4

OPTICALLY CATALYTIC ACTION OF ANTHRACENE AND PHENANTHRENE IN GIVING RAMAN SHIFTS OF SOME ORGANIC COMPOUNDS*

By S. P. SINHA

(Received for publication, January 20, 1944)

ABSTRACT. By taking the wavelengths of the absorption bands of anthracene in benzene, methyl alcohol, hexane, tolucne and chlorobenzene and those of phenanthrene in benzene and methyl alcohol as giving the exciting frequencies the differences between these and the frequencies of the fluorescent bands have been calculated. These have been found to agree well with most of the Raman frequencies of the solvents. Some shifts observed in the present case which do not agree with any known Raman shift have been shown to be capable of being built up by the combinations of Raman shifts observed by the present or other authors.

INTRODUCTION

In a paper published Prosad and Bhattacharyya (1939) have described a new technique for the production of Raman effect. Compounds like $\text{Er} (\text{NO}_3)_3$ and KMnO4 having sharp absorption bands are dissolved in small quantities in substances whose Raman spectra are to be obtained and the absorption and fluorescent spectra of the solutions are photographed. The latter are obtained in the usual way for getting Raman spectra. The differences between the frequencies of the absorption and fluorescent bands have been correlated with the Raman frequencies of the solvents with remarkable agreement. Some Raman shifts (*cf.* 3956cm.⁻¹ in case of water) by Collins (1939) obtained by the new method only have later on been discovered by the direct method and this stresses the importance of the technique.

The action of small quantities of salts like $Er(NO_3)_3$ and $KMnO_4$ which do not affect the Raman spectra of the solvents has been described as optically catalytic and the salts have been called optical catalysers by Prosad and Bhattacharyya (1936) and by Hartley (1937).

Earlier Prosad, Bhattacharyya and Chatterji (1935) had shown that by taking the wavelengths of the absorption bands of didymium glass as giving the exciting frequencies, the differences between these and the frequencies of the fluorescent bands observed with the same glass agreed well with most of the values of Raman shifts for different varieties of glass as measured by others. Working on the same lines, Banerji and Mishra (1937) had found the relation to hold good in case of a few organic liquids using anthracene as optical catalyser.

(Communicated by K. Prosad).

This new technique for the production of Raman spectra has also been referred to by Hibben (1939) and by Glockler (1943).

Sambursky and Wolfsohn (1940) have studied the absorption and fluorescent spectra of anthracene and phenanthrene in different solvents but unaware of the work of Prosad and Bhattacharyya which was published later on, they did not make any attempt to verify the conclusions drawn by them.

In the present paper an attempt has been made to justify the optically catalytis action of anthracene and phenanthrene by calculating the Raman shifts from the absorption aud fluorescent spectra of some organic compounds and comparing them with those found by others by the direct method. The data of the absorption and the flurescent bands have been taken from the paper of Sambursky and Wolfsohn (*loc cit*).

CALCULATIONS AND DISCUSSIONS

Benzene.—Table I below gives the wavelengths and corresponding wavenumbers of the absorption and fluorescent bands obtained in the case of benzene with anthracene and phenanthrene as optical catalysers.

Optical Catalyser	Absorpti	on bands	Fluorescent bands	
	λ _{air} in Å.U.	vvac in cm1	λ _{air} in Â.U.	vvac in cm1
	3095	32301 (a)	3405	29 3 60(A)
	3162	31636(b)	3480	28727(B)
	3237	30883 (c)	3573	27980(C)
henanthrene	3308	30221 (d)	3 656	27344(D)
	3392	29473 (e)	3758	26602(E)
	3469	28818(f)	3852	25953(F)
. •			4068	24575(G)
	3790	26378(g)	3828	26116(H)
Anthracene	3596	27801 (h)	4042	24733 (I)
	3420	29231(i)	4280	23358(J)
	3261	30657 (j)	4547	21986(K)

TABLE I

Benzene

Table II compares the Raman Shifts calculated with the help of Table I with those given by other authors. The agreement is fairly satisfactory. 6-1515P-1

TABLE II

Benzene

Some Raman shifts for Benzene calculated from the observed values of Table I.

dv in cm. ⁻¹ by oth e r anthors Hibben (1939)	dv in cm. ^{- v} from Table I	$d\nu$ in cm. ⁻⁺ by other authors	dv in cm1 from Table I
	91 (fB)	1693	1685 (h—H)
0	262 (g—H)	2128	2129 (e—D)
781	746 (e-B)	2925	2603 (C-C)
849	838 (f-C)		
	861 (d-A)	304 7	3020 (g —J)
1473	1474 (f—D	3062	30 6 8 (h I)
	1494 (d—B)	_	
	1493 (eC)	_	_
	mean 1487	_	_

