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OF STELLAR DIAMETERS
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ABSTRACT. Considering the stellar body as a polytrope whose index varies from shell
to shell, an upper bound has heen obmmed from the conditions of mec hanical equilibrium,
for the product +'I' (radial distance x 1cmpcr’ntuu) when the minimum value of the polytropic
inflex and the maximunm value of the |at|n of radiation to gas pressure within the £as mass
are known. Taking the minimum value of the index as 1 5and 3 approximately for small

and large stars respectively, and defining the ““ radius * as the distance where the temperature

falls to abont a million degrees, the value of this radins has heen calculated in terms of the
mass of the configuration, and also of the maximum value of the ratio of the pressures. For
stars of small masses these calculated rough upper honnds are not unsatisfactory, but for large
masses they are rathertoo high.

INTRODUCTION

Though stellar bodies generally show a small range of variation in their
masses, their radii vary within wide limits. Several inequalities are known
giving tolerably good cstimates of some of the physical characteristics, such as
the centrai pressure, mean temperature, etc., of stars of known masses and radii,
but no purely theoretical formula has been given for an estimation of the radius.
In the present note is attempted an estimate of an upper limit to the size of a
stellar body, primarily in terms of the ratio of the pressures, and finally in terms of
the mass. The limits indeed are quite rough, but considering the fact that they
do not involve the opacity factor, the law of energy generation, etc., and depend
only on the condition' of mechanical equilibritun, these rough values may be of
some interest as setting some limit to the arbitrariness of the dimensions of stars
purely from conditions of mechanical equilibrinm. In the deduction of the
relation it is necessary to assume some compressibility condition, a relation
between pressure and demsity. We have taken quitc a general type of such a
relation, namely that for a variable polytrope,

d{log P)= x+7xl )d(log p) o ()

’

where the polytropic index » is variable from point to point of the star. Candler!
has recently investigated the physical properties of such a polytrope. The
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estimates of upper limits made in this paper are dependent on Candler’s? results.
The next paragraph recapitulates the relevant results of Candler.

If P be the pressure, p(r) the density, and p(r) the mean density within a
- sphere of radius 7, two variables X and Y can be defined thus

A\ - v\

X= gﬁi TP(A') s Y= 2n(s -’:E(-'Tl B v (2)
3 Pe 3 P2
Taken in conjunction with
ddI: - _(_;I\I’Iz(]lpb) .. (3)
'and

* ’—"M(f)=47rp(1')r“,, M) =4 p(r)r? e ()

dr 3

and (1), it may be shown that X and V satisfy a differential equation of the
first order as follows :
H ™ I~
T Iy
ay _Yoai o (5)
dX (3+X?)v-2X

The solution curves of this equation have a very important characteristic.
They all emerge from the origin and have unit slope there. The solution curves
for n=1, n=j5 are shown in the figure, as well as those for n, =const., 2 =const.
If —1<n;<np<s, the solution curve for nj=const. lics entirely above that
for ng =const., and both above that for n=5.

n=0
y - M=1
—..’--‘ n:n‘
n‘ng
n=%
0 ' X ——te
FIGURE

Now, if in a certain stellar configuration n is variable, and lies between
and ng, then the solution curve for the star in}X, Y plane will lie entirely between
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the curves for nj =const. and ng=const. From this important characteristic of
the solution curves it can be concluded that many of the characteristics of the
variable polytrope are intermediate between the corresponding characteristics of
the polytropes n;=const. and ng=const. at corresponding points (points with
same value of X). For instance, if B, be the ratio of gas pressure to total
pressure at the centre of a star whose polytropic indices lie between =, and ng,
then

X YA 2 — ) etiask:
l,)(nz)ga—(;gfg} /40'1\12<~L-5§~;~‘ <I.)(ul)—7-3;(~§;f]—yc‘l\{2 ... (6)

where D(ny) and D(ng) are constamts whose valucs have been tabulated by
Candler?, and all other symbols have ﬁlcir usual meanings.

DEDUCTION OB AN UPPER BOUND

It is to be noticed first of all that, for a uniform polytrope (n=constant
throughout), the variables X and V are the two invariants of the Emden equation
involving the limden function and its first derivative, with respect to a Lane-
transformation. It may thus be expected that in terms of these two variables
the usual sccond-order cquation will reduce to a first-order one. In fact, if we
transform X and VY to usual polytropic variables for n =constant, we obtain

V= /\/flg_} 1;, X= ,\/3(1’;"3_) L E%T )
2 L=l
where 1, I arc the two invairants
n—1 nt1
Li=fu 2, Ig=—gh™? d . ®

at ’
¢ and u being the variables of the mnormalised FEmden equation.?  The
property which is important in the present discussion is that of I;. It possesses
a single maximum for given n.2  'I'he values of thesc maxima for diflerent n are

taken from the Tables of Iimden functions® and shown in Table 1.

