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Marketing the Mountain State: 

A large N study of user engagement on Twitter 

 

Abstract 

Much of the evolving research on the use of social media in destination marketing emphasizes 

how information diffusion influences the reputational image of place. The present study uses 

Twitter data to focus on the relative differences in user engagement across discrete account 

types. Specifically, this is done to examine how the official destination marketing organization of 

Montana—the Montana Office of Tourism (MTOT)—performs relative to other account types. 

Several regression analyses conducted on Twitter data associated with an ongoing MTOT place 

branding campaign reveal that tweets sent from ‘official’ accounts are more likely to be 

retweeted, and are estimated to receive more total retweets. The inclusion of a URL or mention, 

and the number of followers an account has, are also predicted to positively impact retweets. 

These results will be useful for economic development professionals working in state and local 

governments, tourism and marketing companies and nonprofits, university researchers, and 

community members who seek to understand how destination marketing is being conducted. 

Those interested in methodology and data collection techniques for Twitter-based research, and 

data manipulation in Python may also benefit from the study.  
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Introduction 

While place marketing as practiced has been fast to adopt digital branding and content 

delivery practices, industry best practices for the management of social media tools have been 

slow to emerge. Increasingly fundamental to any digital communications strategy is the effective 

use of the microblogging platform Twitter. Its status as one of the most successful social 

platforms in existence, its public by default nature, and its ability to drive global conversations 

among diverse audiences make it ripe for analysis and a reasonable proxy for social media 

strategies generally (Guo and Saxton 2014; Rossi and Magnani 2012; Shannon, Perrin, and 

Duggan 2016). The addition of a public application programming interface (API) and clear 

metrics for measuring user engagement add to the attractiveness of using Twitter data for a broad 

range of analyses. For organizations, the use of Twitter and other social media sites provides a 

low-cost means to engage a target audience to convey information on a particular program, 

opportunity, or product, or to collect information on user engagement, opinion, or relevant habits 

(Chao and Saxton 2014).  

While destination marketing organizations (DMOs) slowly develop Twitter best 

practices, much of the evolving research emphasizes how digital platforms are changing the 

nature of communication between marketer and targeted audience. Indeed, the degree to which 

these remain discrete groups has shifted considerably, and will likely continue to do so as 

branding organizations pursue more creative ways to distribute content. Twitter and the ways in 

which it provides for the linking and sharing of content is ripe for an exploration of how 

destination branding agencies are utilizing or failing to utilize unique and personal 

communication strategies to reach simultaneously broad and targeted swaths of their potential 

audience.  
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The present study will focus on the relative difference in user engagement across discrete 

categories of users to examine how the Montana Office of Tourism (MTOT) is using Twitter to 

reach an audience of potential tourists. Specifically, the study will measure user engagement 

through the number of retweets received by each original tweet containing a hashtag associated 

with an ongoing campaign initiated by MTOT. These results will be useful for economic 

development professionals working in state and local governments, tourism and marketing 

companies and nonprofits, university researchers, and community members who seek to 

understand how destination marketing is being conducted. 

 

Place, eWOM, and social media 

The utility of social media phenomena to organizations is created through the shift in how 

organizations are able to interact with target audiences, and the abundance and relative ease of 

gathering data associated with those interactions. Social media facilitate highly visible user 

commentary on a brand, often in the form of various platform-specific methods of approval or 

disapproval. This phenomenon, often referred to as electronic word-of-mouth (Barbagallo et al. 

2012), represents a substantial shift in the potential for how organizations promote a brand or 

product. Since peer-based recommendations impact an individual’s behavior more than exposure 

to traditional marketing materials, organizations have in social media the potential to 

dramatically improve their marketing efforts (Govers and Go 2009). 

 Gartner (1993) labeled information sources influencing the way people interpreted the 

world as ‘image formation agents.’ The four most important agents as identified by Gartner 

(1993) are listed below in order of the most impactful in terms of influence upon an individual.   
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Organic Agents personal experiences 

Social Agents word of mouth based on the experiences of peers 

Autonomous Agents news media 

Induced Agents commercially-biased marketing communications 

 

Traditionally, commercial brands tend to rely on organic and induced agents (Govers 

2015). In the case of destination marketing, the organic agent would be tangible experience with 

the location of interest (such as a previous trip), whereas the induced agent might take the form 

of exposure to a state-promoted advertising campaign.  

Naturally, organic agents produce a deeper impression. This is particularly the case with 

hedonic consumption experiences such as travel, movies, or similarly immersive experiences 

(Govers 2015). It has also been shown that people are more likely to share stories based on such 

experiences over those related to the use of more utilitarian goods such as household products 

(Dhar and Wertenbroch 2000). As Govers (2015) posits, hedonic consumption experiences are 

often related to place due to the increased engagement and interactivity enabled by the 

complexity of place.  

In this context, the notable impact of social media upon destination marketing is 

unsurprising. Citing their findings as evidence of the challenge to traditional travel marketing, 

Xiang and Gretzel (2010), for example, demonstrated that social media sites constitute a 

substantial portion of the top search engine results related to US tourist destinations. Of course, 

this phenomenon is not isolated to destination marketing, but part of a broader shift in how 

information is consumed. 
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The link between personal experience and social sharing, particularly manifest in online 

social media, is captured by the term electronic word-of-mouth (eWOM). In marketing literature, 

eWOM is often used to describe the process and product of user-shared opinions on 

organizational brands, products, and services (Barbagallo et al. 2012). The clear business value 

of understanding the eWOM regarding a brand or product has made the mining of the internet, 

and social media in particular, a strong focus of many organizations. Increasingly, organizations 

have integrated processes and tools for analyzing social media data into their traditional suite of 

business intelligence tools (Barbagallo et al. 2012).  

However, as a comparatively new area of marketing, established approaches to analyzing 

and influencing eWOM are slow to form, and slower to diffuse to subdomains of branding. 

Research on the effective management of digital place branding is notably sparse, which leaves 

Destination Marketing Organizations (DMOs) with little to direct their efforts (Govers 2015; 

Hanna and Rowley 2015). Nevertheless, Govers (2015) predicts that information technologies 

and social media will overtake advertising-driven branding in the future due to the connection 

between personal experience and eWOM. The present lag in this area may be explained by the 

considerable difficulty in connecting old metrics of success such as reach and frequency to the 

ROI of social media efforts. However, marketing management literature is increasingly shifting 

away from a focus on the short-term ROI of digital campaigns to emphasize long-term 

relationship building and brand management (Hoffman and Fodor 2010). 

Although the processes affecting how information is spread have always been difficult to 

identify and control, the current availability of data linked to information propagation contributes 

significantly to a clearer understanding of these processes (Barbagallo et al. 2012). Websites and 

social media accounts tend to provide the digital access points for most organizations. Hannah 
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and Rowley (2015) classify these as channels, the first of their “7 C’s of Digital Strategic Place 

Brand Management.” They make the point that multi-channel marketing—strategically choosing 

which message to send through which channel to which audience—poses a significant challenge 

to place marketers. However, though the complexity of digital marketing is high, it is relatively 

easy to collect data to inform decision making. 

User-engagement is a common metric that companies use to evaluate the success of a 

digital campaign, and although there are many ways it can be evaluated, social media provide 

particularly relevant and accessible data that is nearly standardized across various sites 

(channels). For example, Facebook has metrics such as the number of ‘likes’, ‘shares’, and 

‘friends’, whereas Twitter has the number of ‘favorites’, ‘retweets’, and ‘followers’. Both sites 

also provide application programming interfaces (APIs) to facilitate the collection and analysis 

of this data. As one of the most popular social media sites, Twitter has frequently been used to 

study user engagement with brands (Barbagallo et al. 2012; Sevin 2013), hashtags (Ross and 

Magnani 2012), organizations (Bhattacharya, Srinivasan, and Polgreen 2014; Guo and Saxton 

2014; Yasugi et al. 2013), and related phenomena.  

Similar to how an organization might seek to put information in front of a target audience 

via traditional marketing channels, Twitter functions as a channel with a global audience 

contained within digital space. Twitter also has the great advantage of being free and relatively 

simple to use, significantly reducing the barriers many organizations would face utilizing 

traditional marketing channels. The difficulties in Twitter-based marketing compared to 

traditional approaches stems from the culture of the Twitter community. Naaman, Boase, and Lai 

(2010) found that the most popular use of Twitter was as a space for users to post messages 

related to themselves or their thoughts, followed by general information sharing and 
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opinions/complaints. Even among a random sample of 350 individual Twitter users whose 

purpose on the platform was not to sell a product, self-promotion was a notably less popular 

category. Nevertheless, there are many successful examples of organizations using Twitter to 

market in ways that are non-intrusive and add value to other users. The potential reach of these 

creative campaigns is enough to continue driving efforts in this area. 

Although competing microblogging services such as Tumblr, Jaiku, Posterous, and 

Google Buzz exist, Twitter retains a clearly dominant position (Boyd, Golder, and Lotan 2010; 

Suh et al. 2010). Twitter use has also grown substantially over time. As early as 2010 (four years 

after its 2006 creation), Twitter had about 105 million users producing more than 50 million 

tweets per day (Suh et al. 2010). By March 2013, more than 200 million users were producing 

over 400 million tweets per day (Kim et al. 2013). This is not particularly surprising, as 15 

percent of adult internet users in the US used Twitter in 2012, and over half of Twitter users 

utilized Twitter on a daily basis (Kim et al. 2013).    

The Pew Research Center’s Social Media Update 2016 demonstrates further growth in 

usage habits (Greenwood, Perrin, and Duggan 2016). While the number of adult internet users in 

the US grew by 7.5 percent from 2012 to 2016, adult Twitter users grew by 60 percent in the 

same time period to 21 percent of all US adults (Greenwood, Perrin, and Duggan 2016). In other 

words, the odds an adult internet user in the US will use Twitter are 1.4 times greater today than 

in 2012. In the US, Twitter is also more likely to be visited by someone who is young and 

educated. Approximately 36 percent of adult internet users between the ages of 18 and 29 use 

Twitter, compared to only 10 percent of those who are 65 or older. Twitter users are also 1.5 

times more likely to have a college degree than no college education (Greenwood, Perrin, and 

Duggan 2016). 
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While the non-random demographics of Twitter introduce sampling concerns, the volume 

and ease of collection make it an attractive choice for studying the ways in which information 

diffuses through a network based on the engagement of its participants. With the proper controls, 

user engagement on Twitter has the potential to function as a sort of quantitative focus group 

built from a global participant pool. The most common metric used to study user engagement, 

eWOM, and general information propagation on Twitter is a retweet. 

Retweeting is a practice of information diffusion in which an original tweet travels via 

retweet to new audiences comprised of the followers of each of the retweeters (Suh et al. 2010). 

Retweeting is a core component of how Twitter works. This function is also complementary to 

the primary motivations of most Twitter users whose purpose for using the platform is to access 

information (Java et al. 2007; Recuero, Araujo, and Zago 2011). There are many rationales for a 

user to retweet a tweet— to entertain a particular audience, promote a personal interest, comment 

on a tweet, et cetera—but in each case retweeting suggests that an original tweet contains valued 

data (Boyd, Golder, and Lotan 2010). 

Recuero, Araujo, and Zago (2011) elaborate on this notion by placing it within a social 

capital framework. They argue that users make decisions on Twitter regarding whether to share 

information based on the potential benefits sharing may confer upon them. Specifically, they 

attempt to determine the benefits a retweet will bring to a user’s social circle and argue that the 

act of retweeting, which shares not only the information of the original tweet but of the original 

sender as well, is a means by which users accrue and distribute social capital.  

For organizations, the accrual of social capital by aggregating retweets is beneficial in 

two complementary ways. First, a higher number of retweets directly contributes to brand 

recognition through the expansion of an organization’s distribution channels. Second, as a Social 
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Agent as defined by Gartner (1993), peer-forwarded messages ostensibly lend greater credence 

to an organization’s original message. Given the social media imperative to create value and the 

great benefit to organizations successful in the task, the adaptation required of marketing 

departments and organizations has become quite clear. Thus, although principles for the effective 

use of social media remain underdeveloped, Twitter and other platforms have increasingly 

become an important component of DMOs (Govers 2015). 

