ON THE PROPAGATION OF E. M. WAVES THROUGH THE UPPER ATMOSPHERE

By M. N. SAHA,* B. K. BANLiRJEA and l. C. (iliha

Abstract

 atmosphere, traversed be a magnetio fieht, an in the cane of the larth's atmenplete. atmosphere when travetacd b dadio wases, in a tensireform, ds fin a mggested by barwin. The erguations of propagation of radio frequencr wave through such a medimen are obtained by the use of cardinal axes, and then the equations of vertical propagation are dedneed lixpressions are obtained for of frative indices of ordinary and exthaorduary wales, which agree with the expressions eiven b, Appleton. Fexpecsions ance oblained ion phlarisation, abonption cte. of the radio waves travelling in the innophere. Curses ane givenfor the latitude of the place of observation.

 the problem of the propagation of e.m. Waves in the ionosphere has received attention from mumerous workers Summaries of these works are available in various reports. Recentiy B. K. Banerjea (eng7) made a critical and comparative study of the fundamental inctlouds of Λ_{p} pleton (11,32), Bartrec (1932), Saha, Rai and Nuthur (r(137) and Saha and Banerjea (I 945) and showed that these varions muthods can be deduced as special cases of a generai method developed according to Darwin's (1025) supgestion of treating the e.m. properties of the mediun as teusor quantities. The present paliel continus the tecatment further and ams at givius a true wave formulation of the general problem. For the convennence of the reader some results of the previous works carricd out by the senior anthor and his carly coilaborators are included so that no further references to these prapers are needed. Part of the results mentioned in the curlier parts are not new, but have been derived in a novel, easier and unitary way.

The Displacement of the Ions in the Ionosphere

The equation of motion of the charged ions referned to any system of co-ordinates can be written as :

$$
\begin{equation*}
\frac{d^{2} \rho}{\bar{d} l^{2}}+v \frac{d \rho}{d l}+\frac{c}{m c}\left[\mathrm{H} \times \frac{d \rho}{d t}\right]=\frac{c}{m} \boldsymbol{E} \tag{1.1}
\end{equation*}
$$

[^0]where $\rho=$ displacement vector w ith components $(\xi, \eta, \bar{*})$
$\varepsilon, m=$ magnitude of the charge and mass of the ion respectively.
$v=$ collision fiequency of the ions.
$\mathrm{H}=\mathrm{F}$ arth's maknetic field.
$\boldsymbol{E}=\boldsymbol{E}_{1,}$ cos β, electric vector of the ineldent clectromagnetic wave.
The effect of the magnetic vector and the space charges have been onited as nsual. The notation conforms as closely as possible to those used by $\Lambda_{i p h e t o n ~(1932) ~ a n d ~ S a h a, ~ R a i ~ a n d ~ M a t h u r ~(1937) ~ a n d ~ B . ~ K . ~ B a n e r j e a ~(1947) . ~}^{\text {a }}$.

It ean easily be verified that the solution of the above equation with $\boldsymbol{E}=\boldsymbol{E}_{0} \cos p$ is the ral part of the solution obtained with $\boldsymbol{E}=\boldsymbol{E}_{n c^{\prime}}{ }^{\circ}{ }^{\prime \prime \prime}$; we use \boldsymbol{E} in this later form becaluse solution is then casy to obtain. 'llac quantity analogous to the static conductivity now comes out as complex (Stratton, 1042), whose wal part gives ordinaty refractive index and the imakinary bart gives deviation of the refractive index from misty.

Introducing the polarisation vector $\boldsymbol{P}=-4 \pi \mathrm{~N} c \rho$ where N is the ionconcentration and using the abbreviations,

$$
\begin{aligned}
& \stackrel{m p^{2}}{\mathrm{~N} c^{2}}=\frac{4 \pi p^{2}}{p_{10}{ }^{2}}=\frac{1 \pi}{9}, \quad p_{0}{ }^{2}=\frac{4 \pi \mathrm{~N} \rho^{2}}{m}, \quad,=\begin{array}{l}
p_{0}{ }^{2} \\
p^{2},
\end{array} \\
& r / p=\delta, \quad \quad \mathrm{I}-1 \delta=\beta, \quad \ldots \text { (1.2) } \\
& \frac{c \Pi I}{m c}=\mathbf{p}_{h}, \quad \frac{\mathbf{p}_{h}}{p}=\omega_{\text {with }} \text { components } \omega_{r}, \omega_{h}, \omega_{k} .
\end{aligned}
$$