YTABLE 1

V6 Y

=

.5 3.02
2.65
2.34
2,20

5 2.46s

B N -
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We can easily construct a function involving radius, temperature, and the
ratio of the radiation to gas pressure, which is a function of Y only.

Putting
py=BP= /H pL, py=tatt )
we get
:].,'—/.),:"‘ .’“Ii "l\:;
ﬁ 3 P 7
and
»1; u‘h I\-!i \ ! l
g% [ @ pH 3= AT =(4)* pd BEPE
'1‘ 3 K /,.1_, 4 K p )
Thus
1
(fl_ é.}ﬁ-_—.(gj)% p#H [27G )2 y-l
B 1T ' K 3 .
or
———-—L: 1'1 — S ___9,,_, - 2 K \’ ( )
vaita (-p)E/Pk amaG | pH Y

Regarding the stellar body as a variable polytrope, let us suppose that its
polytropic index = lics between two limits ny aud ny, so that ny=Sn=tny. In
casc of ceutral degeneracy (non-relativistic), or of stars whose masses arc not
large we may take n,=1.5, while no may be taken to be less than 5. Thus, if
the complicated pressure-density relation within a star be represented by a
variable n [defined by (1)] with 1.5 as its lowest value, then by Candler’s theorem
the value of Y at amy point within the star will be less than that for the curve
n=1.5 at the corresponding point. In the general casc ny<n<Cwg, this value
will be less than that for the curve ny at the corresponding point. But we have
seen that for a fixed ny, the relation between Y and 1 is given by (), and then
Y has a single maximum whose value is shown in Table 1. Hence the value of Y
anywhere within the star will be less than this maximum valuc of Y for the
said fixed value of ny (which is the minimum valuc of » within the star). Hence
from (10) we obtain :

T _ 7T I 3 )5 [ 1, 0-D/g
LT Ty < T, (” + l):!(fu =A. ...
vaiia G-gip e ( amaG J | e

For stars of small and moderate masses, we take n; =1.5, for which we get

A=35.4x1018u"1(cm.)(deg.). e (12)

For most small stars, the ratio of the radiatiou to gas pressure increases inwards,
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and may be taken to bc maximum at the centre. This is always true if % docs
not exceed 3.* For stars of small masses, n does not probably exceed 3.25. We
then write (11) and (12) as

)
<y (l;'b’)- . :l L5 x10'8=B o (13)

where y is a numerical constant introduced as a compensating factor for the
contingency that the ratio of radiation to gas pressurc may not be maximum at
the centre. This factor, however, we put cqual to 1 for stars of not large
masses, which is not far from truth.

For stars in which the radiation pressure is not small compared 1o gas
pressure, 1y (the minimum value of %) can probably be put much higher than
1.5. For instance, for stars whose 111§Sses are such that x2(M; ®) is greater than
5.7, no complete degeneracy is possible, and the radiation pressure will also be
considerable. For such wholly gascous stars calculations have been made with
ny=3 (figures for ny=1.5 are also given). 1f therc are convection zones near the
centre where adiabatic equilibrium may be assumed, then for stars of the main
sequence 77 ~I.5 Will be quite good, while for more massive stars with higher
radiation pressure an intermediate value between 1.5 and 3 will be probably
nearer the mark. In case of ny =3, (33) should be replaced by

Iy {‘I _'—ﬁ,/’)""L) . ;

Ldeexrold=p w1y
Now as n may generally exceed 3, the maximum value of ¢ may not occur
exactly at the centre, so y is expected to exceed the value unity. But the varia-
tion of ¢ in the interior is not considerable (the outer portion of the staris left
out of consideration), and y will always remain of the order of unity. But if by
g, we mean for ithe present the maximum value of the ratio of radiation to gas
pressure within the star, we may always put y=1. According to the recent
theory of energy generation due to Atkinson, Gamow and Bethe, the cnergy of
the main sequence stars is generated in the extreme central region, so that the
stars have mostly approximately point sources of energy. In such cases, as the
numerical integrations by Hddington and Biermann show the ratio of radiation to
gas pressure has the maximum vaiue ncar the centre, and this characteristic js
expected to be retained in most stars where cnergy is generated by the process
suggested by Atkinson, Gamow and Bethe, and the radiative gradient is replaced
by an adiabatic one.