 

Research questions 

The present study seeks to contribute to an understanding of how DMOs can use Twitter 

more effectively. It does so by exploring how the type of account from which a tweet is sent 

influences retweets in the destination marketing realm. Specifically, the study focuses on the use 

of Twitter related to an ongoing campaign initiated by the Montana Office of Tourism (MTOT). 

Since the study will be limited to activities associated with the DMO of a single state, it will 

function primarily as an applied analysis with the potential to support more representative studies 

of how account type influences retweets.  

The effect of account type upon information diffusion has not been widely studied. This 

is largely because the analysis of Twitter data is a new field characterized by rapid growth in the 

available data and technological change of the platform itself. For this reason, standardized 

metrics and methodological approaches have yet to materialize (Kim et al. 2013), and relatively 

little is known about why some content becomes highly diffused and other information does not 

(Suh et al. 2010). 

Attempts to better understand information diffusion by estimating predictors of retweets 
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comprise a large portion of Twitter-based research (Hong, Dan, and Davison 2011; Naaman, 

Boase, and Lai 2010; Petrovic, Osborne, and Lavrenko 2011; Suh et al. 2010). Other frequent 

approaches to analysis include the study of a phenomenon through hashtag selection (Rossi and 

Magnani 2012), or the study of organizations or governments based on account-level data or 

content analysis of selected tweets (Guo and Saxton 2014; Saxton and Waters 2014; Sevin 2013; 

Yasugi et al. 2013). 

Representative of and frequently cited among studies focused on information diffusion, 

Suh et al. (2010) sought to determine the factors impacting retweets by dividing content features 

such as whether a tweet contained a URL, hashtag, or mention from contextual features such as 

the number of followers an account has, the number of people an account follows, account age, 

and the total number and frequency of tweets. Using a Generalized Linear Model to regress these 

predictor variables against retweet count, they found that the number of followers an account had 

and the number of accounts a user followed strongly predicted retweet probability, while total 

statuses did so only marginally. In the contextual category, they found that tweets containing a 

URL or hashtag were more likely to be retweeted.  

Similarly, Stiegliz and Dang-Xuan (2012) used a Poisson model to estimate factors 

associated with retweet count within a sample of 64,431 tweets associated with a 2011 

parliamentary election in Germany. They found content features such as the inclusion of a 

hashtag or URL to be strong predictors of retweets relative to the sentiment-related variables at 

the focus of their study. Also positively related to the quantity of retweets in their study were the 

account features, number of followers, and age of the account. While the number of followers of 

an account has consistently been shown to positively impact retweets, other account features 

such as the number of public lists to which an account is subscribed has been estimated to both 
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positively (Petrovic, Osborne, and Lavrenko 2011) and negatively (Yasugi et al. 2013) impact 

retweets. 

This past research informs the first of two research questions of the present study: How 

and why are #MontanaMoment tweets retweeted? (RQ1). The hashtag ‘MontanaMoment’ has 

been the focus of an ongoing crowdsourced campaign that encourages Twitter users to tweet 

their ‘Montana Moment’, which often takes the form of nature photography aligned with the 

outdoor recreation emphasis of the Montana tourism industry (AP 2017; MTDC 2017). By 

isolating tweets in this manner, the present study hopes to gain insight into which factors drive 

the success of MTOT as measured in user engagement with its Twitter initiatives. While retweets 

will remain the primary metric of success, overall usage of the hashtag by non-MTOT accounts 

and related summary statistics will also serve as metrics of engagement. 

Noting the dearth of research to guide DMOs, the Montana Tourism and Recreation 

Strategic Plan 2013-2017—co-authored by the Montana Department of Commerce and MTOT—

calls for increasing interaction with visitors through content submission via social media 

channels, expanding its Twitter presence, and a deeper evaluation of social media efforts (MTDC 

2012, p. 68-69). Specifically referencing the potential of positive word-of-mouth expressed on 

social media to contribute to their destination marketing efforts, the strategic plan identifies the 

establishment of product/service quality as the first step in solidifying a social media presence. 

By using retweets as a proxy for word-of-mouth and analyzing aspects of tweets containing the 

‘MontanaMoment’ hashtag, RQ1 will attempt to estimate the contribution of Twitter to MTOT’s 

destination marketing efforts. 

The selection of tweets by hashtag is a common strategy for data collection. Using this 

selection method, Rossi and Magnani (2012) highlight the complementarity of dual networks. 
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The first network they identified was the more stable, localized networks comprised of followers 

and friends. The second was the ‘topical’ network capturing the rhythms of global phenomena. 

This topical network, they realized, was constructed primarily around hashtags associated with 

events or other phenomena. Rossi and Magnani (2012) analyzed the directionality of replies and 

the number of retweets of tweets using the hashtag ‘XF5’, associated with the real-time 

comments on the TV show Xfactor Italia. Visualizing communicative patterns in a density graph 

with account-specific nodes of traffic, Rossi and Magnani (2012) found that the Twitter accounts 

that received the most replies from users were those officially associated with the show: either 

the official account of the show, the account of the show host, or the account of one of the 

judges. 

However, in analyzing the retweet patterns, distinctions between official and unofficial 

accounts began to fade. While the official account of the show was among the top three accounts 

in terms of retweets, the remaining two accounts were from individual users with no official 

connection to the show. From this, Rossi and Magnani (2012) concluded that social practices on 

Twitter vary according to the specific communicative tool. While user identity played a large 

role in reply-based conversations, content of the tweet played a larger role in whether or not it 

was retweeted. 

This predicted relationship between retweets and account type forms the second research 

question of the present study: what effect does type of account have upon retweets? (RQ2). 

Insight into this relationship can contribute to the social media strategy of MTOT, and may 

provide insight to similar DMOs. If, for example, Twitter accounts associated with local 

businesses on average performed much better than a given DMO, then leveraging the support of 

the businesses associated with those accounts might serve as a goal of a future campaign.  
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To an extent, the relative competitiveness of MTOT against other accounts as measured 

in retweets might serve as a litmus test for its efficacy within its domain. This is because, when 

isolating tweets by topic, the success of an account is expected to be a function of its centrality to 

the topic and the overall quality of its content. In estimating the degree of influence various users 

held over topics on Twitter, Cha et al. (2010) found that consistent levels of involvement focused 

on a specific topic led to greater levels of topical influence. While their sample was limited to 

users who had increased their influence over a short period of time, the sample included both 

‘regular’ individual users, celebrities, and larger organizations. Similar to Rossi and Magnani 

(2012), they concluded that while account type had an effect, the primary driver of retweets was 

quality of content. Thus, while MTOT may begin with the advantage of being the ‘official’ 

account associated with the hashtag, performance as measured in retweets is expected to be 

explained primarily by the content value of its tweets. 

Together, RQ1 and RQ2 are expected to contribute to an understanding of the success of 

MTOT on Twitter, as well as the broader diffusion of Montana’s reputational image as a tourist 

destination. Metrics such as overall user engagement measured in retweets, ratios of original 

tweets to retweets, and disaggregation of retweets by type of account will aid in depicting the 

practical realization of MTOT’s Twitter initiatives (RQ1). The relative success of the hashtag 

campaign, and the comparative success of user engagement by type of account, will also be 

examined through a series of regression analyses (RQ2). If MTOT consistently generates content 

of high value—accruing the social capital standing that was the focus of Recuero, Araujo, and 

Zago (2011)—high retweet performance is expected, similar to Rossi and Magnani (2012) and 

Cha et al. (2010). If Montana performs better relative to other accounts, it would indicate success 

as defined in the social media section of the Montana Tourism and Recreation Strategic Plan 
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2013-2017 objective to implement relationship-building activities that produce identifiable 

promotional benefits (MTDC 2012, p. 69). Relative success would also suggest that, despite its 

marketing interest, MTOT succeeded in providing content worthy of being spread by social 

agents (in this case, other Twitter users) in a way that would contribute to the broader 

reputational image of Montana. 

Research Design 

Data used in the study 

The collection and cleaning process 

To collect the data for each of the datasets employed in this study, open source Python 

scripts modified from the Github repository gdsaxton/Twitter and Weiai Wayne Xu’s (2016) 

personal site were used to access Twitter’s REST application programming interfaces (API) 

(Saxton 2015). The REST APIs allow for reading and writing Twitter data via a program that 

provides authentication credentials associated with a Twitter Developer’s account and outputs 

the requested data in JSON1 (Rest 2017).2 The Twitter APIs allow the automation of data 

collection and have the advantage of being free. However, the number of tweets are capped at 

approximately one percent of all tweets, or 3,200 per handle for the REST API, which can make 

random sampling difficult, and is one of the methodological concerns in the analysis of Twitter 

data (Bhattacharya, Srinivasan, and Polgreen 2014; Kim et al. 2013). However, this issue is 

avoided by creating the datasets employed in the study over a period of time and by targeting 

either a particular account or hashtag (i.e., the datasets are not intended to be a random sample of 

                                                   

1 JavaScript Object Notation, a data-interchange format consisting of name/value pairs 
2 Twitter provides other APIs that are more suitable to real-time analysis, such as their Streaming APIs. REST APIs 

are typically used for reading the profile information of users, conducting singular searches, and posting Tweets.  
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all tweets). 

After using #MontanaMoment to access the Twitter API, the scripts employed in this 

study were used to create the variables of interest by parsing the raw JSON output before 

inserting the variables into a SQLite database. Several SQLite scripts were then used to perform 

some additional manipulation to ensure a full sample of the selected date range before the final 

variables were constructed using Python’s pandas package for data analysis. 

Python, and the pandas package in particular, is a particularly powerful tool for data 

manipulation and preparation. In the case of the Twitter data employed in this study, the pandas 

package allows for quick and efficient manipulation of variables that would become cumbersome 

in other programs. For example, the data-type formats of crucial variables such as the UTC 

timestamp conveying the exact moment in time each tweet was sent is provided through the 

Twitter API as a string (text) rather than an integer to preserve its precise value. Python’s pandas 

package allowed this variable to be converted to a datetime format from which sorting, indexing, 

and aggregation based upon isolated values within the variable (month, day, hour, minute, 

second, etc.) became possible.  

The present study primarily used the 2-dimensional DataFrame structure of the pandas 

package, similar to R’s data.frame, to generate the graphs, variables, and datasets employed in 

the analysis.3 Where Python falls short is in modeling the more complex statistical procedures 

employed in this analysis. Although Python’s statsmodels package4 provides strong support for 

many regression models, the GLM family of models is less developed. For these reasons, 

analysis for the study was conducted in Stata and R.  

                                                   

3 For more information on Python’s pandas package, see http://pandas.pydata.org/pandas-docs/stable/ 
4 For more information on Python’s statsmodels package, see http://www.statsmodels.org/stable/index.html 

http://pandas.pydata.org/pandas-docs/stable/
http://www.statsmodels.org/stable/index.html
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Datasets used in the study 

The complete hashtag dataset (HT-full) contains variables associated with any tweet 

containing the hashtag 'MontanaMoment' (not case sensitive) sent between December 24, 2016, 

and April 17, 2017. It is a tweet-level dataset with 7,669 rows, and 3,100 unique accounts. In 

other words, 3,100 independent twitter users sent a cumulative 7,669 tweets containing the 

hashtag ‘MontanaMoment’ over a period just short of four months. This data was collected by 

running a Python script once every seven days over the period of the dataset to collect tweets 

containing the hashtag ‘MontanaMoment’. The seven-day interval period was chosen due to the 

limitation to the past seven days of tweets (or 1,500 tweets) of the Twitter Search function (Kim 

et al. 2013). Duplicate tweets were automatically omitted through a comparison with the unique 

numeric value of each tweet ID. 

The HT-full dataset contains all unique tweets (by numeric ID) sent over the period, of 

which 5,482 (71%) cases are retweets. For this reason, the HT-full dataset will be used primarily 

to provide summary statistics of the overall activity surrounding the hashtag in question. Such an 

examination of trends in user activity over time and associated with a given topic is the most 

common form of Twitter analysis (Kim et al. 2013). For the purposes of the present study, a side-

by-side comparison of retweets to original tweets is expected to reveal useful information 

concerning the dynamics of retweeting (RQ1). 

