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FORMULAE CONNECTING SELF-RECIPROCAL FUNCTIONS
By BRIJ MOHAN

(Received for publicatdon, April 24, 1941)

1. In 1931 Hardy' and Titchmarsh® s{nrted the question as to how functions,
which were self-reciprocal for Hankel ’g‘ransforms of different orders, were
connected with one another. They gave eertain rules for deriving self-reciprocal
functions for transforms of different orderi from those which were self-reciprocal
for transforms of a given order. In 1932 and 1034, 1 °* gave some more rules
of a similar naturc. ‘The object of this note is to add a fcw more to the list of
these rules. In the end I use these ruies to derive some new self-reciprocal
functions.

I will say that a function is Ry if it is self-reciprocal for J» transforms. For
R, and R-; I will write R, and R, respectively.

1 will make use of the following result given by me clsewhere (3: §8) :—

If f(x)is Ry, the function

£(x) =s P(xy)/(y)dy
0
is Ry, provided that

ki
Pla)=— \ 2'DE+ip+il(E+iv+idAls)a ds, T
ami I,
where o<k <r,
and As)y=A{1—s). e (1.2)

2. Rule I.—The kernel +~3% transforms Ru into Ry, where u > =1, v >-1.

This is almost obvious. For, in this case,

g(x)= -—I S‘ ’*I::' f(y)dy.
v JoNy

This is only a constant multiple of the function x~* which is known to be Ry
v ; ) intv
3. Rule II.—The kernel a* " J, _4 o], g (1) transforms R, _ - 1m0

R, where v> %
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To prove this rule, I start with the Weber-Schafheitlin [6 : 13.41 (2)] iutegrai

" lax)alen) ;GO S (3 VES L N
o A 2'G+im+in+30) T'(3- Jm+3n—3A) P(%+%111—7‘n+§)\)'

where Rim+n+1) > R(A) > o.

This formula is the same as

R = (@a7'T(a-)
so X Jm(ax)Jn(ax)dx ”l‘([+'}m+‘§ﬂ_%l)

X

I[(%m%}n-l-
x=fm+in—4n1 1+%m in—131)

X

o' TE -G =40 Em+n+30)
2 a1+ im+in—3)T (1 —3m+3n—3)TY( 1+J;m-§n—}1)

where R(m+n) > R(-1) > —1.

By Mellin’s Inversion Formula (1) we have

b+iw

1 1 T'4-141
In(ax)]n(ax) = ayn 2w ) Dlr+im+dn—i)

b—iw

T -3DLGEm+4n+ 30

l‘(l*‘}m+1§n (1 +4m— %n 30 (ax)~tdl,

so that
brim
L 13— 41)
2mi 1(1 +1}m+’in—£l
b—iw

X Jm(l \r)Ju(i \) e

2s/1r

— Ta-4r (Gm+in+30) =1l

Ta-fm+in— WD +im=in—3l)

b—a+im
=270 1 o LE-3a~15)1' (1 ~fa—1s)
N " omi T'a+dm+4in—3a—1s)

b-a—-t®

I‘(im*‘ini“-}a +i5) -1 ds,

1‘(1-‘Lm+§n—7}a—§5)‘[‘(1+*m_%n_1}a_%s-)x (3.1)

w, ere ~R(m+n) <b<1.
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Putting m—1=n=—a=v—§, we get
b=§+v+in
§—-v 2%—1' 1
% )y G, sldx) = —— 2
2 2 ~/n, am

b—% +v—1{o
T(d+ v D=1+ v+ bs) _,
D=+ 53— 39T +4r—1s)"

where -—21r<b§:1.

X

ds,

This integral is of the same form as (r:1) with u=3v—3,

= 2%—]/ I'(} 'i"}\'"'f}s)r(—}»tjv-{jisr)i S
v D=+ 3+ 3D(= 3+ e 3D+ v+ 49T + b= 19)

which evidently satisfies (1.2).

x(s)

Hence follows the resuit.
Putting v=1 we get
sin v

N x

Rule 11I.—The kernel transforms Ry into R;.

In 1934, I (4 : §3) gave the rule that

The kernel x_%v Hy _. (x) transforms R, into R, where Hy(x) is

Struve’s function [6 : 10.4(2)] of order v.

As p and v are inter-changeable in (1.1), this rule may also be written thus :

The kernel .\'*iv H, _ 1 (v) transforms R, into Rj.

3V

As H_%(x) = \/:\ sin «,

it follows that Rule 11l is a particular case of this rule for v=o.

1f, in (3.1), we take m=n=— d=v—1}% and proceed as before, we obtain

Rule 1V.—'The kernel :vJj 3 3 (3x) Jv-—i () transforms RS‘

V=4

into R v

-
for v> 1.

1f here we take v=1, we get

3 . .
Rule V.—The kernel x~ 2(1—cos x) transforms R, into R,.
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If, in (3.1), we take m= —n=4v—1, d=o0, and proceed as above, we derive
Rule VI.—The kernel J; 4 (3a)J;_, ($x) transforms R intoR_ for
v—1 i-4v v—1 v

v>>o.
For the particular case v=4, we have

Rule VII.—The kernel il—r;c Y transforms R, into Ré.

4. ‘Titchmarsh (5 : 7.10.4) has given the pair of Mellin Transforms
T3 T (3s+n)
K)Yn(x)y = gy 2 RS TR
Tn(x)ya(x), 2\/;’ G+3T(+n—1s)
If we start with the integral formula for this pair, and proceed as ahove, we
arrive at

) ‘
Rule VIIT.—The kernel »%' +"]:7._).V+_‘1:(%-\”) Y.;‘;‘,,,_,‘l;(?}.\') transforms R:‘!"“?’z

into R,v, where v > —1.
e e )2 e
As 74{x)= »\/;m_ cos x,
if we put v=1 in Rule VITI, we arrive at Rule TII again.
If we use the pair
e“ka(x), II"% cos nm. 2 TG =)D (s+n) (s —n)

given by Titchmarsh (5 : 7.10.0) and proceed in the same way, we obtain
=1 dx . ;
Rule IX.—The kernel x°° ‘e klv_l(éx) transforins R, _ ] into R‘, for
B [

v> 1
When v=1, we obtain the rule that the kernel x—% transforms R, into R;.

This is already contained in Rule 1.
5. I now proceed to derive certain self-reciprocal functions with the help of

the above rules.
We know that the function

+ —3a2
M %e LE v (5.1)
is R " in other woids, that the function ‘
—0 1.2
T Bt

v=1"

is R
is R,
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Applying Rule II to this function, we arrive at the Rv function g(x) given by

g(:vi=g (c)2 " Ty Bt 3 G380

o B

o

3,:... ’ b - -1 2 . )
=2 ‘St‘ T Tomy Ga0T, _a (Get)dt.

3
o pl

This integral may be evaluated by a foﬁnula given by Macdonald (6 : 13.32)
for v> 4. We thus find that g(x) is a constant multiple of

=34, v, 2y —1

B3

S-v o av—2 . .

R Qg ;»,( : ; ~%x3)
v+, l""i, 2v—71

which is the same as
Yy LI . 2
X ]I‘l(": v+%, -4v?).
Using Kummer's Transformation Formula
1Frla; ps 2)=e" Filp=d; p; —2),

we find that the function

2
v—% ~4x® .
X ie 4 Fid; v+d; 4x9)
isR_for v> 3.
If we apply Rule IV to the function (5.1) we arrive at the same function

again, .
If we apply Rule VI to the function we find that the function

|F1(‘5} 'l;)"‘%"; —4§a?)
is R for v>o.

BENARrES HINDU UNTVERSITY.
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