TABLE III

Benzene

Some combination shifts built up by the Raman shifts compared with the observed shifts in the present case.

dv by other authors Hibben (1939)	$d\nu$ by other ⁻¹⁰	Shifts observed	Shifts by combination	Shifts observed	Shifts by combination
*1 6 06	v 11 2358	2216 (f—E) 2241 (d—C)		4930 (c-F)	<i>v</i> 8+ <i>v</i> 184916
v ₂ 824	v12 2454	mean 2229	v2+v5 2228	5873 (i-J)	v14+v15 5873
v 3 979	v ₁₃ 2618	2877 (d-D)		5924 (j-I)	$v_{12} + v_{18} 5924$
v 4 1030	v 14 2925	2871 (e—E)		0015 (11-K)	P19+P14 0041
V 5 1404	r15 2948	mean 2871	v5+v7 2882		
r 8 1449	¥16 3047	4268 (d – F)	2×10 4256		
M 1478	r ₁₇ 31 16	4392 (gK)	vg + v11 4388		
¥§ 1585	v18 3467	4443 (h—J)	4446 4446	_	
rg 203 0	r19 3916	4498 (i—I)	<i>v</i> ₆ + <i>v</i> ₁₆ 4496		
¥18 2128	-	4541 (j—H)	₽ 6+ ₽15 4533		

TABLE IV

Optical catalyser	Absorptio	Absorption bands		nt bands
	λ _{air} in Å.U.	₽ _{vac} in cm ^{−1}	vair in Å.U.	vue in cm - 1
	3458	28910(a)	3464	28858(A)
	3381	29568(b)	3556	28113(B)
Phenanthrene	3298	30313(C)	3637	27487(C)
	3228	30970 (d)	3740	26730(D)
	3151	317 27(e)	3829	26101 (E)
	3088	32374(f)	3778	
Anthracene	3753	26638(g)	3988	26461(F)
	3561	28074(h)	4220	25074(G)
	3388	2950 7 (i)	4220	23690(H)
	3231	30941(j)	4480	22315(1)

Methyl alcohol

TABLE V

Some Raman shifts for methyl alcohol calculated from Table V

dv by other authors Hibben (1939)	d≠ calculated from Table IV	dv by other authors	dr calculated from Table IV
	42 (a-A)		1455 (b—B)
	177 (g-F)		1445 (c—A)
	700 (b—A)	1458	1423 (a—C)
	797 (a—B)	2049	mean 1441
	2809 (a-E)	~94~	2018 (g. H)
	2838 (b-D)		2948 (8-11)
	2859 (e—A)		
	2857 (dB)		3500 (I-A)
2827	mean 2838		4240 (d—D)
2037			4240 (e-C)

TABLE VI

Methyl alcohol

Some combination shifts built up by the Raman shifts compared with observed shifts in the present case.

dı	by oth Hibbe	ier authors en (1939)	Shifts observed	Shifts by combination	Shifts observed	Shifts by combination
v 1	1029	ν ₁₀ 2914	2081 (b-c)	$\nu_1 + \nu_2 = 2085$	4887 (f-c)	$\nu_6 + \nu_{13}$ 4876
12	1056	v ₁₁ 2942	2102 (d-A)	2V ₂ 2112	4997 (e–D)	$2\nu_1 + \nu_{11}$ 5000
¥ 3	1111	V12 2987	2180 $(a-D)$	$\nu_1 + \nu_4 = 2182$	5626 (e-E)	$\nu_0 + \nu_{1+} 5610$
ν,	1153	V13 3506*	2200 (c – B)	$\nu_1 + \nu_5 = 2200$	5759 (h-I)	$\nu_{0} + \nu_{10} 5751$
ν_5	1171	V14 4240*	3614 (e-B)	$\nu_1 + \nu_8 3617$	5817 (<i>i</i> -II)	22/10 5828
¥ 0	1370		4212 (c-E)	$\nu_{0} + \nu_{0} = 4207$	7192 $(i-I)$	$\nu_{11} + \nu_{14} - 7182$
V 7	1458		4323 (g-I)	$\nu_{6} + \nu_{11}$ 4312	7251 (j-H)	$2\nu_{11} + \nu_0$ 7254
V 8	2588	-	4384 (h-H)	$\nu_7 + \nu_{10} 4372$	8626 (j-I)	$\nu_7 + \nu_{10} + \nu_{14}$ 8612
٧ ₉	2837		4433 (<i>i</i> -G)	$\nu_7 + \nu_{12}$ 4445	_	·

Two frequencies v_{13} and v_{14} , *i.e.*, 3506 and 4240 which have not been noted by previous workers have been included in the above list on the basis of calculations shown in Table V. One of these has occurred twice in Table V and three times in Table VI. It may further be noted that 28_{38} cm⁻¹ which has been reported as one of the most intense Raman shift of the substance has occurred in four different combinations in Table V.

