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ON SOME THERMODYNAMIC PROPERTIES OF A 
MIXTURE OF GAS AND RADIATION 

By fill. R. SEN 

ABSTRACT, EUllkn's thl'tJl'l'lJl (Ill thctxpallsiollor emllradiulJ o( ~ lJolytropic gas mass 
with conservatiun of polytropic index has!:' been extended to the case of a variable polylrope, 
which under similar conditions is shown to hive the distribution of polytropic index unchanged, 
A relation is worked out between Nand n, t1~ polytropic indices for (P, p) and IP, p) relations, 
P being the totnl pressure, and p, the gas 'Pressure, From this, a method has been given for 
estimating the telllperatur(' rlistrihulion in 11 variabl(' poly trope when its maximum and 
minimum polytrupic indices are knoll'n, 

1!';TRODtJCT10N 

III thl! current astrophysical theories, stellar bodies are studied as configma. 
tions of hot gas masses in equilibtiulTl, the radiation pressure playing in general 
an important role in the interior. Polytropic configurations with constant 
indices have been iuvestigated very thoroughly as stellar models from this poiut 
of view. But every stellar mass may be accurately conceived as 1J1ade up of 
shells of matter in polytropic equilibriulIl with the polytropic iudex varying 
continuously within the mass from shell to shell. SotlJe attempts have been 
made to study such configurations recently, Htluington1 set the problem of 
finding those properties of such a variable polytrOIJc, which lIe intermediate 
between the properties of the two poly tropes whose indices are constant, and 
identical with the uplJer ancllower limits of the itldex of the variable poly trope. 
111 this paper two simple thermodynamic properties of such variable poly tropes 
have been discussed. The first is au extension of Emdell's theorelll~ on the 
property of four intersecting (p, V) curves, rcpresentillg two pairs of poly tropes 
of two difierent indices. It is shown that under similar conditions the distri· 
bution of polytropic index within a gas mass remains unchanged. Secondly, 
the relation between two polytropic indices corresponding to (j) gas pressure, 
and (ii) the total pressure has been investigated. Writing the gas law as 
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~ve define a polytropic index 11 by 

dr" = (1 + I )d/l 
1) (I n P 

_ d(log p) 
II - i{log '1') , 

where 11 in geul:ral is vuriabk But the actual stellar lIlatl'rial is a lIlixlurl: of 
gas amI radiatioll, aud if l' be tll(: total prCSSlUl: of gu:-; alHI radiatio]J, a polytropic 

rdat ion of the type 

dI.) = (I + I )dfl 
l' N " 

(2) 

",ill suhsist, \~here N is the effective lJ01ytrol'ic imlcx for tIll: 11Iixture of gas 
and radiation. We shall study the relation between Nand 11 fr0111 purely 
thermodynamic considerations. Candler's~ discussion of variable poly tropes is 
based on the (P, p) relation, as the total pressure P appears in the equation of 
hydrostatic equilibrium, and so his results involve N. A relation between N 

and 11 enables one to show that ill a sense the temperature of a variable poiytrope 
is intermediate between the temperatures of t\lO poly tropes with constant 
limiting indices, when the corresponding points are suitably defined. 

EXT H N S ION 0 F n l\I D n N' S T 11 n 0 :R H 1\1 T () V ,\ RIA n I, E 
POL Y 'j' n 0 P 1\ 

Ld liS take the different [Iarts of a lmrdy gas sphere to be in polytropic 
conJitions characterised by differeut indices, and let the index n be varying 
coutilluously with the radial distaucc r (fig. J). 

1,1 

FIGURE I 

Let p be the preSSure and V the specific volume at a point, and the (p, V) 
relation of any part of the gas sphere be represented by the continuous curve AD 
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on the (1', V) plane (fig. 1). As the polytropic index is supposed to vary along 

AD, the heat capacity c will also vary along the curve, since II = (c " - c) / (c l' - c.). 

We now prove the following theorem. 

T1zeorcIH. ]f the gas-sphc.,-c undclgocs SOllie slow challgc (e.g., gCllcral 
expanswn or contraction) such thall.:ver:r gas del//cllt ulldc'rgocs a challge alollg 

aro1ytroj'c 0/ definite index 1/", a'lld tile te III pc ralu res (or /'ll'ssttrcs, 0"- .~J)ccific 

l:oluIIICS) of the corrcspondillg gas el~l1l1cllts arc ill a f'(JIIsi,lId Ill. li ° , tI,ell ill!' 

dislrilnriioll uf I'oly/robic illdc.\tll ~l' gas II/ass a{lc.,- 11It' ,'h(lIlgr .... i1l1Cllillil1 1111' 
,mille (lS befofe tile challge. This 'is a purely thertllullyualllic l,ropcrty 110t 

COllncctcu with the mechanical cquiliJtil1l1l of the gas mass. 