The hashtag dataset containing only original tweets (HT-orig) was constructed from the 

HT-full dataset. It covers the same period of time, and each tweet similarly contains the hashtag 

‘MontanaMoment’. In order to build the HT-orig dataset, a binary variable retweet_dummy was 

created from variable retweeted_status collected through the Twitter API. The retweet_dummy 

variable was used to select only those tweets in the HT-full dataset that were not retweets. The 
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tweet-level HT-orig dataset contains 2,187 original tweets sent by 546 unique users. In other 

words, the 2,187 original tweets of the HT-orig dataset comprise only 29 percent of all tweets, 

and only the 546 users (18 percent of users in HT-full) that originated a tweet containing the 

hashtag ‘MontanaMoment’ over the period.  

Since the goal of the study is to isolate how and why these tweets are retweeted, the HT-

orig dataset will be the focus of the study, and used for deeper analysis. The variables below are 

those of the HT-orig dataset. Although several variables are common to both HT-full and HT-

orig, most of the variables are unique to HT-orig and serve the purpose of capturing the effect 

size of theorized predictors of retweets. 

 

Variables used in the study 

The HT-orig dataset contains two dependent variables and 23 independent variables 

organized by their role in the study. The independent variable categories are account-type (7), 

user-objects (3), and tweet-objects (13). The account-type variables are those of particular 

interest to the study (RQ2), while the remaining variables function as controls.  

The only non-numeric variable in the dataset is from_user_screen_name, which 

represents the unique account name of each user. This variable will be used for indexing and 

aggregating data in order to determine various aspects of unique users within the dataset, 

determining outlier cases and constructing variables to handle these, and for clustering standard 

errors by user to reflect the non-independence of tweets within the dataset.  
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Dependent: 

The first dependent variable of the study, retweet_dummy, is a binary variable coded as 1 

if a tweet was retweeted, and 0 otherwise. With only 667 (30.5%) positive cases for 

retweet_dummy, retweets are moderately rare events. The second dependent variable of the 

study, retweet_count, is a count variable that measures the number of times an original tweet was 

retweeted during the period of the study. It ranges from 0 (69.5% of cases) to 136, with a mean 

of 2.38 retweets per tweet.5 Table 2a below displays the top 10 retweet_count values aggregated 

by user account. Although the retweet_count variable is a tweet-level variable, the totals per 

account will have bearing upon several independent variables. 

                                                   

5 The discrepancy between the mean of retweet_count and total retweets in the HT-full database (i.e. 2.83×2187 ≠
5482) is due to the variable’s basis on original tweets. The difference is created by 287 retweets that appended the 

‘MontanaMoment’ hashtag to original tweets that did not include it. Since the retweet_count variable is associated 

with original tweets, the 287 retweets without an original tweet counterpart in the HT-orig dataset are not reflected 

in the retweet_count variable. 
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Table 2a: Aggregate retweets by account (HT-full) 

 

Unique Account 

 

Total Retweets 

visitmontana 2,433 

LeonKauffman 728 

GlacierNPS 487 

DancingAspens 163 

KLeaguePhoto 118 

BlueMountainBB 96 

mislaphotoguy 91 

RadleyIce 44 

earthXplorer 44 

WildReflections 40 

All other Accounts 962 

Total 5,206 

 

Independent: 

The independent variables consist of a series of binary variables constructed by parsing 

the from_user_screen_name variable and manually assigning values. Each is intended to 

contribute in some way to answering RQ2: what effect does type of account have upon retweets?  

The primary independent variables consist of five categories determined by the type of 

account from which an original tweet is sent: the official Montana Office of Tourism account, 

other official state accounts, accounts of individuals with a clear business interest, accounts of 

other individuals, and accounts of businesses and organizations not associated with the state. 

Combined with an additional two outlier account variables described below, the account-type 
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variables are mutually exclusive and jointly exhaustive of the from_user_screen_name value 

associated with each tweet. Table 2b displays the relationships between these seven variables. 

Although the nature of the account categories selected for analysis is unique to the study, 

the process of measuring the relationship between type of account and number of retweets has 

been conducted previously. Rossi and Magnani (2012) found that, while account type was 

important in determining the number of replies to a tweet, account type mattered less in 

determining retweets. However, the nature of their sample—tweets associated with an episode of 

a popular show, captured in real-time—was considerably different, and does not provide the 

predictive portability to inform the estimated effects upon retweets of the account variables in the 

present study.  

The nature of Twitter is such that most studies measuring retweets with consideration for 

accounts do so by collecting all of the tweets sent from particular accounts (often competing or 

complementary) and analyze them in comparative perspective (e.g., Bhattacharya, Srinivasan, 

and Polgreen 2014; Guo and Saxton 2012). The process by which one must collect tweets by a 

particular hashtag precludes nuanced analysis by type of account through means other than 

manually coding variables. This similarly makes detailed content analysis onerous, as the natural 

language processing employed in sentiment analyses of tweets typically provides only 

categorical series of positive, negative, or neutral sentiment variables (Barbagallo et al. 2012; 

Bhattacharya, Srinivasan, and Polgreen 2014; Bruni and Francalanci 2012). 

Since the HT-orig dataset contains only 546 unique accounts (‘users’ will be employed 

interchangeably), it was possible to manually sort accounts into one of the five buckets identified 

above. Each variable in the five-variable series is coded as 1 if it meets the condition specific to 

the variable, and 0 otherwise. The first binary variable in the series, mtot, is coded as 1 if the 
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from_user_screen_name variable is equal to ‘visitmontana’, the official handle of the Montana 

Office of Tourism (MTOT). As the account name was known beforehand, it was possible to code 

this variable by using Python to loop through the from_user_screen_name column of the dataset.  

With 108 tweets in the dataset (4.9 percent), MTOT was the second highest consumer of 

the hashtag among individual accounts, but fifth for most tweets when compared to the outliers 

and other account-type variables (see Table 2b). Despite this, mtot received the highest 

percentage of its tweets retweeted (100%), and the most total retweets at 2,433 (46.7% of all 

retweets). 

The second binary variable in the account-type series is state_account. It is coded as 1 if 

the Twitter account is associated with an official state office that is not MTOT. Similar to the 

remaining three in this five-bucket series, state_account was determined by researching the 

handle provided by the from_user_screen_name variable. Examples include the state-sponsored 

workforce attraction agency Choose Montana (@chooseMontana), Glacier National Park 

(@glacierNPS), and several city-based destination marketing and economic development 

organizations. As Table 2b below reveals, state_account has the fewest number of tweets in the 

database (66), although the second highest percentage of tweets retweeted among the account-

type variables (third highest including outliers).  

The third binary variable in the series is bus_int_ind, and is coded as 1 if the account is 

associated with an individual with a clear business interest such as a photographer, peddler in 

wares, or established blogger. This variable contains the single largest number of cases, and 

represents a relatively diverse group of people. The fourth binary variable in the series is 

other_ind, and is coded as 1 if the account is associated with an individual without any apparent 

business interests. Though it was the third largest group in terms of cases, the other_ind, 
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category received the lowest percentages of tweets retweeted (17.6%), as well as the lowest 

number of total retweets (131, only 2.5% of all retweets) of the account-type variables.  

The fifth binary variable in the series is bus_orgs_unofficial. It is coded as 1 if the 

associated Twitter handle is one of a business or organization that is not associated with the state. 

The overwhelming majority of these organizations are based in Montana, although several out-

of-state organizations are also included. The range of businesses is broad, but some 

representative examples include Billings Gazette (@billingsGazette), a local news organization; 

Dude Ranch Vacations (@dudeRanchers), an all-inclusive vacation company; and Wild 

Reflections (@wildReflections), a fine art gallery. 

The two remaining account variables are outliers, characterized as those accounts that 

have more than 100 tweets (cases) in the dataset. One such account, @visitmontana, is the mtot 

variable previously selected for independent analysis, and thus categorized as one of the account-

type variables above. However, the remaining two accounts with greater than 100 tweets were 

not selected for analysis in isolation. Rather, @TheExceptionMag with 318 tweets would have 

fallen into the unofficial organizations and businesses (bus_orgs_unoffical) category, and 

@LeonKauffman with 101 tweets would have fallen into the business-interested individuals 

(bus_int_ind) category.  

The exception_mag variable is coded as 1 if the tweet was sent from the account 

‘TheExceptionMag’ associated with the online food and travel industry publication The 

Exception Magazine based in Portland, Maine. The account is the top consumer of the 

‘MontanaMoment’ hashtag, with 318 positive cases (14.5 percent of all tweets). However, as 

Table 2b below reveals, none of its tweets were retweeted, which it makes it an outlier for 

several crucial reasons.  
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The account is a highly active tweeter (76,900 tweets, 569% more than MTOT), but has 

relatively few followers (2,269 followers, only 3.8% of MTOT’s 60,500), and a much higher 

followed-accounts to following-accounts ratio than MTOT (0.48 to 0.006). Examining the 

account’s Twitter page reveals very few retweets for any of the account’s original tweets. 

Furthermore, tweets sent from the account contain no identifiable human contribution. Rather, 

each tweet contains a link to a news article on the organization’s website, with the tweet content 

a replication of the article’s title. Considering these details, and following a classification system 

proposed by Chu et al. (2012), the exception_mag account is suspected to be a bot.6  

Following this assumption, the exception_mag variable will be used to identify and 

exclude the 318 positive cases from the regression models, reducing the cases analyzed in each 

model to 1,869. This omission will also help to ensure the significant deviation of exception_mag 

(none of its tweets were retweeted) does not influence the covariate estimates of the other 

variables. 

Unlike exception_mag, the second outlier is suspected to be human, and will be included 

within the regression models. The kauffman variable is coded as 1 if the tweet was sent from the 

account @LeonKauffman associated with the Montana-based photographer of the same name. 

The @LeonKauffman account commands both the third highest number of tweets in the dataset 

(101) and the second-highest total number of retweets at 728 (14% of all retweets). With 92.1 

percent of tweets from the account retweeted, kauffman is the only other categorization of user 

                                                   

6 Bots are relatively common on Twitter, due to lax automation controls. Only during the initial registration must a 

user fulfill a CAPTCHA image request, after which a bot could use the gained login information to access Twitter 

APIs and perform routine human tasks. Chu et al. (2012) created an automated classification system to determine 

whether a Twitter account could be classified as human, bot, or cyborg (a human-assisted bot, or bot-assisted 

human). In order to develop their proposed model, they created a ground-truth set of data containing accounts 

known to be human, bot, or cyborg. Their process for attempting to discern these initial accounts is what is 

employed here. 



Richardson | 27 

 

 

accounts that comes close to the 100 percent retweet rate of the mtot variable. By separating this 

outlier from its natural category, the study seeks to prevent the impact of the bus_int_ind variable 

from becoming an impact of the single account @LeonKauffman. 
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Table 2b: Relationships between the dependent and account-type variables 
 

 

 

  

       

Variables 

 

Positive cases 

(number of tweets) 

 

% 

total 

Cases retweeted 

sum(retweet_dummy) 

% 

total 

Total retweets 

sum(retweet_count) 

% 

total 

mtot 108  4.9% 108 100.0% 2,433 46.7% 

state_account  66  3.0%  37  56.1%   619 11.9% 

bus_int_ind 709 32.4% 215  30.3%   853 16.4% 

other_ind 391 17.9%  69  17.6%   131   2.5% 

bus_org_unofficial 494 22.6% 145   29.4%   442   8.5% 

kauffman 101  4.6%  93  92.1%   728 14.0% 

exception_mag 318 14.5%   0    0.0%      0   0.0% 

 
      

Total 2,187 100.0% 667 30.5% 5,206 100.0% 
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Control: 

The right-side variables classified as control fall into either a user-object or tweet-object 

category. This follows a classification scheme similarly employed by other studies analyzing 

factors impacting retweets (e.g. Bhattacharya, Srinivasan, and Polgreen 2014; Suh et al. 2010). 

The purpose of this distinction is to differentiate between those variables that are constructed 

based upon characteristics associated with a specific user from those associated with a specific 

tweet. In both cases, the tweet remains the unit of analysis. Data associated with the 546 unique 

users will simply be included as a non-independent column of each tweet (n=2,187).  

