for adiponectin levels and their influence on type 2
diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891
individuals. PLoS Genet. 8, e1002607 (2012).

61. Vaez, A. et al. An in silico post-GWAS analysis of C-reactive proteing loci suggests
an important role for interferons. Circ.: Cardiovasc. Genet. 8, 487–497 (2015).

62. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38,
e164 (2010).

63. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait
associations. Nucleic Acids Res. 42, D1001–D1006 (2014).

64. Willemsen, G. et al. The adult Netherlands Twin Register: twenty-five years of
survey and biological data collection. Twin Res. Hum. Genet. 16, 271–281 (2013).

65. Wright, F. A. et al. Heritability and genomics of gene expression in peripheral
blood. Nat. Genet. 46, 430–437 (2014).

66. Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix
operations. Bioinformatics 28, 1353–1358 (2012).

67. Bonder, M. J. et al. Disease variants alter transcription factor levels and
methylation of their binding sites. Nat. Genet. 49, 131–138 (2017).

68. The Genome of the Netherlands Consortium. Whole-genome sequence
variation, population structure and demographic history of the Dutch
population. Nat. Genet. 46, 818–825 (2014).

69. Schroder, M. S., Gusenleitner, D., Quackenbush, J., Culhane, A. C.
& Haibe-Kains, B. RamiGO: an R/Bioconductor package providing an AmiGO
visualize interface. Bioinformatics 29, 666–668 (2013).

70. Frey, B. J. & Dueck, D. Clustering by passing messages between data points.
Science 315, 972–976 (2007).

Acknowledgements
A full list of acknowledgements appears in the Supplementary Information. Funding
sources had no involvement in the collection, analysis and interpretation of the data.

Author contributions
H.S. and E.d.G. designed and overviewed the project; I.M.N., M.L.M. and V.T. did the
quality control of the individual GWA results and performed the meta-analyses; C.Al.,
D.G.B., P.I.W.d.B., R.B., D.B., P.T.E., O.H.F., M.A.G., C.A., A.H., H.H., M.J., M.Ku.,
C.C.L., C.M.L., A.P.M., G.N., D.T.O., J.O., A.P., B.M.P., O.T.R., V.B.R., J.A.S., K.S.,
J.-C.T., A.T., A.B.Z., D.C., M.K.E., P.v.d.H., M.H., E.I., M.-R.J., S.K., M.Kä., C.K., D.K.,
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