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ON SOME THERMODYNAMIC PROPERTIES OF A
MIXTURE OF GAS AND RADIATION

By N. R. SEN

(Reccived for [’Ith('tl[iO?l, March 3z, 1941)

ABSTRACT. Imden's theorem on the expansion or contraction of a polytropic gas mass
with conservation of polytropic index lms;if been extended to the case of a variable polytrope,
which under similar conditions is shown to héive the distribution of polytropic index unchanged.
A relation is worked out between N and n, the polytropic indices for (P, p) and (p, p) relations,
P being the total pressure, and p, the gaspressure. Lrom this, a method has been given for
estimating the temperature distribution in a variable polytrope when its maximum and

minimum polytropic indices are known,

INTRODUCTION

In the current astrophysical theorics, stellar bodies are studied as configura-
tions of hot gas masses in equilibrium, the radiation pressurc playing in general
an important role in the interior. Polytropic configurations with constant
indices have been investigated very thoroughly as stellar models from this point
of view. But every stellar mass may bc accurately conceived as made up of
shells of matter in polytropic equilibrivimn with the polytropic index varying

continuously within the mass from shell to shell. Sowe attempts have been

made to study such configurations recemtly. Iiddington® set the problem of
finding thosc properties of such a variable polytrope, which lie intermediate
between the properties of the two polytropes whose indices are conmstant, and
identical with the upper and lower limits of the index of the variable polytrope.
In this paper two simple thermodynamic propertics of such variable polytropes
have been discussed. The first is an extension of Limden’s theorem®” on the
property of four intersecting (p, V) curves, representing two pairs of polytropes
of two different indices. It is shown that under similar conditions the distri-
bution of polytropic index within a gus mass remains unchanged. Secondly,
the relation between two polytropic indices corresponding to (i) gas pressure,
and (ii) the total pressure has been investigated. Writing thc gas law as
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we define a polytropic index n by

dp, — 1 \dp
b, (I+ n>p (1)

i d(log p)
with n= SL08 P

dllog 1)’
where # in general is variable. But the actual stellar material is a mixture of
¢as and radiation, and if P be the total pressure of gas and radiation, a polytropic

‘.{.I_) - 1 dp 3
5 <1 4 N)/» e (2)

will subsist, where N is the effective polytropic index for the mixture of gas
and radiation. We shall study the relation between N and = from purely
thermodynamic considerations. Candler’s® discussion of variable polytropes is
based on the (P, p) relation, as the total pressure P appears in the equation of
hydrostatic equilibrium, and so his results involve N. A relation between N

relation of the type

and n enables one to show that in « scnse the temperature of a variable polytrope
is intermediate between the temperatures of two polytropes with constant
limiting indices, when the corresponding points are suitably defined.

EXNTENSION Ol EMDEN'S THEORLIM TO VARIABLIL
POLYTROPE

Let us take the different parts of a purely gas sphiere to be in polytropic
conditions characterised by different indices, and let the index n be varying
continuously with the radial distance r (fig. 1).

FIGURE 1

Let p be the pressure and V the specific volume at a point, and the (p,V)
relation of any part of the gas sphere be represented by the continuous curve AB
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on the (p,V) plane (fig. 1). As the polytropic index is supposed to vary along
AB, the heat capacity ¢ will also vary along the curve, since n=(c.=c¢c)/{cp—c,).
We now prove the following theorem.

Theorem. 1f ihe gas-sphere undergoes some slow change (e.g., general
expansion or contraction) such that cvery gas clement undergoes a change along
a polytrope of definite indcex w,, and the temperatures (or ressuics, or specific
volumes) of the corresponding gas cl&nmuls arc ina constant aalio, then the
distribution of polyiropic index in t)u oas mass after the change will yemain the
same as before the change, This is a purely thermmodynamic property not
connected with the mechanical cquilih{rium of the yas mass.

lLet the points A, Xy, X,, ..... B, of the (p,V) curve move along the
curves AC, Xqa Yy, NoVYa,ooonn BI),‘; all representing polytropes of a dehinite
index n,, such that'T',/T. = 'I‘xll'[‘&elr-'l‘x?/'l‘y,: ...... ="1"/'l'y , then we have
to prove that the distribution of polytropic index, i.c., of heat capacity ¢ along
CD, will be the same as that along AB.