 

User-object 

The user-objects series of variables are those variables that are specific to a particular 

account. Thus, while the HT-orig dataset contains 2,187 rows, the uniqueness of the user-object 

variables is a function of how metrics associated with 546 unique accounts change over the 

period of collection.7 For example, if an account has 100 tweets in the dataset, a variable 

capturing the number of followers of an account would change only if the user lost or gained 

followers between sending a #MontanaMoment tweet. 

 In their unabridged form, each of the user-object variables are prefaced with the 

identifier ‘from_user_’, which is how they are denoted by the Twitter API. Each of these 

continuous predictor variables is standardized to have a mean of zero and a standard deviation of 

                                                   

7 As the exception_mag variable will be used to exclude the 318 tweets sent by @TheExceptionMag, this value will 

change to 545 unique users in the regression model. 
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one to facilitate interpreting the effect size of the predictor variables in relation to one another8. 

Appendix A provides summary statistics for the original values of these variables. 

The user-object variables account for those factors independent of message crafting and 

instead tend toward the social interconnectivity and distribution reach of a particular account. 

These variables are included largely due to their expected impact upon retweets, although 

findings regarding the effect-size of this series could also inform organizational strategy. If, for 

example, the number of followers an account has outweighs any other category in terms of 

impact upon retweets, an organization may wish to direct more of their social-media efforts 

toward recruiting followers themselves rather than partnering with ‘influencers’ in a given area. 

The standardized variable followers_count measures the number of followers an account 

had at the time an associated tweet was inserted into the dataset. Assuming people follow 

accounts that publish content of interest, followers_count is expected to capture an interesting-

content aspect of user accounts. Insofar as number of followers broadens the distribution channel 

of an account, followers_count is expected to have a strong, positive impact upon retweets, 

similar to other studies (e.g. Suh et al. 2010; Yasugi et al. 2013). Simply put, the larger the 

distribution channel of a given user, the more likely a tweet is to be seen and chosen to be 

retweeted by a follower. 

The variable listed_count is a standardized measure of the number of public lists on 

which a user appears. Within Twitter, a list is a group of curated accounts from which a user can 

                                                   

8 As the exception_mag cases excluded in the regression model are included in the standardization, the final values 

for these variables vary slightly. See Table 2d below for the summary statistics of all variables as they are included 

in the regression models discussed below. 
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choose to receive tweets if she subscribes to a list of which an account is a part (Petrovic, 

Osborne, and Lavrenko 2011). Users are able to add followed accounts to lists in order to 

organize them, and in this sense listed_count captures the degree to which an account is actively 

followed. While Yasugi et al. (2013) identified a weak correlation between number of retweets 

and membership in public lists and a strong correlation between membership in lists and number 

of followers, Petrovic, Osborne, and Lavrenko (2011) found membership in lists to be a 

moderate predictor of retweets. Since the HT-orig dataset does not contain many of the high-

status accounts (federal offices, celebrities, etc.) included within other samples, listed_count is 

expected to have only a minimal impact upon retweets when controlling for followers_count. 

This is based upon the assumption (supported by Yasugi et al. 2013) that in order to be added to 

a large number of lists, an account must have a large number of followers relative to the global 

and geographically independent Twitter community. 

The variable statuses_count is a standardized measure of the total number of tweets sent 

by a user since creation of the account.9 It is expected to have only a minimally positive 

relationship with retweets when controlling for factors such as followers_count (similar to Suh et 

al. (2010) and Yasugi et al. (2013)). While Bhattacharya, Srinivasan, and Polgreen (2014) found 

number of statuses to be negatively associated with retweets, their sample was isolated to official 

organizations within the medical industry. For this reason, the overall number of tweets 

associated with accounts within their sample was much higher than in the HT-orig dataset. Since 

the organizations with the highest number of statuses tend to be those that post regularly and 

                                                   

9 It is also worth pointing out that the statuses_count variable is unique to each tweet, since every new tweet adds a 

value of one in the unstandardized form of the variable. So, while the other user-object variables may or may not 

change on a case-to-case basis, statuses_count always will. 
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receive considerable user-engagement as opposed to occasional posters whose primary interests 

may be in information consumption (rather than information distribution), it is expected that 

findings will be contrary to those of Bhattacharya, Srinivasan, and Polgreen (2014). 

 

Tweet object 

In contrast to the user-object variables, the tweet-object variables are those that are 

unique to a particular tweet. They concern either the content of a particular message (2 

variables), or the day of the week or time of day it was sent (11 variables). The tweet-object 

variables are intended to control for past findings shown to impact retweets as well as for 

phenomena not captured elsewhere. The first, url_dummy, was coded as 1 for all cases in which 

the url_count variable provided by the Twitter API was not equal to 0. Of the 1,869 tweets 

included in the regressions below, 1,010 (54 percent) contain a URL.10 Similar to other studies 

(Bhattacharya, Srinivasan, and Polgreen 2014; Suh et al. 2010), url_count is expected to be 

positively associated with retweets, although this may be due in part to the established use of 

URLs in tweets. 

The mention_dummy variable was similarly coded as 1 if a tweet contains an @user 

mention (i.e. a direct address of sorts by one user to another) by identifying all positive cases of 

the mentions_count variable provided by the Twitter API. A zero value represents the absence of 

a user mention. The mention_dummy variable is expected to be positively associated with 

retweets similar to the study by Bhattacharya, Srinivasan, and Polgreen (2014), which found that 

                                                   

10 Each of the 318 excluded exception_mag tweets include a URL. 
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tweets containing a mention were both more likely to be retweeted and more likely to receive 

multiple retweets.  

The remaining control variables in the tweet-object category pertain to time, which has 

been shown to impact whether a tweet is retweeted (Petrovic, Osborne, and Lavrenko 2011). For 

example, Semiz and Berger (2017) found that tweets are most likely to be retweeted in the 

evening11, while Luo et al. (2013) found night to be the least active time, with only 12.4 percent 

of tweets retweeted. Semiz and Berger (2017) also estimated tweets sent on a Saturday or 

Sunday were more likely to be retweeted relative to the remaining five days of the week. To 

control for such time factors that might impact retweets, several time variables are included in 

the regression models. The time variables were created in Python by indexing the dataset to 

various aspects of the created_at variable provided by the Twitter API and creating variables 

unique to the index of each tweet. Seven binary variables (monday, tuesday, wednesday, 

thursday, friday, saturday, sunday) are included to control for the day of week a tweet was sent, 

each coded as 1 if a tweet was sent on that day. 

Given the nature of how the dataset was collected, the day of the week variables are also 

expected to control for an additional aspect of the tweets. One of the methodological concerns 

with the present data involves the age of a tweet within the dataset. Once inserted into the SQLite 

database, the tweets accessed each time a Python script was run remained immutable. That is, 

each variable associated with a tweet did not change after it was downloaded, thus any retweets 

an original tweet received after the running of the script are not captured by the dependent 

                                                   

11 Defined as within the interval 6:00 PM to 11:59 PM. 
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retweet count variable. This makes the dependent variables of this study (retweet_count and 

retweet_dummy) relevant to the unmeasured time-to-be-retweeted aspect of each tweet. Since the 

collection script was run once every seven days, the time-to-be-retweeted interval ranges from 

seven days up until the moment the script was run.  

However, the rapid consumption and general volatility of tweets significantly reduce the 

extent to which this is a problem with the data. Kwak et al. (2010), for example, show that more 

than half of the retweets a given tweet receives will occur within one hour, and 75 percent within 

a day (also see Luo et al. 2013). In a temporal sentiment analysis, Barbagallo et al. (2012) found 

that 92 percent of tweets classified as carrying sentiment (positive or negative) were retweeted 

within five hours, and that 17 percent of all tweets peaked within the first minute. By distributing 

retweet counts for each tweet over a period of four hours, Barbagallo et al. (2012) also display a 

graph resembling a power-law distribution, suggesting that retweets for a given tweet decline 

rapidly the older a tweet becomes. Specifically, a third of peaks (in retweet counts) occurred 

within two minutes, over half in five minutes, and 80 percent within 31 minutes. 

For these reasons, the uncaptured age of the tweets within the HT-full and HT-orig 

datasets is perceived as a notable though minor concern with the data used for the study. 

Nevertheless, the day-of-week controls are instituted as a proxy for a time-to-be-retweeted 

variable. Given past research and the shape of the present data, these stand-in variables are 

expected to function as hypothesized. 

Assuming a standard aggregate retweet-to-tweet ratio, the consistency of the retweet-to-

tweet ratio would seem to suggest that most retweets occur on a single day, which is consistent 

with past research. Chart 2a and 2b show, respectively, the total number of tweets and total 
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number of retweets occurring on each day of the week. Table 2c reveals that the average number 

of retweets per tweet by day of the week is 2.9, with the largest deviation being only 0.6 

retweets. This is reflected by comparing the Tuesday values for each of the graphs. However, 

every other day is within 0.2 retweets of the mean. The combination of these comparisons and 

the light of past research suggests that the large majority of retweets will occur on the same day a 

tweet is posted, and thus mitigate the potential issue of a missing time-to-be-retweeted variable. 

Nevertheless, the day-of-week variables will not be interpreted as capturing the impact of day-of-

week upon retweets, but as the combined influence of day-of-week and time-to-be-retweeted. 
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Chart 2a: Number of original tweets by the day of week posted (n = 1,869) 

 

 

 

Chart 2b: Number of retweets by the day of week retweeted (n = 5,482) 
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Table 2c: Average retweets per tweet by day of the week 

 

Day of Week 

 

Original Tweets 

 

Retweets 

 

Retweets Per Original 

Monday 252 671 2.7 

Tuesday 235 821 3.5 

Wednesday 267 822 3.1 

Thursday 286 800 2.8 

Friday 280 757 2.7 

Saturday 277 820 3.0 

Sunday 272 791 2.9 

N 1,869 5,482  

Average   2.9 

 

The remaining time variables of the tweet-object category include measures for the time 

of day a tweet was sent. Four time-of-day variables were created by indexing each tweet by the 

hour of the day it was sent in local time12 and separating tweets into four buckets based on the 

hour in which it was sent. The night variable is coded as 1 if a tweet was sent between 1:00 AM 

and 6:00 AM and 0 otherwise. The morning variable is coded as 1 if a tweet was sent between 

6:00 AM and 12:00 PM, and 0 otherwise. The day variable is coded as 1 if a tweet was sent 

                                                   

12 The Twitter API’s created_at variable provides a UTC timestamp, from which local times were derived. Since 

MDT is six hours behind UTC and the time-of-day variables are constructed at six-hour intervals, what would have 

been day in the original dataset was categorized as morning here. The underlying assumption for doing so is that 

most of the tweets and retweets are sent from Montana-based accounts. As the most represented accounts in terms of 

either tweets or retweets (mtot, kauffman, state_account) are Montana-based there is substantial support for this 

assumption. However, since accurate geographic information is difficult to obtain it would be a significant challenge 

to ensure that times are local to where a tweet was sent. A pure time accounting would involve capturing the local 
times of sending users, retweeting users, and the followers of each unique user in the database. However, the 

difficulty, or possibility, of doing so is such that the theoretical and empirical suggestion that most tweets are 

tweeted and retweeted in local or near-local time is deemed sufficient.  
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between 12:00 PM and 6:00 PM, and 0 otherwise. The final time-of-day variable, evening, is 

coded as 1 if a tweet was sent between 6:00 PM and 12:00 AM, and 0 otherwise.  

Table 2d below displays summary statistics for the complete set of variables as they are 

included in the regression models, organized by their respective category. 