Let the points A, XI, Xi, ... ~ ..... B, of thc (I',V) l'lll,\,C 1I100'C ail)!Ij!; t1ll~ 
curves AC, Xl Y 1, X 2 Y 2'''· ..... BIJ,1 all rL'l'n:scnting poly tropes of a dclinitc 

index /I '" such that 'f, /T,. = TX11'1).1 = '1\,/'1\ .. 2:;:...:· .... • = '1',.1'1'" , then wc have 
to prove that the distribution of polytropIC index, i.e., of heat capacity (' alollg 

CD, will be the same as that along AB. 

'fake a point X t so close to A that along- A X 1 we can take the heat capacity 
(\ to remain I1naltered (or strictly speaking to lie withiu C1 and Cl + dl't). 

Let Xl Illove alollg a poly trope Il", to a position Yl such that 

Putting 'l'XI == 'l'., + d'l\ , allU Tv! =1'., + d'1',· ,we obtaiu till! rclatioJl 

• 
dl\ aT, 
i\ - T,,' 

Now consider all infinitely slow ql1asistatic cycle round ACY ,X I. The 

closed integral SdQ/'f round this cycle will vanish. The contribution of the 
side AC is CliO log(T .. /1',), that of CY 1 is e'l ti'l'.: /'1" , \~here (C'l, e'l + dc' d 
is the heat capacity for the elelllcut CY I ; the contributiolls of Y IX l Hnd X IA 

arc Cl10 [og('1'xl.'1\'I), and -c)d'I'../T, respectively. Hence we lII11sthavc 

CliO /og(1'c /1\) + C'l d're /1'" '+ CliO log(TxdTYl) - C I dT, /'1\ = 0 

Dut by the above relations (3) the sum of the first and the third tenus 

disappears, and so we have by {J') 

that is 

By dividing the eurve AD into infinitesimal elements and considering similar 

circuits, we prove that the distribution of e,i.e., of n along CD, is the same as 

tbat along AB. 
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Since (A,e) and (X 1 ,Y 1) arc on poly tropes 1l 0' we have from the gas law 
and the polytropic condition 

( 
\ + I kl: = ~; / 110 

,,,hence by (3) 

v,/v, =VYJ/VXj (6; 

Similarly p" =.1h_ 
p. PXl 

Hence tltc· l'omlitioll .. tClIJpcratures of tIl(; corresponding gas clements 

being in the sam," ratio" ill the above theorem can be rev laced by "specific 
volumes or pressures of the correspolld ing gas clements being ill the same ratio." 
The proof of the theorem can also be based on properties (5) and (6) of poly tropes 
of constant index. This theorem is a generalIsation of the welJ-known theorem 
due to Emden in which AD and CD represcnt two uniform poly tropes. 

It is known that for uniform expansion or contraction of a gas-sphere every 
clement undergoes a polytropic change belonging to the index 3, and further 
the telDperatur(~s and pressures at corresponding points are proportional. 

Applying the theorem proved above to uniform expansion or contraction, we 
obtain the result that when a gas sphere with variable polytropic index expands 
or contracts uniformly, the distribution of polytropic index along the radius 
remains unaltered. This indeed lIla)" also be proved directly. 

A RELATIUN Bl<;TWfiHN NANn !1 

We shall HOW obtaill a relation between N Hmill for a lIIixture of gas and 
radiation. Let us stad with the gas Jaw ill the form 

whence, putting PII/Pr={3/(r-{3), we obtain 

dP [ d(log T) J dV ---+ I+({3-r)-(4-3{3) --=0. 
P d(log V) V 

(8) 
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Comparing (8) with (::1') we have 
I 

~ = «(3- r) - (4 - ~(J) d(IoQ.T). = (f3 - 1) t- <1- 3/3_ 
d(log V) II 

This equation can also he put as 

(9) 

For a fixed #, corresponding to OTIe \'all1(' of II there is one vallie of Nand 
viee WIS(l. Also as (for fixed Il) 

dN n(n-3) 
d(r= - [(4 '::3,3j~ n(r ":-fll]2 , 

with increasing fl, N increases if 11<3. and decreases if 11>3. For 11=3, 1'\=3; 
also as (3-*I, N~Il. We cannot calculate N as (3~o from (g'l, as for (3==0, 

/J,,=o. In case of pl1re radiation pressure I\'e know N=3 [tbough (g)' gives 

N-*II/(4- 11 ),as(3---;..o). \VeCfm no\\' plot Oil the «(3,N) plane the curves 
for fixed 1'oiues of 11. 