Take a point X4 so close to A that along AN, we can take the hicat capacity
¢y to remain unaltered (or strictly speaking to lic within ¢y and ¢y +dey).
Let Xy move along a polytrope n,, to a position Yy such that

TWT. =Tx [ Ty,. o (3)
Putting 'I's,="1'« +dI' , and Ty, =T +d'T , we obtain the relation

dq} - dT: ) BNy
T Te
Now consider an infinitely slow quasistatic cycle round ACY Ny, The
closed integral [dQ/T' round this cycle will vanish. The contribution of the
side AC is cng log('L'. /1), that of CYy is ¢'1dTe /I, where (¢'y, +dc'q)
is the heat capacity for the clement CYy ; the contributions of Y ;X and XA
are cng log(T'x,/'yy), and —cqd'Ty /Ty respectively. Hence we must have

cng log{Le ['La) + ¢/ d'Te [ Te =+ eng log(T'xy/Tyv)=cy dT. /T =0 .. (4)

But by the above relations (3) the sum of the first and the third terms
disappears, and so we have by (3)

(C']""Cl)d'ra /To =0,
that is c',’écl. . ()

By dividing the curve AB into infinitesimal elements and considering similar
circuits, we prove that the distribution of ¢, i.e., of n along CD, is the same as
that along AB. ‘
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Since (A,C) and (X,,Y;) are on polytropes n,, we have from the gas law
and the polytropic condition

1 + ,1 - ...1._ ,I -
RTy _( Ve no, Vo [ Ve Y, RTx _(Vy Ny,
I{TL VA \"( Va ! R'I‘j’l Vxl

whence by (3)

V[V =Vy,/Va, . (6
Similarly g" = _;’7)_’1._,
P 3‘1

Hence the condition “‘ temiperatures of the corresponding gas clements
being in the same ratio ** in the above theorem can be replaced by ‘‘specific
volumes or pressures of the corresponding gas clements being in the same ratio.”
The proof of the theoremn can also be based on properties (5) and (6) of polytropes
of constant index. This theorem is a gencralisation of the well-known theorem
due to Emden in which AB and CD represent two uniform polytropes.

It is known that for uniforim expansion or contraction of a gas-spherc cvery
clement undergoes a polytropic change belonging to the index 3, and further
the temperatures and pressures at corrcsponding points are proportional.
Applying the theorem proved above to uniform expansion or contraction, we
obtain the result that when a gas spherc with variable polytropic index expands
or contracts uniformly, the distribution of polytropic index along the radius
remains unaltered. ‘T'his indeed mayalso be proved directly.

A RELATION BETWEEN N AND »n

We shall now obtaiu a relation between N and » for a mixture of gas and
radiation. Let us start with the gas Jaw in the form

P, V=RT ' (7)
where V is the specific volumie, so that (2) may .be written as
dP 114V y
e o I+~ e =Q. cer 2/
P ( N) v = (2)

Now dP=d(1’r+.’t’u)=d<%aT4+ 5‘7‘[):(41[’1' +b4) ‘d,g‘“ "Pw"é\;"“,

whence, putting $,/p,=8/(1—8), we obtain

dP o dllogT) | aV _
+ +[1+(ﬁ 1)~ (4 33)7(75§T/)—J v =o . (8
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Comparing (8) with (2|’ ) we have

1 By, .oy dllogT) _ -38
N=B-1-( 33)@(/%\?)’“ =(B~1)+ 4 ”L‘ e Q)

This equation can also be put as

n
N= oo M )
(=3B —nf1-p) '
For a fixed f, corresponding to onc value of » there is one value of N and
vice versa.  Also as (for fixed n)

aN _ nin—3)

g

A [a=3B)-n(z=p)]2"

with increasing 3, N increases if n<{3, and decreases if #>3. For n=3, N=3;
also as 8—>1, N—>n. We cannot calculate N as 8—>0 from (¢/), as for =0,
p,=o. Incase of pure radiation pressure we know N=3 [though (g) gives
N—>n/(4—n), as f—>0]. We can now plot on the (8, N) plane the curves
for fixed values of n.