 

 

 

 



Richardson | 39 

 

 

Table 2d: Summary statistics of all variables by category 

 

 

Variables 

 

 

Count 

 

Mean 

 

Std. Dev 

 

Min 

 

Max 

 

dependent 

 

     

retweet_dummy 1,869 0.36 0.48 0 1 

retweet_count 1,869 2.79 8.63 0 136 

 

account-type 

 

     

mtot 1,869 0.06 0.23 0 1 

state_account 1,869 0.04 0.18 0 1 

bus_int_ind 1,869 0.38 0.49 0 1 

other_ind 1,869 0.21 0.41 0 1 

bus_orgs_unofficial 1,869 0.26 0.44 0 1 

kauffman 1,869 0.05 0.23 0 1 

 

user-objects 

 

     

followers_count 1,869 0.04 1.08 -0.31 8.17 

listed_count 1,869 0.02 1.08 -0.29 10.23 

statuses_count 1,869 -0.28 0.78 -0.60 8.08 

 

tweet-objects 

 

     

mention_dummy 1,869 0.18 0.38 0 1 

url_dummy 1,869 0.54 0.50 0 1 

monday 1,869 0.13 0.34 0 1 

tuesday 1,869 0.13 0.33 0 1 

wednesday 1,869 0.14 0.35 0 1 

thursday 1,869 0.15 0.36 0 1 

friday 1,869 0.15 0.36 0 1 

saturday 1,869 0.15 0.36 0 1 

sunday 1,869 0.15 0.35 0 1 

morning 1,869 0.07 0.26 0 1 

day 1,869 0.30 0.46 0 1 

evening 1,869 0.31 0.46 0 1 

night 1,869 0.32 0.47 0 1 
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Model 

The present study employs binary logistic regression and negative binomial regression to 

estimate the effect sizes of a series of predictor variables upon whether or not a tweet is 

retweeted (logit), and how many times a tweet is retweeted (nbreg). While the logit model was a 

clear choice in terms of appropriateness for the data, the count portion of the analysis was 

carefully selected through a process discussed in greater detail below.  

 

Considerations in model selection 

Ultimately, negative binomial regression was chosen over Poisson regression for its 

ability to handle the overdispersion of the retweet_count variable by parameterizing the 

overdispersion parameter (α) as ln(α) (Cameron and Trivedi 2013, 80-89). However, several 

competing models were considered before concluding negative binomial regression was the best 

fit for the data. As the standard count model, Poisson regression was the first choice. However, 

the non-normal distribution of the retweet_count variable and the general spreadness of the data 

favor the derivative negative binomial regression, which better handles overdispersion. However, 

it was deemed appropriate to evaluate this assumption more thoroughly, especially considering 

the variety of statistical methods that have been employed by other studies to analyze retweets. 

Further exploration of model fit was guided primarily by the desire to handle the overdispersion 

of the retweet_count variable while maintaining theoretical credibility in regard to the process by 

which zeros are generated in the dataset. 

Even with exception_mag omitted (n = 1,869), the retweet_count variable has a variance 

of 74.4 and a skewness of 6.7. In other words, the distance between these measures and the mean 
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of 2.8 is far from meeting the underlying assumption of Poisson regression that the variance is 

equal to the mean (Rodriguez 2007). The hypothesis that negative binomial regression would 

better handle such a situation was measured formally by conducting a model fit test in Stata 

using the user-defined SPost13 Package (Long and Freese 2014). As expected, the difference in 

BIC scores between the models strongly favored the negative binomial model over the Poisson.13  

Zero-inflated models (Poisson and negative binomial) were also considered for their 

goodness-of-fit. Of particular interest was the potential of a zero-inflated model to handle the 

large number of tweets never retweeted. Only 35.7 percent (667) tweets of the 1,869 included for 

analysis in the models were retweeted. In the interest of measuring what a Bayesian model 

selection approach (see Raftery 1995) would suggest regarding the utility of a zero-inflated 

model to handle the large number of zeros in the dataset, a series of model fit tests were 

performed. 

Using the fitstat model estimation procedure to compare zero-inflated Poisson regression 

(zip) to the negative binomial model (nbreg), the zero-inflated model failed to converge when 

including the full variable series for the inflate portion of the model. Fitting the inflate portion to 

the constant, the zip model converged. However, the BIC metric still provided strong support for 

the nbreg model.14 Given the relatively weak (though improved) ability of zero-inflated Poisson 

regression to handle overdispersion, these results aligned with expectations.15 

A Bayesian comparison of zero-inflated negative binomial regression (zinb) with 

                                                   

13 At 5,551.4, the BIC of the negative binomial regression model is smaller than the Poisson model by a difference 

of 3,570.2. Raftery (1995) explicates in detail the benefits of using a Bayesian approach to model selection. 
14 At 5,551.4, the BIC of the negative binomial regression model is smaller than the zero-inflated Poisson model by 

a difference of 2,209.8. 
15 The failure of the zip model to converge in the non-constant-only model is estimated to be the result of some 

collinearity among some of the predictor variables (account-type and user-object). Theoretically, this is not expected 

to influence the results in the other non-linear models, although it does provide some limitations in model selection. 
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negative binomial regression (nbreg) revealed support for the zinb model. However, the 

difference in BIC scores between zinb and nbreg was much lower than the difference between 

zip and nbreg and between Poisson and nbreg. In other words, the ‘recommendation’ of the 

Bayesian model selection approach is much weaker than in the former cases.16 Fundamentally, 

however, the decision to choose negative binomial regression over its zero-inflated variant to 

model the count variable was one of theory.  

Using a zero-inflated model presumes that zeros in a dataset are generated by two 

independent processes, whereas the choice to use a standard count model assumes that both zeros 

and positive cases originate through the same process. A useful example based on Allison (2012) 

is a dependent count variable measuring childbirth among women over 18 living in the US. 

Regressing on this measure variables for age, sexual activity, and marriage status in a standard 

count model assumes that if a woman did not give birth, that result can be measured as a function 

of the independent variables. Conversely, a zero-inflated model would control for the 

impossibility of a sterile woman to give birth, irrespective of any right-side variables. In other 

words, the zero-inflated model presumes that zeros in a dataset are generated through two 

independent processes. Statistically, this is represented by a two-component mixture model in 

which a binary model is used to model the unobserved state based upon a zero-inflated density 

that compares a zero-based point mass with a count distribution (Zeileis, Kleiber, and Jackman 

2008; for more detail, see Cameron and Trivedi 2013). 

Given the theoretical constraints of employing a zero-inflated model, Allison (2012) 

                                                   

16 At 5,551.4, the BIC of the negative binomial regression model is greater than the zero-inflated negative binomial 

model by a difference of only 150.7. While this still provides strong support for the zero-inflated model, it is not as 

conclusive as the former comparisons. Fundamentally, the decision is one of theory. 
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recommends against selecting a zero-inflated model to handle overdispersion even in cases 

where a BIC comparison would suggest otherwise. Applying this consideration to the present 

data, it appears the use of a zero-inflated model would bias the covariate estimates since zeros 

are not structurally determined. In other words, there is no circumstance that would render it 

impossible for a tweet in the dataset to have been retweeted. The near exception to this is a single 

account that had no followers at the time a tweet was imported. With no followers, a tweet from 

this user would only be seen and potentially retweeted if other users searched by 

#MontanaMoment or otherwise stumbled upon the sending user’s page. If a greater number of 

accounts had no followers, a zero-inflated model might be more appropriate. However, even in 

this case, zero values would remain only nearly structural given that a tweet sent from an account 

without followers could still be retweeted. For these reasons, the followers_count and time 

variables are expected to control for possible outcomes in which tweets were never seen. 

Following this assumption, a zero-inflated model is not supported, even though some studies are 

more flexible in its application. 

 

Right-side variables 

Three variables, one from each of the mutually exclusive and jointly exhaustive 

dichotomous variables series represented in the model, are omitted from the regression equations 

in order to avoid their perfect prediction by the linear combination of the remaining variables in 

the series. As the account of primary interest, the mtot variable is omitted from the account-type 

series so that the coefficients of the remaining variables may be interpreted in relation to it. For 

those variable series serving as statistical controls, the decision of which variable to omit carries 
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less weight. From the time-of-day variables in the tweet-object category, the morning variable 

was omitted, and from the day-of-week variables in the tweet-object category, the sunday 

variable was omitted. Any discussion of the remaining variables in these series will thus be 

interpreted in relation to these omitted variables.  

With these exceptions, each of the predictor variables discussed above was regressed on 

both the binary variable retweet_dummy and the count variable retweet_count. As such, both the 

logit and the nbreg models include 19 right-side variables representing the above explicated 

categories account-type (5), user-object (3), and tweet-object (11). Following a comparative 

analysis of retweets in relation to original tweets, the results for the logit and nbreg models are 

discussed in the findings section below. 

 

Findings 

The findings section is broken into two primary parts. The first will focus on summary 

statistics and data visualization of the HT-full dataset in comparative perspective with the HT-

orig dataset. The purpose is to gain a deeper sense of the overall activity and usage habits 

surrounding the ‘MontanaMoment’ hashtag. The nature of Twitter data is such that a significant 

amount of useful information can be gleaned by isolating various elements of tweets categorized, 

in this case, by whether or not the tweet is a retweet or an original. Some of the manipulations 

below involve summary statistics and deeper analyses of variables of interest, and others involve 

aggregation of the number of tweets in the dataset associated with measures of time. By 

‘collapsing’ the data into a time variable, it becomes possible to identify patterns shared by 

tweets and retweets. 
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For a deeper analysis of specific factors associated with retweets, the second section will 

include the binary logistic and negative binomial regression results. An interpretation of the signs 

and significance of the right-side variables in the models will be followed by a comparison of the 

relative strengths of the modified regression coefficients for each of the significant predictor 

variables within the two models. 

 

Hashtags 

There are 1,272 unique hashtags in the HT-orig dataset, compared to 1,309 unique 

hashtags in the HT-full dataset. In other words, the 5,485 retweets of HT-full excluded from HT-

orig contain only 37 additional hashtags inserted by users as a comment on the original tweet. 

While this suggests, perhaps unsurprisingly, that original tweets drive messaging, what is not 

evident by aggregate counts of hashtags is how rare each hashtag is within the datasets. In both 

the HT-full and HT-orig datasets, the graph of hashtag frequency resembles a power law 

distribution, with over half of the hashtags in each dataset used only once. This is made clearer 

by Table 3a, which provides the percentages for the number of times a hashtag is used. That 80.8 

percent of hashtags are used four times or less provides a sense of the skewness of the 

distribution. Chart 3a reveals data associated with the peak of the hashtag frequency distribution 

by graphing the top ten most used hashtags in the HT-orig dataset. 
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Table 3a: Percentage of hashtags by number of times used in the HT-orig dataset 

 

Number of Times Used 

 

HT-full 

 

HT-orig 

1 52.6% 62.7% 

2 15.1% 15.0% 

3 8.3% 72.3% 

4 4.8% 4.1% 

 

Chart 3a: The top 10 hashtags in the HT-orig dataset

 

 

Chart 3a makes it apparent that #MontanaMoment is used in conjunction with #Montana 

about half of the time, but does not have any other common pairings. The fact that #photography 

is the third most popular hashtag (and second most popular pairing, as all hashtags in the dataset 

contain #MontanaMoment) may hint at the frequency with which the many photographers within 

the bus_int_ind category use #MontanaMoment. However, this cannot be certainly determined 

given the popularity of visual media usage on Twitter and in conjunction with the hashtag of 
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interest in particular. Chart 3b below displays the top ten hashtags used in the HT-full dataset. 

While #montana and #photography remain the top two pairs to #MontanaMoment, the 

symmetric difference of the two sets has an index of eight. In other words, eight total hashtags 

are unique to either Chart 3a or Chart 3b, suggesting that, while original tweets may determine 

hashtag usage to an extent, retweets introduce a notable variance.  

 

Chart 3b: Top ten hashtags in the HT-full dataset (tweets & retweets) 

 

Tweets & retweets over time 

For each time-based variable used as an axis in the following graphs, the HT datasets 

were collapsed into the variable of interest. Chart 3c below, for example, displays the number of 

original tweets that occurred on each day of the collection period. Chart 3d displays the total 

number of retweets occurring on each of these days. Unlike Chart 2a and 2b used to 

contextualize the day-of-week variables, the symmetry between original tweets and retweets 

begins to break down in comparing tweets by day. From this, it is clear that the number of 

retweets occurring on a given day is impacted by factors beyond the number of original tweets.  
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A perfect association between original tweets and number of retweets would be suggested 

if the shapes of the graphs were identical. However, as this study hypothesizes and others 

suggest, the number of retweets an original tweet receives is a function of more factors than 

accounted for here. The predictors hypothesized to account for this differentiation are those 

included as right-side variables in the logit and nbreg models discussed in the following section. 

However, it is interesting to note that many of the peaks and troughs between the two graphs are 

shared, even though many of the peaks in Chart 3d are significantly larger than those of Chart 3c. 