We get from equation (I.1) replacing $\rho(\xi, \eta$, , $)$ by $\frac{1}{4 \pi} \overline{\mathrm{~N}}\left(I_{r}^{\prime}, I_{y}^{\prime}, I_{n}\right)$

$$
\begin{align*}
\beta P_{x}+i \omega_{z} I_{y}-i \omega_{y} I_{z} & =-E_{x} \\
-i \omega_{a} P_{x}+\beta P_{y}+i \omega_{x} I_{z} & =-E_{y} \tag{I,z}\\
i \omega_{y} P_{x}-i \omega_{x} P_{y}+\beta P_{z} & =-E_{z}
\end{align*}
$$

The solution of these equations can be biefly written as

$$
\begin{equation*}
P^{\prime}=\mathrm{A} \Delta \cdot E \tag{I.4}
\end{equation*}
$$

where $A=\frac{r}{\beta\left(\beta^{2}-\omega^{2}\right)}$ and Δ is a tensor given by the matrix,

$$
\Delta=\left|\begin{array}{lll}
\omega_{x}{ }^{2}-\beta^{2} & \omega_{x} \omega_{y}+i \beta \omega_{z} & \omega_{x} \omega_{z}-i \beta \omega_{y} \\
\omega_{y} \omega_{x}-i \beta \omega_{i} & \omega_{y}{ }^{2}-\beta^{2} & \omega_{\eta} \omega_{z}+i \beta \omega_{x} \\
\omega_{z} \omega_{x}+i \beta \omega_{y} & \omega_{z} \omega_{y j}-i \beta \omega_{x} & \omega_{z}{ }^{2}-\beta^{2}
\end{array}\right| \quad \ldots \quad(1.5)
$$

It has been shown by Saha and Banerjea (1945) that the tensor possesses certain "Cardinal Axes" which may be denoted by $1,2,3$. " 1 " is the

Propagation of E.M. Waves through upper Atmosphere

direction of the earth's magnetic theld, " 2 " is the line perpendicular to the magnetic meridian, and " 3 " is the line perpendictiar 10 " 1 " lyine in the magnetic mendian. The relation between these axes and the axes commonly used in ionospheric problems with $\mathrm{X} \%$ as magheme mendian and 1% as vertical is shown in the diagram below:

Jif. 1
Shows disposition of cardinal aser ($1,2,3$) with axes bued
generally in cousidering vertical propagation.
In this figure $\theta=\angle Z O 1$ is called the angle of propagation. The axis (o) is always along the positive direction of H . In general literature on ionospheric problems, the positive dincetion of H is generally not expressed quite clearly, with the result that the sense of rotation of the clectric and magnetic vectors of the returning tadio wave is lett unclarified. In what follows the positive dinection of H is along the positive direction of the magnetic lines of force, i.c. in the northern hemisphere it is downward and in the southern the reverse is the case.

Choice of these axes is equivalent to putting

$$
\omega_{1}=\omega, \quad \omega_{2}=\omega_{3}=\omega_{1}
$$

where $\omega_{1}, \omega_{2}, \omega_{3}$ are the components of ω along $(1,2,3)$ axes. We have then

$$
\Delta=-\left|\begin{array}{lll}
\beta^{2} \cdot w^{2} & 0 & 0 \tag{1.6}\\
0 & \beta^{n} & i \beta \tilde{u} \\
0 & -i \beta w & \beta^{2}
\end{array}\right|
$$

The complex conductivity of of the medium, defined by the equation

$$
\sigma \cdot E=\text { current }=-\mathrm{N} e \frac{d \rho}{d t}=-i p \mathrm{~N} \mathrm{t}^{\prime} \rho=-\frac{i p}{4 \pi} P=-\frac{i p \mathrm{~A}}{4^{\pi}} \Delta . E \text { is a lensor }
$$

quantity defined by the matrix,

The steady curemt combluctivity os in obtained from above by putting $r=0$. We hate