TABLE VII

i

Toluene

	Absorption bands F1		Fluores	orescent bands	
Optical catalyser	λ _{air} in Å.U.	$\nu_{\rm vac}$ in cm ⁻¹ .	λ _{air} in Å.U.	vvat in cm ⁻¹	
Anthracene	3787	26398(a)	382 0	26170(A)	
	3593	27824(b)	4032	24794 (B)	
	3417	29257(C)	4 27 0	23412(C)	
	3258	30685(d)	4536	22040(D)	

TABLE VIII

Toluene

Some Raman shifts built up with the help of Table VII compared with those given by other authors.

$d \mathbf{v}$ by others	dv from Table VII	dv b y others	dv from Table VII
218	228(a-A)	3 070	$3087(c-\Lambda)$
1603	1604(a -B)	3 026	3030(b-B)
163 0	1654(b-A)	58 48	5845(c-C)
2994	2986(a-C)	No. 1971 No. 1972 No. 1974 No. 197 No. 197 No. 197 No. 197 No. 197 No. 197 No. 197 No. 197 No	_

TABLE IX

Toluene

dv by c	other authors	Shifts	Shifts by combination	Shifts	Shifts by
Ananthak:	rishnam (1936)	observed		observed	combination
$ \begin{array}{r} \nu_{1} & 519 \\ \mu_{2} & 1377 \\ \nu_{3} & 1434 \\ \nu_{4} & 1492 \\ \nu_{5} & 1588 \\ \nu_{6} & 1603 \\ \nu_{7} & 2922 \\ \end{array} $	$\begin{array}{c}\nu_{8} & 3002\\\nu_{9} & 3205\\\nu_{10} & 2865\\\nu_{11} & 2041\\\nu_{12} & 5848\\\nu_{13} & 4586\end{array}$	4412 (b-C) 4463 (c-B) 4515 (d-A) 5891 (d-B)	$\nu_{4} + \nu_{7}$ 4414 $\nu_{0} + \nu_{10}$ 4468 $\nu_{5} + \nu_{7}$ 4510 $2\nu_{13}$ 5882	435 ⁸ (<i>a</i> - D) 7273 (<i>d</i> -C) 57 ⁸ 4 (<i>b</i> -D) 7217 (<i>c</i> -D)	$\nu_{3} + \nu_{7}$ 4356 $\nu_{3} + \nu_{1,3}$ 7282 $\nu_{7} + \nu_{10}$ 5787 $\nu_{2} + \nu_{1,2}$ 7225

TABLE X

١

Chlorobenzene

λair in Å. U.	1		
	Vvac m cm ·.	λ _{air} in Å.U.	vvac in cm ⁻¹ .
3795	26343(a)	3845	26068(A)
3600	27770(b)	405 0	24684 (B)
34 24	29197 (c)	4290	23303(C)
3265	30619(d)	4561	21917(D)
	3795 3600 3424 3265	3795 26343 (a) 3600 27770 (b) 3424 29197 (c) 3265 30619 (d)	3795 26343 (a) 3845 3600 27770 (b) 4050 3424 29197 (c) 4290 3265 30619 (d) 4561

TABLE XI

Chlorobenzene

Some Raman shifts built up with the help of Table X compared with those due to other authors.

$d\nu$ by others	dv from Table X	dv by others	dv from Table X
275	275(a-Λ)	3068	3086(b-B)
3028	3040(a-C)	3129	3129(c-A)

TABLE XII

Chlorobenzene

Some combination shifts built up by Raman shifts compared with those observed in the present case.

dy b Ananta	y other a k rishnam	Shifts observed	Shifts by combination	Shifts observed	Shifts by combination.
v ₁ 702	v, 1443	1 6 59 (a—B)	2×2 1660	5853 (b—D)	2×1+2×1 5874
vz 830	v ₉ 1565	1702 (b—A)	V1+V4 1705	5894 (c—C)	$2\nu_{8} + \nu_{10} 5894$
vs 989	V10 3008	4426 (a—D)	$\nu_{5} + \nu_{12}$ 4435	5935 (d—B)	$2\nu_{8} + \nu_{11}$ 5954
V. 1003	v 11 3068	4467 (b-C)	$\nu_{0} + \nu_{1}$, 4461	7280 (cD)	$\nu_{+}+2\nu_{13}$ 7283
₽ ₈ 1295	V12 3140	4513 (c-B)	$\nu_8 + \nu_{11}$ 4511	7316 (d—C)	$\nu_3 + 2\nu_{13}$ 7319
V . 1321	V18 3165	4551 (d—A)	$\nu_7 + \nu_{13}$ 4537	8702 (d—D)	$\nu_{0} + \nu_{7} + 2\nu_{10} 8709$
V, 1372		-		—	