This would appear to provide some additional support for the assumption that most retweets 

occur on the same day an original tweet is posted. What is not clear, is why peaks in retweets 

vary with a high degree of independence from peaks in original tweets. 

 

Chart 3c: Number of original tweets by day posted (n = 1,869) 
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Chart 3d: Number of retweets by day posted (n = 5,482)

 

 

Respectively, Charts 3e and 3f provide the total number of original tweets and retweets 

aggregated by the hour of the day in which they occurred, beginning at 6:00 PM. Considering 

that previous research (see Barbagallo et al. 2012) has determined that the vast majority of 

retweets occur within the first hour of a tweet, it seems reasonable to assume that most of the 

original-tweet-to-retweet relationships that constitute the graphs are non-spurious. That is, within 

a granted margin of error, most retweets in the 12:00 PM spike, for example, are of tweets 

occurring in the same day. In other words, any hour-to-hour change between Chart 3e and Chart 

3f is expected to be a function of a tweet-to-retweet time interval.  

Given this, it seems the largest divergence in the shape of the graphs (i.e., a break in the 

tweet-to-retweet ratio) occurs between 6:00 AM and 11:00 AM (captured by the morning 

variable). During this period, original tweets balloon with a rapid increase in volume. However, a 

closer examination reveals that what appears to be a divergence may be more akin to a lag. Over 

the entire period, both tweets and retweets roughly triple (from approximately 40 to 120 in the 
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case of original tweets, and 100 to 300 in the case of retweets).  

Regardless of the accuracy of the tweet-to-retweet time assumption, the two charts 

provide useful information regarding user engagement with the hashtag. Night is clearly a period 

of low activity, whereas 12:00 PM—a typical lunch hour—is a highly active period. User 

engagement then declines until 6:00PM when retweeters are perhaps settling at home after a day 

of work. This activity peaks at 10:00 PM, after which users are likely beginning to go to bed, and 

doesn’t pick up again until the morning. 

What cannot be discerned from Charts 3e and 3f is whether a tweet is more likely to be 

retweeted during a given period. Since the ratio of tweet-to-retweet appears relatively 

proportional, it would seem not. However, this could be the result of a number of phenomena 

that cannot be further determined. For example, a handful of organizations may ramp up Twitter 

activity during peak times because they have determined that they receive more retweets and 

thus drive the trends reflected in the graphs. Alternatively, general activity from all users may 

increase with tweet-to-retweet proportions remaining unchanged as tweets are equally distributed 

among users relative to predictor variables. These questions will be further explored in the 

regression tests discussed below. 
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Chart 3e: Number of original tweets by hour sent (n = 1,869) 

 

Chart 3f: Number of retweets by hour sent (n = 5,482) 

 

 

Chart 3g displays the total number of original tweets posted during each month in the 

dataset, whereas Chart 3h includes only retweets occurring in each month. It is important to 

recall that only January, February, and March include all the tweets that used #MontanaMoment 

during the period. Thus, the most obvious difference in month-to-month volume is that both 

fewer original tweets and retweets occurred in the month of January relative to other months. 
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The present data does not support an inference as to why January was a slower month for 

retweets. However, it is possible that harsher weather and reduced outdoor activity played a role, 

since photographs of the outdoors are a primary use case for the hashtag.  

The more interesting aspect of Charts 3g and 3h is the similarity in shape, which suggests 

that aggregate original tweets influences aggregate retweets to a limited extent. It appears a 

change in the ratio of original tweets to retweets occurs in the difference between February and 

March across the two graphs. However, Table 3b reveals that this difference is slight, and that 

the outlying month is February by a margin of less than 0.2 retweets per tweet from the mean for 

the three months. The minimal variance in the number of retweets generated per tweet across the 

three months is perhaps a function of their chronological and seasonal similarities, but it may 

also suggest the potential to predict total retweets given a number of original tweets with a 

particular set of shared characteristics.  

This is particularly interesting given the ability of the Twitter API to supply data samples 

approximating the population for research questions narrowed to a group of user accounts, the 

usage of a particular hashtag, and similarly selective identification strategies. Under such 

circumstances, summary statistics may be sufficient to provide considerable predictive power. 

For example, given a large enough timeline, it may be possible to estimate retweet counts based 

upon the past performance of an organization’s original tweets. This could be of potential use in 

guiding the Twitter activity of organizations seeking to hit certain metrics in terms of user 

engagement. However, a deeper understanding of this relationship is limited by the current data 

and is beyond the scope of the present study. 
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Chart 3g: Original tweets by month (n = 1,869) 

 

Chart 3h: Retweets by month (n = 5,482) 

 

Table 3b: Retweets per tweet by month 

Month 
Original 

Tweets 

  %  

Total 
Retweets 

   %  

Total 
Total 

Retweets per 

Original 

January 381 25.6% 1,106 74.4% 1,487 2.9 

February 488 23.6% 1,580 76.4% 2,068 3.2 

March 484 24.9% 1,457 75.1% 1,941 3.0 
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Regression results 

Table 3c below displays the results of regressing the outcomes of the retweet_dummy 

variable (column I: logit) and the retweet_count variable (column II: nbreg) on each of the 19 

independent variables. The models are intended to estimate the effects of account type upon 

whether or not a tweet is retweeted (logit) and upon how many times it is retweeted (nbreg). The 

control variables shared between the models include measures for number of followers, 

membership in public lists, number of statuses, whether a tweet contains a URL or direct 

mention (@user), on which day of week a variable was sent, and the period of the day in which a 

tweet was sent 
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𝐶𝑜𝑒𝑓𝑓 .

(𝑆.𝐸.)
   *p < .05, ** p < .01, *** p < .001, for a two-tailed test  +account-type reference category is mtot

Table 3c: Reg. results for retweet_dummy (I) and retweet_count (II) outcome variables  

 
Variable 

            I. logit           II. nbreg 

  Coefficient 
(Robust St. Error) 

 Coefficient 
(Robust St. Error) 

state_account  -15.18*** 
(1.18) 

 
-1.31*** 
(0.24) 

 

bus_int_ind  -16.09*** 
(1.17) 

 
-2.08*** 
(0.27) 

 

other_ind  -16.83*** 
(1.18) 

 
-3.48*** 
(0.27) 

 

bus_orgs_unofficial  -16.19*** 
(1.16) 

 
-2.55*** 
(0.26) 

 

kauffman  -12.99*** 
(1.18) 

 
-0.30 
(0.21) 

 

followers_count   0.85* 

(0.35) 
 

 0.55*** 

(0.08) 
 

listed_count  -0.43 
(0.27) 

 
-0.52** 
(0.17) 

 

statuses_count   0.02 
(0.14) 

 
 0.48 
(0.29) 

 

url_dummy  -0.47* 
(0.20) 

 
-0.26 
(0.18) 

 

mention_dummy   0.51 
(0.26) 

 
 0.62* 
(0.31) 

 

monday   0.00 
(0.24) 

 
-0.08 
(0.21) 

 

tuesday   0.31 
(0.23) 

 
 0.20 
(0.26) 

 

wednesday   0.22 
(0.23) 

 
 0.03 
(0.21) 

 

thursday   0.12 
(0.21) 

 
-0.14 
(0.20) 

 

friday   0.45 
(0.30) 

 
 0.03 
(0.21) 

 

saturday  -0.11 
(0.21) 

 
-0.04 
(0.19) 

 

night   0.37 

(0.45) 
 

 0.01 

(0.28) 
 

day   0.07 
(0.20) 

 
 0.31 
(0.17) 

 

evening   0.32 
(0.21) 

 
 0.42 
(0.22) 

c 

constant S  15.23*** 
(1.17) 

 
 2.22*** 
(0.27) 

 

N   

1,869 

  

            1,869 
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Panel I of Table 3c displays the regression coefficients for the logit model. These can be 

interpreted as the expected change in the natural log of the odds for a one unit change in the 

respective predictor variable, holding all other variables constant. Panel II of Table 3c displays 

the results of the negative binomial regression, which models the natural log of expected 

retweets as a function of the predictor variables. The coefficients in Panel II can be interpreted as 

the expected change in the difference of the natural log of retweets for a one unit change in each 

of the predictor variables, holding all else constant. In both panels, standard errors are displayed 

in parentheses below the regression coefficients. 

Looking at the account-type variables, it is clear that account type matters both in terms 

of how many times a tweet is retweeted, and whether it is retweeted at all. In both the logit and 

nbreg models, each of the account-type variables is highly significant and negative in relation the 

mtot reference category. That is, an account classified as any other than mtot is expected to 

receive fewer retweets, and is less likely to be retweeted at all, holding all other variables 

constant. These findings are understandable considering the shape of the data associated with the 

mtot variable (see Table 2b in the variables section). That is, in terms of total retweets, mtot was 

a clear winner with 46.7 percent of all retweets, a full 30.3 percent above the next highest 

category bus_int_ind.  

The kauffman variable, though classified as an outlier for purposes of clarity, is also 

compared against the mtot reference variable and is the only variable of this series to break the 

form. Although a highly significant negative association with likelihood to be retweeted is shared 

between the kauffman variable and the other account-type variables, the kauffman variable is not 
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significant in the nbreg model. That is, while tweets sent by the kauffman account are less likely 

to be retweeted (logit) than those sent from the mtot account, there is not enough evidence to 

conclude that Kauffman’s tweets were retweeted more or less than MTOT’s tweets, all other 

model variables constant. 

Within the user-object category of variables, the number of followers an account has is 

significant in both the logit and nbreg models. This is not surprising, as the number of followers 

an account has is among the retweet predictor variables that remain relatively constant across 

studies (e.g. Suh et al. 2010; Yasugi et al. 2013). The more followers an account has, the more 

likely a tweet will be seen and retweeted.  

What is more interesting is that the listed_count variable is negatively associated with the 

number of times a tweet is retweeted. In other words, the more public lists to which a Twitter 

account has been registered by followers of the account, the fewer retweets a tweet is likely to 

receive when holding all other variables constant. Although it was expected the impact of 

listed_count would be minimal when controlling for the number of followers, the hypothesized 

relationship was positive as listed_count was expected to capture a measure of popularity of an 

account. While the present findings partially contradict those of Petrovic, Osborne, and Lavrenko 

(2011)17, there are studies with findings more aligned with those of the present study (e.g. Yasugi 

et al. 2013). The negative association between membership in lists and retweets in the present 

                                                   

17 Petrovic, Osborne, and Lavrenko (2011) found listed_count to be a moderate predictor of whether or not a tweet 

was retweeted (binary), and not significant for the number of times a tweet was retweeted (count). As listed_count is 

insignificant in the logit model, it is possible there is some additional nuance involved in the relationship between 
retweets and membership in public lists. Currently, this remains one of the less examined areas of Twitter-based 

research. Referencing this, Petrovic, Osborne, and Lavrenko (2011) note that more research is necessary to 

understand the role upon retweets of membership in public lists.  
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study is expected to be capturing an interested-but-not-that-interested measure of the followers of 

the listed accounts. This is because when a Twitter user assigns an account to a list, typically 

curated by category of account, he or she receives tweets from the list as a whole on a regulated 

basis. This reduces the potential retweeter’s exposure to any one account in the list. Thus, the 

negative association of listed_count with number of retweets is hypothesized to be the result of a 

more passive consumption of information distributed by listed accounts than those whose tweets 

are received directly by followers.  

This is similar to conclusions made by Yasugi et al. (2013) based on findings that 

accounts assigned to lists were those that also sent many tweets. They reasoned that assignment 

to a list was a way for users to continue following accounts of interest without being inundated 

by their tweets. In this sense, public lists might function as a sort of sanction imposed by a user 

upon an account, although this inquiry is best left to future research. The peculiarities of the 

listed_count variable also broach a much larger issue concerning the difficulties of accounting 

for predictors of retweets yet to be examined in detail due to problems of measurement. This is 

discussed in more depth in the limitations of present findings subsection below. 