From (9) and (g}, the following points mav be casily seen :

(a) through every point of the (3, N) plane there passes one and only one
curve of the family n =const., so that the curves n =const. do not intersect (as for
given N and 3 there is only one valuc of n) ;

(b) a curve n=const. for N>3, continually approaches the line N=» from
above, so that for every value of 8551, if N>>3, then n also is >3, but less than
N at B=1, N=u ; the curves for constant n rapidly risc as the N-axis is
approached, and in fact the curve n=4 is asymptotic to the N-axis; for n>>4,
the line B=(n—4)/(n—23) is an asymptote ; a smaller value of B would make N
negative, and for a time numerically very large ;

(¢) any curve n=const. for o<<N<3 starts from the N-axis, continuously
rises and asymptotically approaches the line N=n from below ; at every point
on this curve (except for B=1) N<In, so that for every value of 851, if N he
positive and <3, then n>>N, but less than 3 ; at =1, N=n ;

(d) on aline B=const.30, the n values increase continuously upwards with
increasing positive values of N ; if on this line o<<N; <Nog, then nq <ny.

(e) the line N=3 is singular in this respect that on this line N=n=3 for

every value of 8.

The curves drawn in fig. 2 show these properties clearly. Ina stellar body,
let N lie between two values, say No(<<3) and N,(>0), and in the figure let the
lines AB and CD represent N=Nj and N, respectively, and let the range of B
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values, within which the pressure ratio varies within the stellar body (excluding
the extreme outer portion), be marked as in the figure Uy the lines AC and BD.
Draw the curve ny=const. through the point D ; we have proved that ny>N,.
Similarly if A lies on the curve ng =const., ny>No.

2
——

LI I
L4 L4
=
2

F1cURg 2
Then for any point within the stellar body the index n shall lic hetween 0
and ny, so that

_ dllog p) < T
'\d('l'ng U !

e\ , e\
( I‘ ) < <’ > <(,l‘ > v (1o
T, Vo T,

T,, p. being the temperature and density at the centre. Hence the density
increases at a rate intermediate between the n,- and ne-th power of I'.  Relations
(10) and (10') evidently subsist also for values of N > 3.

whence

~

LIMITS OF TEMPERATURE IN A VARIABLER
POLYTROTPE

We can also use the above considerations to find a pair of limits within which
the temperature of a gas configuration will lie. For this purpose we shall call
points within different gas masses with the same value of 3 (otherwise the ratio
of radiation to gas pressure) corresponding poinls. Any two such masses need
not have corresponding points, but for the purpose of the arguments which
follow, the different gas masses will be supposed to have corresponding points.
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Suppose we have a stellar body whose polytropic index N varies from N, to
N., and first ‘suppose o<N | <N.<3. If the range of 8 values within the gas
mass be known, we can find in the manncr of the previous article two index.
numbers n, and n, (n,<n») such that all # values of the configuration lie
between n, and n,. When both N, and N. are less than 3, we have scen that
n,>N,, n.>N,, but ny, n, are also both less than 3. We now compare the
given gas configuration with two polytropes of constant indices n, and n,. Such
a polytrope will have two disposable parameters, one, say, the central tempera-
ture, .and the second the factor of prbportiouality between the pressure and, say,

the <1 + I )th power of the density'{(for the first polytrope) in the pressure-
n, 1

density relation. ‘Thus we can chooseithe first polytrope n, as one whose central
values of B will be the same as that?‘ of the given gas configuration, and aiso the
central temperature of the two identical. Tt can easily be shown that these two
conditions determine the polytrope m, completely. Similarly. with the same
conditions we determine the polytrope n.. We may, for the sake of generality,
drop the condition of the equality of central temperatures, and have a single
infinity of polytropic configurations for n, or n.. 'The following arguments wili
apply to this gencral case. With these adjustments we shall have a series of
triplets of corresponding points starting from the centre for the given configura-
tion and the two polytropes n,, n,, sincc in the polytropes (n,, n,)<<3, 8 will
increase outwards and tend towards 1 near the surfacc and in the given gas
configuration (n<<3), B will also do so. Consider a triplet of corresponding
points on the configurations characterised by n;, n and n.. At these points
we have