TABLE XIII

Hexane

Optical catalyser	Absorption bands		Fluorescent bands	
	λ _{air} in Å.U.	$\nu_{\rm vac}$ in cm ⁻¹ .	λ _{air} in Å.U.	vvac in cm ⁻¹ .
Hexane	3748	26673(a)	3770	26517(A)
	3558	28097(b)	3978	25131(B)
	3386	29524(c)	4 21 0	23746(C)
	3230	30950(d)	4470	22365 (D)

44

It may be noted here that the Raman shift calculated in this case agrees only in one instance $(2966 \text{ cm}^{-1} (b-B) \text{ and } 2927^{-1}\text{ cm} (a-C)$ with mean value 2946 cm^{-1} agrees with 2940 cm^{-1} as given in Table XIV) with the values of others. This may be either due to the particular substance not being an effective catalyser or else due to conditions more favourable for the production of large shifts only. The agreement between the values calculated and those built up by combinations as given in Table XIV is however quite satisfactory.

TABLE XIV

Hexane

Some combination shifts built up by the Raman shifts compared with those observed in the present case.

dv by o Andant	ther authors t etc. (1934)	Shifts observed	Shifts by combination	Shifts observed	Shifts by combination
V1 320	ν ₈ Ι 442	156 (a – A)		4432 (d-A)	$\nu_1 + \nu_6 + \nu_{10}$ 4445
×ع 355	v, 2865	1542 (a – B)	V4+2V1 1540	5732 $(b - D)$	2×9 57 3 0
v ₃ 825	V10 2940	1580 (b-A)	$\nu_4 + \nu_2 + \nu_1$ 1575	5778 (c-C)	$2\nu_8 + \nu_9 5749$
ν . 9 00		3007 (c-A)	$\nu_{3} + \nu_{5} + \nu_{6} = 3016$	5819 $(d - B)$	$\nu_9 + \nu_{10} 5805$
ν ₅ 1041		4308 (a - D)	$\nu_1 + \nu_5 + \nu_{10}$ 4301	7159 $(c - D)$	$2\nu_0 + \nu_8 7172$
V 8 1150	_	4351 (b-C)	$\nu_2 + \nu_5 + \nu_{10}$ 4336	7204 (d-C)	V1+2V10 7195
v ₇ 1315		4393 (c-B)	$\nu_8 + \nu_{10}$ 4382	8585 (d - D)	3×o 8595
	(1	ι		

CONCLUSIONS

The results included in the above Tables indicate the fruitfulness of the new technique in obtaining Raman frequencies of the solvents in presence of some suitable substances which might act as optical catalysers. The agreement between the Raman frequencies obtained in the present case and those by direct method due to other authors is quite satisfactory. Prosad and Bhattacharyya have however obtained still better agreement which may be due to the fact that the optical catalyser used by them viz., $Er(NO_3)_3$ and KMnO4 have sharper absorption bands than anthracene and phenanthrene.

It may be worthwhile adding here that the existence of the phenomenon of optical catalysis has been supported by Hartley from the considerations of the classical theory of Raman effect. He has further predicted the effect of temperature and irradiating frequencies on the efficiency of the optically catalytic action of a particular substance. More work remains to be done in order to bring out the exact picture of the mechanism involved in the process and substantiate the predictions made by Hartley referred to above.

S. P. Sinha

In the end, I would like to record my gratefulness to Principal K. Prosad, O.B.E., I.E.S., for his valuable suggestions.

PHYSICS DEPARTMENT, SCIENCE COLLEGE, PATNA.

REFERENCES

Anantakrishnam, 1936, Indian Acad. Sci. Proc., 3, 70.
Andant, Lambert and Lecomte, 1934, Comptes Rendus, 198, 1316.
Banerji and Mishra, 1937, Zeits. f. Phys., 106, 669.
Collins, 1939, Phys. Rev., 56, 470.
Glockler, 1943, Reviews of Modern Physics, 15, 160.
Hartley, 1937, Nature, 139, 329.
Hibben, 1939, The Raman effect and its chemical applications
Prosad and Bhattacharyya, 1939, Zeits. f. Phys., 113, 637.
Prosad and Bhattacharyya, 1936, Nature, 138, 510.
Prosad, Bhattacharyya and Chatterji, 1935, Zeits. f. Phys., 98, 324.
Sambursky and Wolfsohn, 1940, Faraday Soc. Trans., 36, 423.