Than in the direction of the magnetic field, the steady current conductivity is $\begin{gathered}\mathrm{Nc}^{2} \\ \mathrm{ml}^{\prime}\end{gathered}$. We have the componemes of current as

$$
\begin{aligned}
& i_{1}-\underset{m v}{N c^{\prime 2}} l_{1}
\end{aligned}
$$

$$
\begin{align*}
& i_{3}=\frac{\mathrm{N}_{4}^{2}}{m\left(p_{1}^{2}+v^{2}\right)}\left(-p_{n_{1}} E_{2}+r_{3}\right) \tag{s}
\end{align*}
$$

 transverse conductivity. We have hesides, the current $i_{3}=-\frac{\mathrm{N}^{2} p_{n}}{m\left(p_{n}^{2}+v^{2}\right)} E_{2}$ along the $\%$ axis, though there may be no e.m.f. in that direction

The Polansulion Vector.-The polarisation vector \boldsymbol{P} is defined as

$$
P=\frac{4 \pi_{1}}{p} \boldsymbol{\sigma} \cdot \boldsymbol{E}
$$

and we can easily deduce that

$$
\begin{equation*}
E_{1}=-\frac{\beta}{r} P_{1}, \quad E_{2} \pm i E_{3}=-\frac{\beta \mp r e^{\prime}}{r}\left(r_{2} \pm i P_{3}\right) \tag{1.10}
\end{equation*}
$$

The Etecthic Dispiacement Vector and the Complex Diclectric Tensor.The electric displacement vector $\boldsymbol{D}=\boldsymbol{E}+\boldsymbol{P}$ may be expressed as $\boldsymbol{D}=$ K. \boldsymbol{E}., where K is the complex dielectric tensor given by the matrix,

Propagation af E. M. Waves through upper Atmosphere

$$
\mathrm{K}=\left|\begin{array}{ccc}
\mathrm{x}-r / \beta & 0 & 0 \\
0 & \mathrm{I}-r \beta /\left(\beta^{2}-\omega^{2}\right) & i \omega^{2} /\left(\beta^{2}-\omega^{2}\right) \\
0 & -i r \omega /\left(\beta^{2}-\omega^{2}\right) & \mathrm{I}-r \beta /\left(\beta^{2}-\omega^{2}\right)
\end{array}\right| \quad \ldots \quad(1.11)
$$

2. THE MAXWELLIAN EOUATIONS

From the Maxwellian equations :

$$
\nabla \times \boldsymbol{H}=r_{i}^{\mathrm{I}} \quad \frac{\partial \boldsymbol{D}}{\partial t}, \quad \nabla \times \boldsymbol{E}=-\frac{\mathrm{J}}{c} \quad \frac{\partial \boldsymbol{H}}{c} \quad \frac{\partial l}{}, \quad \nabla \cdot \boldsymbol{D}=\nabla \cdot \boldsymbol{H}=0 \quad \ldots \quad \text { (2.r) }
$$

We get by the usual methods, the equations of perp:gation for the electric and magnctic vectors in the form:

$$
\begin{aligned}
& \Delta^{2} E_{1}+\frac{p_{c}^{2}}{c^{2}}(1-1 / \beta) E_{1}=0 \\
& \nabla^{2}\left(E_{2} \pm i E_{3}\right)+p_{c^{2}}^{2}(1 \cdots, j(\beta \pm \omega))\left(E_{2} \pm i E_{3}\right)=0 \quad \ldots \quad(2.1) \\
& \nabla^{2} \boldsymbol{H}+\frac{p_{i}^{2}}{c^{2}} \boldsymbol{H}=-\frac{4 \pi}{c} \nabla \times(\boldsymbol{\sigma} \cdot \boldsymbol{E})
\end{aligned}
$$

The Wave Equations gor Vertical propagation in any Lalitude:Let us first confinc ourselves to the propagation along the vertical Z-axis, so that ∇ and ∇^{2} simply reduce to $\frac{d}{d z}$ and $\frac{d^{2}}{d z^{2}}$ Introducing the new variable $u=p z / c$, we get from (2.2)

$$
\left.\begin{array}{ll}
\frac{d^{2} E_{1}}{d u^{2}}+\left(1-\frac{r}{\beta}\right) E_{1}=0 & \ldots \\
(2.3 i 1) \\
\frac{d^{2}}{d u^{2}}\left(E_{2}+i E_{3}\right)+\left(1-\frac{r}{\beta-\omega}\right)\left(E_{2}+i E_{3}\right)=0 & \ldots \\
(2.3 b) \\
\frac{d^{9}}{d u^{2}}\left(E_{2}-i E_{3}^{7}\right)+\left(1-\frac{r}{\beta+\omega}\right)\left(E_{2}-i E_{3}\right)=0 & \ldots
\end{array}\right)(2.3 \mathrm{c})
$$