NG - p P2

l“’lTln - wT /‘-_-T:'n

50 that ( u being supposed uniform throughout any one configuration and for
simplicity may be taken to be the same in all of them)

‘ 'W.e’have further -
a glp‘,,; p 0Ty dp _ dT des w0 o (12)
Py ) T, p \ P2 I,
Frbm these two sets of equations follows
FONEE A(SA;nl)g'g,=(3__n)“¢,1,}1;‘4.___(3_,,2)_512:-’ - v (13)

9—1387P—I11]
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as'a relation between the temperature increments at corresponding points. Since
o<, <n<n,<3, for positive increments of temperature we must have

dT,, dT o dT,

2
l]\2 > T ’1\l ’

whence integrating we obtain

,;I:zl < "IS < "—II:‘_L" o (14)
2 1

where (1Y, 'I¥, 'I'y') arc the temperatures at a triplet of corresponding points on
the (n,, n, n,) configurations, which are respectiveiy interior to the corresponding
points where the temperatures arc T,, T, T,. (14) shows that the relative
temperature decrease in the given configuration is intermmediate between the
relative decreases in the two polytropes n, and n, at corresponding points  This
relation will apply as long as tripiets of corresponding points are available in the
three gas masses, and so for the entire given gas configuration.

If we take T.'="T"="T,'= the central temperature of the given configuration,
then TL<<T'<<T,. 'The threc masses have then also the same central densities
and temperatures, Hence if N<<3, the lemperature of the given configuralion
al any point is intermediate between the temperatures at corresponding points of
the polytropes n, and ns with the same central density and temperature as lhe
given gas mass. '

In a similar manner, it can be shown that if N lies between N, and N. both
of which exceed 3, then in the same manner as before two indices n,(<N,) and
ny(<N3) both >3 can be qbtained such that any n corresponding to N lies
between n, and =n,. In thiscase we obtain by comparing with polytropes n, and
n. as above the inequality ' 14) reversed thus

:il_:_:r<% <~'Il‘,2’ ; .o (14a)
and for polytropes of the same central density and temperature, T, <<T<T,.

The important case, however, is when #, is less than 3, but N, greater
than 3. In such a case f3should increase outwards for some parts of the gas
mass (so long as N<C3), and decrease for others ( when N>3 ). An estimate
like (14) or (14a) is then possibie only if the 8 value correspouding to the point
where N attains the vaiue 3 (then n also is 3) is known. A rough guess can
sometimes be made for known stellar mass when it is considered to conform to
an Eddington model for which B is connectcd with the mass. We can then find
n,(<<3) and n.(>3) such that for values of N from N, to 3 ( B increasing outward)
the n values corresponding to N are greater than n,, and between the values of
N from 3 to N, the corresponding n values are less than n.. 0, and n, are indeed
the n values on the lines N,=const. and N,= const. respectively of the points

where they are cut by the line B(sy=const, this (3, being the point where the N
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curve of the given gas mass cuts the line N=3. Knowing n, and n., cquations

like (14) and (14a) can be obtained easily for the two parts of the gass mass.

All these results depend oniy on the thermodynamic properties of the gas
mass and not on its mechanical property of equilibrium. ‘T'hey may be useful in
guessing rough values in the construction of stel;ar models.

BEHAVIOURS OF N 'AND # FOR LARGIE AND
SMALL VALUES

As the n value approaches and exceeds 4, the thermodynamically allowable
values of N may increase to any positive value up to o0, and may cven become
negative, ‘The infinite value of N oceurs as we have seen for = m=a)in—3",
i.c., for B/(1—B)=n—4. Thus, if n be ncar to, say, 4.5, large values of N will
occur when the radiation pressure is nearly double the gas pressure ; on the other
han&, if n be near 5, large values of N will occur if these two pressures be nearly
cqual. For smaller values of fB/(1=f), even negative valucs of N arce thermo-
dynamically permissible  On the other hand n may be negative, if N be negative
and |N| lessthan (1—p8)7".

It may be noted that N and « vanish together in the ratio of 1 to 4-35.
This fact will be of importance in a later investigation. Morcover as N—>oc,
i.c., the gas mass is approximatcly isothermal, n will tend to the value 3— (1-8)7".
Lastly, as n—>00, N— —(1—-0)"".
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