Another interesting, though not particularly surprising result is that the number of 

statuses an account has (total tweets) has no significant impact on retweets in either model. Hasty 

logic might reason that the more tweets an account sends, the more likely some of them are to be 

retweeted. However, it is more likely that a variety of users are highly active and that an active 

account with no followers cannot compete with an active account with many followers. Thus, 

when controlling for additional explanatory factors, the level of activity of an account is rendered 

insignificant.  
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Future research, however, might test this assumption by running tests on an account-level 

rather than tweet-level dataset to examine whether or not aggregate tweets influence aggregate 

retweets when controlling for some of the user-objects included in the present models. Similar to 

the suggestion for the public lists variable, such could provide insights for broader organizational 

strategies over time. It might also be useful to test whether the number of statuses an account has 

relative to its age is associated with membership in public lists. An alternative hypothesis would 

be that accounts with many statuses are more likely to be sanctioned by users by being added to a 

public list in the manner discussed above. 

In the tweet-object category, url_dummy is not significant in the nbreg model, but has a 

significant negative effect on whether or not a tweet is retweeted. This finding diverges from 

other studies that have found the inclusion of a URL to positively impact retweets (Bhattacharya, 

Srinivasan, and Polgreen 2014; Suh et al. 2010). However, this is expected to be a difference in 

sampling. The very active and highly successful account @visitMontana (mtot), for example, 

includes a URL in only 8.3 percent of its tweets. The rarity of URLs within retweeted tweets is 

not isolated to one account either. For all tweets containing a URL, only 19.9 percent are 

retweeted. In contrast, out of all tweets that do not contain a URL, 46.9 percent of tweets are 

retweeted. These figures are expected to be a result of the dominance of visual media usage with 

#montanaMoment. Many of the samples used in other studies focus on topics that are more likely 

to reference external links to research, organizational posts, or other news events. With the 

hashtag of interest to this study, the focus on the outdoor beauty of Montana is particularly well-

suited to the inclusion of a photograph rather than an external link. 

Although not significant in the logit model, tweets that contained a mention were more 
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likely to be retweeted, similar to past findings (Bhattacharya, Srinivasan, and Polgreen 2014). By 

directly addressing one or more users through a mention, it is expected that the greater 

probability of receiving a retweet is a function of the targeted attention the tweet is likely to 

receive by the mentioned user or users. In this case, it is not surprising that the variable is 

insignificant in the nbreg model as the targeted effect would be isolated to mentioned users. 

None of the remaining tweet-objects—the day-of-week controls for time-to-be-retweeted 

and time-of-day variables—were significant in either model. However, in the nbreg model, while 

the day-of-week variables are far from statistically significant18, the day and evening variables 

come close with respective p-values of 0.078 and 0.056. In other words, there is less than an 

eight percent chance of obtaining the present figures or larger figures for these variables if they 

did not impact number of retweets when compared against the morning reference category.  

Percentage of tweets retweeted appears to provide some additional support for the notion 

that tweets may be more successful in the day and evening compared against the morning. Of all 

tweets sent during the day and night, 32.8 and 35 percent are retweeted, respectively. This 

compares to only 26 percent of all morning tweets and 22.8 percent of night tweets that are 

retweeted. Thus, while it would be an error to infer causality under such circumstances, it is clear 

that time-of-day is a relevant variable for such studies, as might be expected after reviewing the 

tweet and retweet volume displayed in Charts 3g and 3h. 

 

                                                   

18 Measured against the Sunday reference category, p-values for the day-of-week variables range from 0.436 to 

0.900. 



Richardson | 61 

 

 

Predicted probabilities 

Table 3d below displays the predicted probabilities for changes in each of the account-

type coefficients of the logit model and the changes in the incident rate ratios for significant 

variables in the nbreg model. The transformation of the logit coefficients was achieved through 

manual calculation of the predicted probabilities while holding all other model variables at 0. 

Since the mtot reference category predicts retweets perfectly, the probability that a tweet will be 

retweeted when sent from each remaining account type is subtracted from the probability an 

MTOT tweet will be retweeted. Accordingly, values in the logit panel of Table 3d can be 

interpreted as the degree to which the predicted probability of a tweet being retweeted is lower 

than a tweet sent from MTOT. 

The incident rate ratio (IRR) coefficients of the nbreg model may be interpreted as the 

estimated rate ratio for either a one unit increase in the variable of interest (continuous variables), 

or between a value of 1 or 0 (dichotomous variables), holding all other variables at their means. 

Since the response variable (retweet_count) is technically a rate defined as the number of 

retweets per collection period19, the original regression coefficients can be interpreted as the log 

of the rate ratio (UCLA 2017). From this, incident-rate ratios20 are derived from the regression 

coefficients. IRR coefficients below 1 represent the factor by which overall retweets are 

estimated to decrease, and those above 1 represent the factor by which a tweet’s total retweets 

would be expected to increase, holding all other variables at their means. 

                                                   

19 Due to difficulties in ensuring a collection period of the same duration for each tweet in the dataset and the lack of 

a precise exposure variable, it cannot be argued with certainty that these results are unbiased by variation in the 

time-to-be-retweeted between cases. However, as presented at length in the variables section, existing data provide 

strong support for the assumption that most retweets occur shortly after a tweet is retweeted. As such, any biases in 

the IRR estimates for the nbreg model are expected to be minimal. 
20 That is ⅇ𝛽𝑖 rather than 𝛽𝑖  (Stata 2017)  
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Since values in the logit panel are relative to mtot, lower numbers represent a higher 

probability of being retweeted. Thus, the kauffman outlier is the most successful account relative 

to mtot, with only 10 percent less chance of being retweeted. Other state accounts are a distant 

second with only 49 percent less chance to be retweeted. Both individuals with a business 

interest and business/organization accounts have about 70 percent less chance, ahead of all other 

individuals, who are 83 percent less likely to be retweeted than MTOT. These findings make 

sense as 92 percent of kauffman tweets, 56 percent of state_account, 30 percent of bus_int_ind, 

29 percent of bus_orgs_unofficial, and 18 percent of other_ind tweets were retweeted. However, 

as the primary interest is to estimate factors associated with higher levels of engagement rather 

than the threshold between engagement and non-engagement, the logit model is intended only to 

supplement the nbreg model. 

Table 3d: Change in predicted probability (logit) and incident rate 

ratio (nbreg) for significant variables in each model 

Variable logit+ nbreg 

state_account 0.49 0.27 

bus_int_ind 0.70 0.12 

other_ind 0.83 0.08 

bus_orgs_unofficial 0.72 0.95 

kauffman 0.10 - 

url_dummy - - 

mention_dummy++ - 1.86 

followers_count* - 1.73 

listed_count* - 0.59 

+ Logit is predicted pr. relative to MTOT, holding all other variables at 0 
++ Missing values indicate a p-value  > 0.05 
* Based on a 1-unit change, which represents a standard deviation 
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Within the nbreg model, it is interesting to note the relative strength a followers count 

one standard deviation above the mean and the inclusion of a mention have on how many 

retweets a tweet receives. Holding all other variables at their means, tweets with a mention are 

expected to receive 86 percent more retweets than those that do not, while more followers result 

in an estimated 73 percent more retweets. Conversely, tweets sent from accounts associated with 

a public list are expected to receive 41 percent fewer tweets than those that are not. As discussed 

above, this is likely due to the suppressed presence of a tweet (sent from a listed account) within 

a user’s newsfeed. Similarly, all tweets sent from a non-mtot account are estimated to receive 

fewer retweets than one from mtot.  

As none of the account-type variables within the nbreg model are greater than 1, it is 

clear that the omitted category of MTOT tweets is the most successful in terms of number of 

retweets. On the far end of the spectrum, a tweet from an average, individual Twitter user 

(other_ind) is expected to receive a retweet count that is only 8 percent of what a tweet from 

MTOT would be expected to receive when holding all other model variables constant. 

Contrasted with individuals, businesses and organization not associated with the state 

(bus_orgs_unofficial) do well in relation to MTOT. A tweet sent from one of these accounts is 

expected to receive only 5 percent fewer retweets than a tweet from MTOT, all else equal.  

In terms of retweet counts the remaining two account types (state_account and 

bus_int_ind) align more closely with average individuals than the businesses and organizations 

category. However, non-MTOT state accounts are expected to perform much better than 

individuals with a business interest. While these state accounts are expected to receive 27 percent 

of the retweets an MTOT tweet is expected to receive, a tweet sent from an individual with a 
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business interest is expected to receive only 12 percent, all other model variables constant. 

However, individual Twitter users with a clear business interest are expected to perform better 

than average individuals, whose tweets are expected to receive only 12 percent of the retweets 

MTOT tweets receive, holding all other model variables constant. 

In other words, retweet counts appear to chart upward on a scale of official hierarchy. An 

average user may be considered the least official, followed closely by individuals representing 

themselves as business owners. The entrepreneurs are succeeded by official state accounts, 

which sit a fair degree below businesses and organizations not associated with the state. At the 

top of the official hierarchy stands MTOT, the creator and core promoter of the hashtag. 

Though the results seem to suggest account status matters in determining retweet counts, 

a core difficulty lies in determining the degree to which this is driven by quality of content, and 

not a metric omitted or accounted for only partially. Given the theoretical prominence of number 

of followers as a predictor of retweets and its account-level association in the present dataset, 

followers_count is one such variable that requires closer examination. Although the user-object 

variables such as followers_count may change between cases in the dataset, they are unlikely to 

vary to a high degree.21 Thus, it is possible a particularly high number of followers could 

contribute to the strength of the mtot category. To address this, Table 3e below displays 

summary statistics for the ten accounts with the most followers. 

 

                                                   

21 As explained in the variables section, this is because each tweet in the dataset is relevant to the user-object values 
at the time it was downloaded. For example, a change in the followers_count variable between a tweet downloaded 

in December versus one sent from the same account in January represents the change in the number of followers 

over the one-month period. 
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Since MTOT’s (‘visitmontana’) retweets per 100,000 followers is either higher or within 

a similar range of accounts with more followers, it is clear that the success of MTOT is due to 

more factors than a high number of followers22. For its 16 cases in the dataset, the account with 

the most followers (@earthXplorer) averages only two retweets for every 100,000 followers. On 

the other hand, @StormHour—an account with followers only 26 percent of @earthXplorer—

has a much higher average retweet count. While it is important to note the wide variance in total 

                                                   

22 It is important to note that these results are based on a linear interpretation of followers count. That is, the addition 
of one additional follower is expected to mean the same for an account with 10 followers as it does for an account 

with 10,000 followers. While this is often the norm for studies measuring retweets, the comparative interpretation of 

the account-type variables is dependent upon the linear coding of the followers_count variable. 

Table 3e: Retweets per 100k followers for the ten accounts with the most 

followers 

Account 
Total 

Retweets 

Total 

Tweets 

Total 

Retweets 

per Tweet 

Total 

Followers+ 

Retweets per 

100k 

Followers++ 

earthXplorer  44   16   3   183,103   2  

GlacierNPS  487   6   81   181,840   45  

MalloryOnTravel  1   1   1   101,157   1  

StephanieQuayle  23   1   23   81,327   28  

LuxuryTravel77  5   2   3   71,776   3  

visitmontana  2,433   108   23   57,882   39  

ManTripping  1   4   0    57,166   0    

robertserian  0     2   0     54,846   0    

ECAatState  2   1   2   54,770   4  

StormHour  18   1   18   47,673   38  
+ included in the models as a standardized variable 

++ ((total retweets / total tweets) / total followers) * 100,000 
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tweets (i.e. cases in the dataset), it does seem apparent that followers are only one aspect of 

retweets.  

Much of the variance in retweet-defined account success is likely determined by the 

quality of content, which aligns with the findings of Rossi and Magnani (2012). Recalling the 

hierarchy of officiality heuristic used to interpret the relative success of account categories, it is 

reasonable to expect certain account types to output higher quality tweets more consistently. 

MTOT is the steward of the hashtag, and businesses and organizations depend upon successful 

marketing for much of their success. Other state accounts likely have processes for ensuring 

consistent quality of content, but perhaps have less motivation than the two former categories. 

On average, individuals with a business interest are likely to have less sophisticated campaigns 

than larger businesses, but more motivation to drive engagement than average individuals.  