Prom (g) and (g)', the follo\\'in~ point:-; 1l1av he easily seen: 

(a) through every point of the ((3, N) plane there pa:-;ses 01le and only one 

curve of the fam ily 11 =: COilS!, sn that the curves 11 = const. 00 not intersect (as for 

given Nand fl there is only one value of 11) ; 

(b) a ctlrve 11 =const. for N>3, continually approaches the line N = 11 from 

ahove, so that for every value of fl=FI, if N>3, then n also is >3, hut less than 

N i at (3=1, N=n ; the curves for constant n rapidly rise as the N-axis is 

approached, and in fact the C1lrve 11 =: 4 is asymptotie to the N-axis; for '11>'1, 

the line fl=(n-4)/(1I-,,) is an asymptote; a smaller valne of fl would make N 

negative, and for a time numerically very large; 

(c) any curve n=Col1st. for 0<N<3 starts frol11 the N-axis, continuollsly 

rises and asymptotically approaches the line N = 11 frol11 below; at every point 
on this curve (except for (3=1) N<II, sothatforeveryvalneof#+l,ifNhe 

positive and <3, then 'II>N, but less than 3 i at fl=r, N=n ; 

(d) on a line (3=COl1st.=/::o, the" values increase continuously l1pwards with 

increasing positive valnes of N ; if 011 this line o<N) <N z, tlte1l 'II, <112' 

(el the line N =.3 is singular in this respect that 011 this line N == 11:= 3 for 

every value of (3. 

The curves drawn in fig. 2 show these properties clearly. In a stellar body, 

let N lie between two values, say N 2«3) and N 1 (>0), and in the figure let the 
lines AB and CD represent N = N 2 and N I respectively. and 1et the range of (3 
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values, within which the pressure ratio varies within the stellar body (excluding 

the extreme outer portion), he marked as in the figure by the lines AC and BD. 

Draw the CLlrve nl =const. through the point D ; we have proved that n\>N 1• 

Similarly if A lies on the curve 112 = const., 112> N 2' 

11-

Then for any point within the stellar body the index n shall lie hetween II J 

and 112, so that 

\\ itenet:' 

(:~:" r 1 < (,~:.) < (:~:" t') 
To, PD being the temperatnre and density at the centre. 

increases at a rate intermediate between the 11 j- and n 2-th power 

(10) and (10') evidently subsist also for values of N > 3. 

(r f)') 

Hence the density 

of 'f. Relations 

I, I l\T ITS 0 II T F. I\I P F. RAT U R F. T N A V A R rAn I, J\ 

rOLYTROPE 

We can also use the above considerations to find a pair of limits within which 

the temperature of a gas configuration will lie. For this purpose we shall call 

points within different gas masses with the same value of (3 (otherwise the ratio 

of radiation to gas pressure) con'esponding points. Any two such masses need 

not have corresponding points, but for the purpose of the arguments which 
follow, the different ias maSSeS will be supposed to have corresponding points. 
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Suppose we have a slellar body whosc polytropic index N varies from N I to 

N2 , and first suppose O<~I<N2<3. If the range of /1 val lies within the gas 
mass be known, we can find in the manner of the previolls artick· two index· 
numbers II, and 112 (1l1<IIJ such that all n values of the configuration lie 

between 111 and ti". When both· N, and N" are less than 3, \\'l' have seen that 
Il I >NI> 112>N2, but 11 1,112 are also both less than 3. ,"Ve lIOW cOlllpare the 
given gas configuration with two !>ol~Hropes of constaut indices II, aud "2' Sllch 

apolytrope will have two disposable llarameters, one, say, the central telllpera­
tme, and the second the factor of prrcportionality hetweeJl the pressure and, say, 

the (] + :1) th power of the density (for the first poly trope) in the pressure­

density relation. Thuswe can chooseithe first poly trope til as one whose ccntral 

valnes of f1 will he the same as that:' of the given gas c0l1fignrati011, and also the 
central temperature of the two identical. It can easily be sho,m that these two 
conditions determine the polytropen I completely. Similarly. with the sallle 
couditions we deterlJ1ine the poly trope 11~. We may, for the sake of generality, 
drop the condition of the equality of central telllperatures, and have a single 
i1Jfinity of polytropic configurations for til or n~. The following arguments "ill 
apply to this general case. With these adjustments we sballlJave a series of 

ttiplets of corresponding points starting from the centre for the given configura­
tion and the two poly tropes Ill> II ~, since in the poly tropes (n" 11~) <3, f1 will 
increase outwards and tcndtowards I near the surface and in the given gas 
configuratIon (n<3), (3 will also do so. Consider a triplet of corresponding 
poiuts 011 the configurations characterised by 111, tI and 112' At· these points 

We have 

jl 
It I T,' 

so that ( It being suppos,;;d uniform throughout any oue config nratioll and for 

simplicity may be taken to be the same in all of them) 