The components of the vector li in two systems $(1,2,3)$ and with

$$
\begin{array}{ll}
E_{1}=E_{x} \sin \theta+E=\cos \theta ; & I_{r}-E_{1} \sin \theta-E_{3} \cos \theta \\
E_{2}=E_{y} ; & E_{y}-E_{i} \\
E_{3}=-E_{x} \cos \theta+E: \sin \theta ; & E_{z}=E_{1} \cos \theta+E_{3} \sin \theta \tag{2.4}\\
\quad \omega_{x}=\omega \sin \theta, \quad \omega_{y}=0, \quad \omega_{z}=-\omega \cos \theta
\end{array}
$$

The equations (2.3) as such are not suitable for use when we consider the propagation of plane waves, for such cases we have to use in conjunction with (2.2), the Maxwellian condition $\nabla \cdot D=0$. For vertical propagation, this
reduces to $\frac{d}{d z} D_{z}=0$, i.e., $D_{z}=0$, since the steady components of \boldsymbol{D}, if any, are unimportant in the study of the wave propagation :

From $D_{z}=0$ and (1.4) and (T.5) we have climinating $P_{x}, P_{y}, P_{\varepsilon}$ and putting $w_{u}=0$.

$$
\begin{equation*}
E_{:}=\frac{i \pi^{\prime} x}{c^{\prime}}\left(-\omega_{i}^{\prime} E_{x}+i \beta E_{y^{\prime}}\right) \tag{2.5}
\end{equation*}
$$

where $C^{2}=\beta\left(\beta^{2}-w^{2}\right)-1\left(\beta^{2}-w^{2}\right)$.
Multiplying (2.3a) hy $\sin \theta$ and the diffencoce of (2.31) and (2.3c) by $-\cos \theta$, adding the results and then replacing E_{1}, E_{2}, E_{3} by their equivalent expressions in terms of $E, E_{n}, l:$, from, ${ }^{\prime} \sim 4$) we get aftel some simplification,
where

$$
\begin{align*}
& d^{2} I_{1} \tag{2.6}\\
& d u^{2}
\end{align*}+\mathrm{K}_{1} E_{x}-i \mathrm{I} E_{y}=0
$$

Again replacing E_{2} and E_{3} by E_{r}, E_{n}, E in equation (2.3b) from (2.4) and E : by E_{x} and $E_{"}$ from (2.2), we have after some work,

$$
\begin{equation*}
\frac{d^{2} E_{u}}{d u^{2}}+\mathrm{K}_{2} E_{u}+\mathrm{I}_{4} E_{r}=0 \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{K}_{2}=\mathrm{I}-r \frac{\beta^{2}-r \beta}{\mathrm{C}^{\prime}} \tag{2.0}
\end{equation*}
$$

Iqquation (2.6) and (2.S) were obtained explicitly in this form by Saha, Rai and Mathur (1937). Equivaient equations with vector components of the ordinary and extraordinary waves intermixed in each equation were obtained by Rydbeck (1944). But equations in this fon in do not help) much in the understanding of the phenomena, unless the coupling ten L , between the variables vanishes. This takes place at $\theta=\pi / 2, i . c$., at the magnetic eduator, where the equations of propagation become,

$$
\begin{aligned}
& \begin{array}{l}
d^{2} E_{x} \\
d u^{2}
\end{array}+\left(1-\frac{r}{\beta}\right) E_{x}=0 \quad \ldots \quad \text { (2.10) }
\end{aligned}
$$

For the magnctic poles, $\theta=\pi$ and o , and for these values of $\theta, \mathrm{K}_{1}=\mathrm{K}_{2}$; for $\theta=\pi$, i.e., mag N-pole, the equation of propagation takes the form :

$$
\frac{d^{2}}{d u^{2}}\left(E_{x} \pm i F_{y}\right)+\left(1-\frac{T}{\beta \dot{\mp} \omega}\right)\left(F_{x} \pm E_{y}\right)=0 \quad \ldots \quad \text { (2.11) }
$$