The following Tabie gives an upper bound of the product 1" against the
value of g.=(1-0,)/B., the ratio of the two pressures within the star at the
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centre. We shall rather put y=1, and, for the present, mean by g, the maximum
value of ¢ in the stellar interior.

TABLE 2

| |
q. ; Bu (cmy) (deg. 5 q. B.u. (cm.) (deg.)
i ! |
4 [ 25x 1018 L ! 3.1 %108
i 4
2 13 % 10'8 1 1.9 x 1ol®
() !
i . |
) 7.8 x 10! } 1.2 % 108
=4 i
1 & 8 ! | s 18
g X 10 ! 0.56 % 30

Oy

»

We may generally put p=1 for stars in which hydrogen is abundant.

INTRODUCTION OF MASS IN THE UPPER BOUND
Under certain circumstances we can put the upper bounds in (13) and (13/)
in terms of the masses of the stars instead of the maximum value of the ratio of

radiation to gas pressure.
The incquality (6) gives an upper bound for (1=£.)/B.* in terms of the
mass M of the star, strictly speaking in terms of #.*M. Both (1—p.)/B.* and

l » . . . .
(1—=8,)%/B. being monotone increasing functions of (1—f.), we can calculate

from (6) an upper bound for (1'/3c)'5/[34~ as well.  Calling  this upper bound
F(M), we write
J
(1-B)¢B., <I(M). oo (14)

This, taken with the two equations (13), gives

4.4
For main sequence stars with small and moderate masses we take the figure
5.4, and put y=1; for more massive stars we take 4.2, and y to be of the order

7T <. !; rf(}\[),( 5-2 >x 10" (cm.) (deg.). . {135)
/

of unity. . ' .
From Table 2, as also from equation (15) an idea about the size of the

configuration can generally be made, if by “radius” 7 we mean a central
distance where the temperature has fallen to a value which is a suitable
(otherwise arbitrarily chosen) fraction of the central value. This step is rather
delicate and difficult. As nearly the whole of the mass of the configuration will
be included within a spherical surface on which the temperature is a fraction (say
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one-tenth) of the central value, the application of (14) does not produce any
difficulty. For stars of small and moderate masses within which the radiation
pressure is either very small, or not considerable, a variation limit for n between
1.5 and 3.25 will be quite appropriate. ILet us now call that value of » the
“radius”’ of the configuration where the temperature has fallen to, say, one
million degrees. ‘There are certain - difficultics in fixing this limit too low.
Firstly, though stellar conditions in the inside are roughly of uniforin character,
they diverge widely in the exterior, where the approximations will be faulty to a
great extent. Secondly, as the surface is approached, the gas pressure decreases
very rapidly, and gencrally the ratio of radiation to gas pressure will increase.
An adjustment of this by they factor may involve the use of such high values
of v as to render the approximations useless. It may be expected that for stars
of small and moderate masses a temperature of about a million degrees will
generally provide against this continmgency. TFor this reason in Table 3 up to
the value 5 in the first column, the factor y has been put equal to 1. There will,
of course, remain an outer envelope whose thickness is to be added to + for the
total radius R of the star (which is connected with the effective temperature).
T'or non-massive stars, as Chandrashekhar's ® investigation of stellar envelopes
shows, the increase of the pressure ratio within the whole of the outer envelope
up to about a miilion degrees docs not at the utmost exceed 609% of its value at
the bottom of the envelope, a consideration which suggests that it is not necessary
to seriously modify our approximation y=1 upto about a million degrees
temperature.  For stars of small and moderate masses the addition to ' for the
outer part of the envelope is also expected to he small, probably not above 20 to
25 per cent.

For stars of comparatively larger masses with larger radii, the results are
much more uncertain.  IMrstly, the value of y may be comparatively large ;
secondly, larger values of the polytropic index # wiil tend to make the envelope
more extensive. But there may be onc fact in favour of the approximation.
If the recent theory of energy generation be applicable also within stars of larger
masses (it does not certainly apply to all large masses), the stars will have nearly
point sources of energy, for which, as we have remarked, the pressure ratio
increases inside near the centre and y will have a value not very much differing
from 1. If the arbitrary limit of the temperaturc of 1 million degrees be in-
adequate, larger errors may arise. However, the question of the thickness of the
outer part of the envelope will remain here uncertain.

