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In recent years the Fermi-Dirac  statistics applied to the case of electron gas
has found numerous applications. ‘The case in which the clectron gas is restricted
to two dimensions is also of interest in certain spccial cases. In the first part of
the present paper the various thermodynamical functions for a v-dimeunsional space
for a gaseous assembly obeying Fermi-Dirac statistics or Bose-Einstein statistics
have been evaluated in the usual familiar way,' and the values of these functions
for a two dimensional spacc have been deduced as a special case.  An application
of the results has been made in a following paper® in deducing the magnetic
susceptibility of a free electron gas when the clectrons are confined to a plane.

1. We first determine the distribution laws for a v-dimensional space. T'he
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where $ is the momentum.
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Now, taking account of relativistic mechanics,
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The number of states C‘,(et) for which the cnergy is less than e isequal
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to 2~ times the volume of a sphere of radius {3(1.)2}? and is given by
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Therefore av(e) ds, the number of states of energy lying between e and e+ de, is

given by
a,(¢)de=gC" (e),
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¢ being the weight factor.
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In the completely non-relativistic case <"“ >>1>, this reduces to
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and in the completely relativistic case ("Zf-l; <<1), we have
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Equations (4) and (s5) for the two limiting cases can be written as
av(e)d(e:De"ldG, e (6)
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where, in the non-relativistic case,
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and, in the relativistic casc,
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It is to be noted that for the three dimensional case s takes the values 3/2 and 3
in the non-relativistic and relativistic cases respectively. For the two dimensional
case its values are 1 in the non-relativistic case and 2 in the relativistic casc.

The distribution function f(¢)= - L is not affected by the number
1 elkT
A
of dimensions. (3= +1 for Fermi-Dirac statistics and = —1 for Bose-Linstein

statistics. ‘The number of particles, therefore, possessing cnergy in the range « to
e+ de is given by
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2. Weshall first consider the case of non-degencracy.

In this case A <<{1 and the distribution function is easily expanded as
a scries.
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The total number N of the particles in the assembly is given by
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The total energy of the assembly I is given by
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From (12) and (14), we easily obtain, noting that E=spV, the general formulae
for the non-degenerate case
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where G, F and S arc respectively  the Thermodynamic Potential, IFree Kncrgy
and Lntropy of the assembly.

As a special case we write down the values of the above functions in the non-
relativistic two-dimensional case.
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We shall now take up the degenerate casc.

In degeneracy the Fermi-Dirac and Bose-Einstein cases are considered
separately. In Bosc-Linstein statistics A=1, = —1 and equation (13), therefore,
easily gives

E=Ds+ 0DET)* s+ 1), e (23)
G=o, eer (29)
F= —é = — D(D(KT)* * (s + 1), e (29)
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where C.. is the specific heat when the size of the space (“‘ volume ') occupied by
the assembly remained fixed.
In the two-dimensional non-relativistic case these reduce to
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where C" denotes specific heat at constant area.

The degencrate case of the Fermi-Dirac statistics is characterised by A >> 1
and = +1. 'The integrations are carried out by using Sommerfeld’s formula
according to which, for large A,
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Similarly, integrating equation (13) for large A, we have

G ; 2(s+1)
E= S NET{D(+ DA}/ 1+ —" "M Ve (36
S+1 { S 1 I 6{I‘(3+1)A1}2/s 3 )

from which we easily obtain
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In the two dimensional case s=1 and the values obtained for the various
thermodynamic functions are entercd in Table I, where for the sake of comparison

results for the three dimensional case are also shown.

My thanks are due to Dr. D. 8. Kothari for his help and interest in this work.
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* In the case of two dimensions the equation can be integrated exactly and log A comes
out equal to Aj+1. It may be noted that the series in Sommerfeld’s integration formula for the

degenerate case are correct to an order of 1/A.
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