(u) 

W.e have further 

dpi _ dT 1 dp _ dT 
PI - n '1'1- , p _. II T 

'From these two sets of equations follows 



226 N. R. Sen 

as u relation between the temperature increments at corresponding points. Since 
o<nl<n<n~<3. for positive increments of temperature we must have 

whence integrating we obtain 

'1\ < .. 'r. .. < !L 
'1'2' '1" '1'/ 

where ('r/. T', '1'/) arc the temperatures at a triplet of correspondinf.; points on 
the (n" n, n2) counguratiol1s, which arc respectiveiy i1lte-rior to "the corresponding 
points where the temperatures arc 1'1. T. T~" (14) shows that the relative 
temperature decrease ill the given configl1ration is intermediate between the 
relative decreases in the t\\"o poly tropes 111 and 112 at corresponding points This 
relation will apply as loug as tripiets of (orrespondillg points are available in the 
three gas masses, and so for the entire givell l;as conllguratiou" 

If we take T / = '1" = '1' / = the central temperature of the given configuratioll, 
then '1'2<'1'<'1'1" The three 1l1as~es have then also the same central densities 
and temperatures. Hence if N<3. tile tempera/lIll' oj tile given configuration 
af any point is inle1"lllediatc />ei7.4'fen 1T,c lelllJ'cra/ures at corresponding points oj 

11,(, jJOlyhopes III and /12 willi the sam,' c('niral density and temperature as lhe 
given gas mass. 

In a similar manner, it can be shown that if N lies between NJ and N: both 
of which exceed 3. then in the same manner as before two indices "1 «N I) aud 
n2«N,) both >3 can be obtained snch that any n corresponding to N lies 
between til and n2' In this case we obtain by comparing with poly tropes til and 
n: as above the inequality i 14) reversed thus 

T T '1\ -1.-< _ < __ ~. " 
'1'/ '1" '1'2" 

(I4a) 

and for poly tropes of the sallie central density and temperature, T 1<T<T2 , 

The important case. however. is when "1 is less than 3. but N, greater 
than 3. III such a case (3 shou1d increase outwards for some parts of the gas 
mass (so long as N<3). and decrease for others (when N>3). An estimate 
like (14) or (14a) is then possibie only if the /3 value correspouding to the point 
where N attains the vaiue 3 (then n also is 3) is known. A rough guess can 
sometimes be made for known stelIar mass when it is considered to conform to 
an Eddington model for which /3 is connect{d with the mass. We can then find 
111«3) and n:(>3) such that for va1u<:s of N from NIta 3 ( /3 increasing outward) 
the tI values corresponditlg to N are greater than nl> and ~tween the values of 
N from 3 to Nli the corresponding 11 values are less tban tl2' nl and nil are indeed 
the n values on the lines N 1 = const. and N II = const. respectively of the points 
wh~t'~ they al'e cut brthe lin~ /3(S)"'const, this /3(3) bein¥ the floint wl1er~ tlt~ N 



thermodynamic Properties of a Mixture of Gas and Radiation 
" 

227 

curve of the given ga5 mass cuts the line N =: 3. Knowing "1 and n~, equations 
like (14) and (14a) can be obtained easily for the t\\'o parts of tIll: gass mass. 

All these results depend oniy 011 the thermodynamic properties of the gas 

maS5 and not 011 its mechanical property of equilibriul1l, They may he useful in 

guessing rough values in the construction of stel;ar models. 

B H II A VI 0 II R SOil NA N j) " II 0 R L.'\ R C; E A N J) 

S :II A I.,L V A L tT g S 

As the 11 value approaches and cllceeds 4, the thermodynamically allowable 

values of N may increase to any positive value up to 00, and lllay even hecoll1e 

negative. The infinite value of N ;occurs as we have seen for (3= (11-,\)/:,11- 3', 

i.e., for #/(I-$)=n-'I. Thus, if n ~ ncar to, say, 4·5, large values of N will 

occur when the radiation pressure is nearly double the gas preSSl11C; on the other 

hanA, if n be ncar 5, large values of N will occur if these t\\'O pressures be nearly 

equal. For smaller values of (3/(r-f~), even negativevaluesofN arethcrlllO­

dynamically permissible On tht other hand n may be llegative, if N be negative 

and I N I less than (I - (3)-1. 

It ll1[,y be noted that ~ and 'II vanish together in the ratio of I to 4-3(3. 

This fact will be of importance ill a lalcr investigalion. l\1uu:ovcr as N--+oc, 
i.e .• the gas muss is approxilJlately isotherlllal, 11 ,,,ill telld to the value 3 - (1 _(3)-1. 

La5tly, as Il--+oo, N~ -(1-#)-'. 
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