CALCULATIONS

Corresponding to the definition of the radius 1/, we shall have

M) < yE F(M) iﬁ x 10'? cms., .. (16)
IL . e
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Table 3 gives the maximum values of ur'(M)=1, corresponding to the values
of 1, 2M (in solar units) in the first column. (1—8.), in the second column is the
upper bound of 1—f, for corresponding values in the first columnn taken from
- Candler’s Table?!; the third column gives F(M), i.e., the upper bound of
(1-8.)%/8 ., calculated from the second column. The last column gives U the
calculated upper bound of u' (¢ in solar units) by (16). For values in the first
column greater than 5, calcuiations have been made both for #,=1.5, and u,=3,
and thosc for n=1.5 have been put within brackets.

IFor large masses n, is certainly greater than 1.5 but the values corresponding
to n,=1.5 are shown to give an idea of the unattainable extreme value. ¥ has
been put equal to 1 in the Table. Tt appears the bounds corresponding to n,=3
are all sufficiently high to cover the cases of very large stars. As these approxi-
ations have been made without taking into account the flow of radiation, the
opacity factor, jonisation, cte., these rough upper bounds, for stars of small and

moderate masses at least, may not be considered unsatisfactory.

TABLE 3

CpeM ; . 1 U
M in & units) (1=8. M) [ tin ( units)
0.5 0,0017 ~0.04 l 3
1 0.0068 0.08 ; 6
2 0.025 ! 0.16 | 12
!
5 0.109 0.37 ( 20
|
10 (0.2 N ) i (47 ¢
016 Y ; 0.48 ) ) 20§
20 (1.39) % | (1.0) % ]’ 1700}
0,30 ) (|,77 “ 46 )
50 to.57) ¢ SR 1
0.50 3 0.70 4‘
|
100 (0.68)) (2.5) } |
6.62 ) 2.0 § |
|

The first column gives the values of .3 (mass of the star in solar units), and the last
cohnn the upper limit of the radius in solar units. The figures within () for large masses
give the values of the upper Hmits on the supposition that the lowest polytropic index of such
star is 1.5, while the figures not within () are the values for lowest polytropic indea- 3.

The Table 3 shows that for small masses there is a linear rise in U for
varying #.2M, which is approximately at the rate of 6 per unit increase in e 2M.
For stars of small masses we may put p,m 1.
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We have collected the values of the masses and radii of some stars in
Table 4. They are taken from Tables given by Stromgren, and in Russel, Dugan,
Stewart’s Astronomy, and are arranged into groups according to their masses.

TABLE 4
Name of the star ; Mass : Radius
e o e e e '} S — ’g O
S. Ant, | ' 0.75 1 i 1.66 ¢
i § 0.42 ! :.29§
W. U. Ma f 0.69} 0,981
0.49 0.78 )
7. Hercules ‘;‘ 1.63 L7 z
1.3 3.29
¢. Hercules ‘ 0.05 1.9
R.T. Lac hr 1 4.
R.T. Lac 1.9 i 4.9
T. X. Her br ; 2.06 " 1.6
Sirius A ‘ 2.34 ; L8
Capella A 3 418 i 15.8
Capella B 3.32 6.6
wy Scorpii ‘ 12 : 5.5
S Auripe (B Comp? 8 5.1
(K. Comp) : 14.8 : 200
V. V. Cephei (M.Comp) uin‘:’ ( 1 ;I";g}
A. O. Cassiopiac : 40 ; 19
2¢ Canis Majoris A (i 46 ‘i 20

A comparison with Table 3 shows that except for small masses the
calcuiated upper bounds are rather too high. They indeed correspond to only
one steller parameter M, whereas by Vogt-Russel theorem a complete description
is possible only in terms of two parameters. Hence values much higher than
the maximum values in Table 4 are not altogether unexspected in our calculations.
In this respect the cases of S. Ant., R. T. Lac, Capella A are interesting.:'. Their
values nearly touch, or are within hundred per cent. of the corrcspondn.zg upper
bounds. The calculated bounds appear to be exceeded by Ii-Aurigzt (infra-red
component), V. V. Cephei which are distinguished by thcir\ exceptionally large

8—1387P—III
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radii. Chandrasekhar’s investigation of their envelopes shows that the masses
of these stars are very probably contained within 5 to 1o per cent. of their huge
radii. Our approximations will not evidentiy apply to such deep atmospheres,
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1 M.N.R.A.S., 100, 14 (1039).
2 Rritish Association Tables of Fmden Functions ; also proved analytically Bull. Cal. Math,
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3 Taken from British Association Tables of Kmden Functions.
4 This is discussed in a different paper by the aathor,

§  An Introduction to the Study of Stellar Structure, Chap. YTIT,