For small to medium state tourist organizations formulating a campaign to drive user 

engagement, the present findings suggest that partnership with private sector businesses and 

organizations may be more successful than encouraging tourists to create and share their own 

content. This is not to say that the frequently employed attempts to generate user content are not 

worthwhile. It is entirely possible that an other_ind category within a sample capturing 

information flows related to more popular destinations might be a top performing account. This 

would likely be due to a threshold drawn at the point where the influence of aggregate users 

(other_ind) overtakes the reach of account groupings more limited in number. Such would have 

to be determined on grounds of both summary statistics (total retweets) and the relative strength 

of account-type categories. This is because the relative celebrity status of official accounts (i.e. 

those associated with a business or organization of any kind) will likely outperform a single 
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individual on average. However, when the total reach of individuals overtakes those of the state 

accounts, an organization might consider shifting its strategy to focus more on user-generated 

content. 

However, given the circumstances of the present findings, the data suggest that an 

increase in tweets sent from the MTOT account is the most promising way to increase user 

engagement with the hashtag. One caveat to this is that tweets may reach a saturation point at 

which additional tweets either do not increase user engagement, or potentially reduce it. 

Reduction in engagement might result from incurring a user-initiated sanction such as inclusion 

in a public list as discussed above, or a loss of followers. Another important note is that by only 

tweeting more frequently, an organization limits itself to its own network and the networks of the 

followers who retweet. Thus, significant user engagement may occur within a relative echo 

chamber if an organization does not encourage the broader use of a hashtag. The verification or 

refutation of such assumptions as these is a promising direction for future research. 

 

Conclusions 

Regarding RQ1—how and why are #MontanaMoment tweets retweeted?—the present 

study first examined overall activity of the hashtag through the relationship between original 

tweets and retweets. This analysis suggested that original tweets largely determine message 

visibility in terms of hashtag characteristics. On average, there were 2.5 retweets to every tweet, 

and only 37 new hashtags introduced by the 5,485 retweets analyzed in the study. Moreover, the 

majority (80.8%) of hashtags are used fewer than four times. This line of inquiry also determined 
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that the volume of retweets (as well as original tweets) peaked at noon and 10:00 PM, with 

considerable activity during typical work hours, and very little activity between midnight and 

6:00 AM. 

In the logit and count models, respectively, the inclusion of a URL and the use of a 

mention were estimated to be positively associated with retweets, reflecting the findings of 

Bhattacharya, Srinivasan, and Polgreen (2014) and Suh et al. 2010. The negative association 

between membership in public lists and retweets was also significant in the count model. This 

negative association contradicts some of the limited research estimating the relationship between 

membership in public lists and retweet count (e.g. Petrovic, Osborne, and Lavrenko 2011; 

Yasugi et al. 2013), and is discussed in more detail below. Lastly, the number of followers, 

sometimes referred to as in-degree, was positively associated with retweets in both models, 

similar to the findings of nearly all past studies (Hong, Dan, and Davison 2011; Petrovic, 

Osborne, and Lavrenko 2011; Suh et al. 2010; Yasugi et al. 2013). 

Regarding RQ2—what effect does type of account have upon retweets?—the results of 

both regression models demonstrate that MTOT performed significantly better than other 

accounts in terms of retweets. While a partial explanation for this likely stems from the shape of 

the data—each tweet from MTOT (46.7 percent of all tweets) was retweeted—it also aligns with 

expectations. As an authority on the topic #MontanaMoment, MTOT was consistent and focused 

in its use of the hashtag. This partial explanation of MTOT’s success aligns with the findings of 

Cha et al. (2010) as discussed previously. Also relevant are the findings of Rossi and Magnani 

(2012) that, while official accounts ranked among the top in number of retweets, ‘regular’ users 

ranked near or above the official accounts in the study in terms of retweets. From this they 
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concluded, as did Cha et al. (2010), that the quality of content is primary in determining retweets. 

The fact that a relatively unestablished photographer in the present dataset captured the third 

highest number of total retweets among account types (and second only to MTOT in terms of 

discrete accounts) lends additional credence to the notion that content quality is the primary 

driver of retweets.  

These indications suggest that MTOT creates better content relative to other accounts 

using the hashtag, and is therefore best poised to influence the eWOM regarding Montana’s 

reputational image as disseminated via Twitter. Although it may have an additional advantage as 

the official representative of the hashtag, as Rossi and Magnani’s (2012) findings would suggest, 

the sum of its content quality, top quartile followers count, and account status determine its 

efficacy in engaging users through retweeting. 

Relative to MTOT, businesses and organizations not associated with the state performed 

better than all other accounts. Non-MTOT state accounts were a distant second to businesses, 

relative to MTOT. Individual users performed the worst in terms of estimated retweets, with 

individuals with a business interest performing only slightly better than ‘regular’ individuals.  

This suggests that if MTOT were to attempt to expand its influence by partnering with 

other Twitter users, it would gain the most traction in targeting businesses and organizations. 

This might appeal to MTOT and other DMOs since the control over image formation agents 

would likely be easier than in a ‘regular’ user-generated campaign as Govers (2015) has 

suggested. Considering that original tweets appear to drive retweets, with little modification of 

the original tweet, message control becomes easier when tweets are sent from more centralized 

accounts such as partnering businesses. However, as the brand authority of its own destination 
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marketing campaigns, MTOT is estimated to be the most capable of driving further engagement. 

Thus, contributing the most effort to consistent representation of a topic and creating quality 

content is likely the most effective way for MTOT to maintain a hashtag campaign. 

What cannot be stated from the analysis of the present study is the degree to which the 

influence of MTOT is strengthened by a hashtag campaign. It is likely the case that the increased 

publicity, production of quality content, and capture of new followers from retweet exposure 

contribute significantly to the strength of MTOT’s social media presence. Simply by generating a 

higher aggregate retweet count, MTOT may enhance Montana’s reputational image through the 

greater distribution and retweet-based validation. Place-based image formation in this context 

would be a co-creation of the DMO and the social agents who lend it credence through retweets.  

 

Limitations of present findings 

Among the primary limitations of the present study involve those that arise from a limited 

sample. Most of these have been discussed as they have become relevant to the study, although it 

is worth briefly summarizing them here. Among the largest sampling concerns is the possibility 

of a seasonal bias. Because it was not possible to gather more than a few months of data for the 

present study, fluctuations in tourism and in general outdoor activity might have artificially 

suppressed some user-generated content. Another time-based concern involves the time-to-be-

retweeted phenomena discussed at some length in the Research Design section. While 

considerable care has been taken to alleviate the potential of resultant biases, future studies 

accessing the Twitter API in a similar manner should take care to create a complete timestamp 

for both the moment a tweet was created and the moment it is inserted into the dataset.  
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Additional sampling concerns raised in the above section involve the overall 

generalizability of the present study. The number of ways to analyze Twitter data is vast and the 

field is new. This results in a diverse range of studies, samples, and methodological approaches. 

With the theoretical landscape still tenuous, it is difficult to determine how broadly the findings 

of any one study should be applied. In many cases, the sample has a large bearing on results. For 

the present study, this issue presents itself in the decision to generalize to small- to medium-sized 

destination marketing organizations. It is not argued that findings related to account type will 

hold when examining highly popular tourism destinations. In such cases, for example, it is 

expected that individual Twitter users will have more impact as their relative numbers will be 

larger. However, for state tourism agencies similar to MTOT, the present findings are expected 

to make a reasonable contribution to organizational strategy.  

Other limitations relate more closely to larger methodological concerns with Twitter 

analyses generally. For example, the questions raised by the negative association between 

listed_count and number of retweets pointed to larger concerns with the way the uniqueness of a 

user’s newsfeed impacts whether or not a tweet is retweeted. That is, variation in user-exposure 

is a phenomenon difficult both to identify and to control.  

Similar to Facebook, Twitter uses an algorithm-based newsfeed, which it adopted in 

2015. The stated purpose for doing so was to provide for a better presentation of the activity that 

had occurred while a user was away by making prominent tweets selected on grounds such as 

user-engagement (Twitter 2015). Thus, the unknown parameters guiding the newsfeed algorithm 

determine much of the variation in how a user experiences information flow on Twitter. Two 

identical users, for example, could view entirely different information given the single deviation 
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of variation in frequency of Twitter usage. However, the difficulty in controlling for 

environmental factors is one of the defining characteristics of the social sciences. The concern 

with Twitter data is that such environmental factors are not random events but complex formulas 

designed to make a user’s experience unique. 

The most immediate concern to the present study is whether tweets that receive a certain 

number of retweets are more likely to be seen than those that do not reach a certain threshold. It 

is likely that this would be influenced to a significant extent by the relative number of retweets 

(and likes, and favorites) received by the tweets sent by all other followed accounts since a user’s 

last login. However, any attempt to control for such factors would be an effort of reverse 

engineering.  

Another issue related to user exposure includes the variation in methods of receiving 

information on Twitter. Notification preference is perhaps the most significant area of 

divergence for users, and subsumes similar disparities in regard to how users access Twitter. 

Smart phones, for example, introduce the possibility of push notifications or instant updates 

through a connected email account. The increasing complexity of web applications and similar 

phenomena shaping internet usage habits will likely increase the difficulty of accounting for 

elements of user-experience. Potential approaches for dealing with a predestination bias of 

certain tweets are in the Suggestions for Future Research subsection below. 

Finally, the single largest limitation of the present study is the lack of controlling for 

content of tweets. The issue introduces a cognitive dissonance of sorts. For many, the strength of 

Twitter as a platform for study emanates from the sheer volume of data. However, without 

further advancement in natural language processing and similar A.I. tools, content analysis 
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becomes a stopgap that either reduces sample size to allow for manual coding or introduces 

uncertainty into the studies that omit it. While a significant branch of Twitter research focuses on 

automated content analysis, this has not evolved far beyond positive, negative, or neutral 

sentiment analyses.  

While natural language processing poses a difficult though partially addressable problem, 

the processing of visual content is far more challenging. Given the usage of #MontanaMoment, a 

visual quality rating is likely the largest gap in the right-side regression equations of the present 

study. It may be the case that retweets in the present study are determined to a high degree by the 

‘quality’ of a photo tweeted with the hashtag. This is likely why certain photographers (such as 

the account associated with the kauffman variable) have attained such an elevated status within 

the dataset. However, despite the technical nature of the current iteration, the fundamental 

challenge of categorizing taste is familiar and by definition resistant to classification. Some 

suggestions for how future research might approach the issue are offered below.  

 

Suggestions for future research 

Although not a variable of great concern the present study, the finding that membership 

in public lists is negatively associated with retweets raises interesting questions for future 

research. Hypothesizing that assignment to a list may be a user-enforced sanctioning of accounts 

that send too many tweets, an interesting inquiry might attempt to discern this saturation 

threshold. Such an inquiry might take the form of an organization-level analysis examining when 

an additional tweet begins to negatively impact aggregate retweet count for an organization over 

a period of time. This might provide organizations with information to guide their chosen level 
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of aggressiveness on Twitter at a given point in time.  

As discussed in the limitations of present findings subsection of the findings section, the 

difficulty of controlling for user-exposure is among some of the methodological challenges of 

analyzing Twitter data. Under question was how important promotion of popular tweets by the 

newsfeed algorithm employed by Twitter is to the number of retweets a tweet receives. One 

interesting approach might be to include a series of binary threshold variables for the number of 

retweets a tweet receives (see Hong, Dan, and Davison (2011) to view a similar approach). By 

comparing the relative strength of the coefficients, it might be possible to identify some non-

regular patterns in the relative strengths of coefficients. However, the largest challenge in this 

area involves isolating the popular-tweet-promotion effect from characteristics such as content or 

sending account that make a tweet popular before a viral effect carries it further.  

While many public research barriers have yet to be crossed in user-engagement studies of 

social media, significant resources are being allocated to a greater understanding. As the 

theoretical and methodological sophistication of Twitter analyses grows, it will become easier to 

approach such studies with greater confidence. Motivation for doing so is also enhanced by the 

volume of data, ease of collection, and entwinement with commercial interests. Although 

destination marketing lags the curve of understanding, the actionable and increasingly 

measurable connection between place-based image formation and social media enhanced word-

of-mouth is sure to drive further efforts. 
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Appendix A 

Summary statistics for the original user-object variables in the HT-orig dataset 

Variables Count Mean Std. Dev Min Max 

followers_count 1,869 7,929 24,351 0 191,658 

listed_count 1,869 194 668 0 6,514 

statuses_count 1,869 9,239 22,356 2 247,758 

      + exception_mag cases excluded 
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