GRATING AND REFLECTINGECHELON ON STAGE OF RESOLUTION AND DETLCTING INSTRUMENT
By OM PRAKASH SHARMA and MAHENDRA SINGH SODHA*
Department of Physics, allahabai University, allahabad
(Received fot publication, March 20, 1954)

Abstract

The authors have discussed the variation of resolving power of pism, grating and reflecting echelon with the value chamen for $I_{\min } / I_{\max }$ at limiting resolution, which is characterestic of the stage of resolution desired and the detecting instrument.

INTRODUCTION

Ditchburn (1930) has pointed out that the resolving power of an instrument depends upon the stage of resolution desired and the detecting instrument. The stage of resolution and the detecting instrument are characterised by the value of $C=I_{\text {min }} / I_{\max }$ at limiting resolution, where $I_{\text {min }}$ and $I_{\text {max }}$ are the central minimum and maxima of the resultant intensity pattern of two lines to be resolved.

The values of C for three important stages of resolution, distinguished by Ditchburn, when the spectrogram is examined by a microphotometer are as follows :

Stage of resolution	\ldots	c
Detection of inhomogeneity in radiation Partial resolution (approximate mcasurement	\ldots	0.98
of wavelength separation)	\ldots	0.8
Complete measurement (measurement of wavelength separation and relative intensities)	\ldots	0.4

This communication discusses the dependence of resolving power of prism, grating and reflecting echelon, which is characterestic of the stage of resolution desired and the detecting instrument.

VARIATION OF RESOLVING POWER WITH ©
The intensity pattern of a spectral line after diffraction by a grating is given by

$$
\begin{equation*}
I^{\prime}=B \frac{\sin ^{2} N \beta}{\sin ^{2} \beta} \tag{I}
\end{equation*}
$$

[^0]where N is the number of lines in the grating and $2 \beta=2 \pi v e$ ' $\sin i-\sin \theta$) is the phase difference between the rays diffracted by two adjacent elements of grating, where the symbols have usual meanings.

The maximum intensity, say I_{0}, is given by

$$
I_{0}=B N^{2}
$$

and hence equation (x) may be expressed as

$$
\begin{equation*}
\frac{I^{\prime}}{I_{0}}=\frac{\sin ^{2} N B}{N^{2} \sin ^{2} \beta}-=\frac{\sin ^{2} x}{x^{*}} \tag{2}
\end{equation*}
$$

where $x=N \beta$ and $\beta<1$.
Equation (2) also represents the intensity pattern in case of a prism if $x=\pi l v \sin \theta$, the symbols having usual meanings.

The quantity Δx is proportional to the angle between two close spectral lines and therefore we shall use Δx instead of $\Delta \theta$ to represent the latter in this investigation.

The intensity distribution of another spectral line separated by an angle $\Delta x=a$ is given by

$$
\begin{equation*}
\frac{I^{\prime \prime}}{I_{0}}-\frac{\sin ^{2}(x-a)}{(x-a)^{2}} \tag{3}
\end{equation*}
$$

The resulting intensity pattern is given by

$$
\begin{equation*}
\frac{I}{I_{0}}=\frac{\sin ^{2} x}{x^{2}}+\frac{\sin ^{2}(x-a)}{(x-a)^{2}} \tag{4}
\end{equation*}
$$

The central maxima $(x \approx 0)$ and minimum ($x \approx a / 2$) are given by

$$
\begin{equation*}
\left.I_{\text {nax }} \quad 1+\frac{\sin ^{2} a}{a^{2}}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{I_{m+n}}{I_{0}}=\frac{2 \sin ^{2}(a / 2)}{(a / 2)^{2}} \tag{6}
\end{equation*}
$$

For limiting resolution

$$
\begin{align*}
C & =I_{\text {min }} / I_{\text {max }} \tag{7}\\
& =\frac{2 \sin ^{2}(a / 2)}{(a / 2)^{2}} /\left(\quad \sin ^{2} a\right. \tag{8}
\end{align*}
$$

If the separation of two lines at limiting resolution is a it can be shown that the resolving power R is given by

	$R=k t \frac{d \mu}{d \lambda}$	for a prism	\ldots	igat	
and	$R=k N n$	for'a grating and for a reflecting echelon,	\ldots	(gb)	
where		$k=\pi / a$	\ldots	(gc)	

Dependence of Resolving Power of Prism, etc.
Table I gives the variation of k with C obtained by calculating both C and k for some values of a.

Serial no.	a		C	k
	in degrees	in radians		
I	150	$\frac{5}{6} \pi$	1.051 .	1.2
2	160	$\frac{8}{9}=$	98	1125
3	165	$\frac{11}{12} \pi$.9401	1.191
4	170	$\frac{17}{18} \pi$.8982	1059
5	175	$\frac{35}{36} \pi$. 8553	1.028
6	180	π	.8106	1.00
7	185	$\frac{37}{36} \pi$.7647	. 973
8	190	$\frac{19}{18} \pi$. 7199	. 947
9	195	$\frac{13}{12}{ }^{\text {a }}$.6747	.923
10	200	$\stackrel{10}{10} 9$. 6306	. 900
II	205	$\begin{aligned} & 4 I_{\pi} \\ & 36 \end{aligned}$.5866	.878
12	210	$\frac{2}{6} \pi$. 5451	. 857
13	220	$\frac{43}{36} \pi$. 473	. 837
14	225	$\frac{5}{4}-\pi$	4640	. 800
15	230	${ }^{23} 8{ }^{\text {\% }}$. 393 I	.790

440

Om P. Sharma and M. S. Sodha
The variation of k with C is illustrated by the graph below :

Fig. I Variation of k with C
The treatment for grating equation ($g b$) is also applicable to reflecting echelon for both have the similar intensity pattern.

ACKNOWLEDGMENTS

The authors are grateful to Prof. K. Bancrjee, Dr. K. Majuındar and Shri Keshto Chandra Banerji for their kind interest in the investigation.

REFERENCT

Ditchburn, 1930, Proc. Roy. Irish Acad., 39, 53

[^0]: *Now at Defence Science Laboratory, New Delhi.