For $\theta=0$, i.c., mas. S-Pole, the equation similarly reduces to

$$
\begin{equation*}
\frac{d^{2}}{d u^{2}}\left(V_{x} \pm i E_{u}\right)+1-\beta+\omega_{1} \quad\left(F_{x} \pm i E_{y}\right)=0 \tag{2.11a}
\end{equation*}
$$

Equation in these forms were stomled by Gala and Ran (In 37), for the case when damping is nesligible, $1,1, \beta=1$, from the wave mechanical point of view. The Chapman layer of :om-distribution was treated as a potential barrier and the penctration of the waves muder certain simplifying assumptions were studied in the same way an Gamow din in his famons work on the " Penctration of the Potentiai Banter of Nuclei of Atoms by High Einergy Particles." Recentiy Rydbeck (in)2 hats studied these cynat ions when the coupling term I, vanishes; he has given an ciaborate treatment of the wave cumations for marnetic equator and takins a parabolic ion-layen and using Welber's parabolic functions he has obtained expressions for the weflection co-cfficient, transmission co-eficient and hase retartation of the wave in a thin friction free parabolic layer. In the ray tratnent of $\Lambda_{\text {ppleton we practically }}$ confinc ourselves to these two limitus cases, vix., their quasi-longitudinal case is for $\theta=\pi, 0, i, c ., \mathrm{K}_{1}=\mathrm{K}_{2}$ and their quasi-transverse case, i.c., $\theta=\frac{\pi}{2}$, $L=0$.

The following muthod wil be found applicable to all stations. Multiplying both sides of (2.S) by "if," and aulding to (2.6), where l^{1} is an indeterminate multu, lier to be presenlly, delermined, we have

Now choose F in such a way that $\mathrm{K}_{1}-\mathrm{Fi} \mathrm{L}_{1}=\mathrm{K}_{2}-\mathrm{L}$
so that F is given by the equation

Put

$$
\begin{aligned}
& \mathrm{F}^{2}-\frac{\mathrm{K}_{1}-\mathrm{K}_{2}}{\mathrm{~L}_{1}} \mathrm{~F}-1=0 \\
& \frac{\mathrm{~K}_{1}-\mathrm{K}_{2}}{\mathrm{~L}}=\underset{(r-\beta) \cos \theta}{{ }^{\omega} \sin ^{2} \theta}=2 \mathrm{C}=2 g \cos \alpha c^{\prime a} . \\
& g=\begin{array}{c}
\omega \sin ^{2} \theta \\
(r-1) \cos \theta,
\end{array} \quad \text { tan } \alpha=\begin{array}{c}
\delta \\
{ }_{1}-r
\end{array} \quad \text { (2.14) }
\end{aligned}
$$

Let F_{1}, F_{2} be the roots of equation (2.13). Then

$$
\begin{aligned}
& F_{1}, F_{2}=G \pm \sqrt{I+G^{2}} \\
& =g \pm \sqrt{I}+g^{2} \quad \text { fo1 } \hat{\delta}=0 \quad \text {... } \quad(2.15)
\end{aligned}
$$

Now turning to equation (2.12) we call rewrite it in the form

$$
\frac{d^{2}}{d u^{2}}\left(L_{x}+i \mathrm{~F} E_{u}\right)+q^{2}\left(E_{i x} ; i \mathrm{I}^{\mathrm{F}} \sum_{y}\right)-2 i \frac{d \mathrm{~F}}{d u} \quad d I_{u}-i^{d^{2} \mathrm{~F}} \mathrm{~F}^{2} E_{y}=0 \ldots \quad \text { (2.16) }
$$

Where q has the twor values siven by

$$
\begin{align*}
& q_{1}{ }^{2}=\mathrm{K}_{2}-\underset{\mathrm{F}_{1}}{\mathrm{I}_{1}}-\mathrm{K}_{2}+\mathrm{LF}_{2}=\mathrm{I}-\frac{r}{c^{\prime}}(\beta-\gamma)\left(\beta+\omega \cos \theta \mathrm{F}_{2}\right) \\
& =1-\frac{r}{\beta+\omega \cos \theta \mathrm{F}_{1}} . \tag{2.17}\\
& q_{2}{ }^{2}=\mathrm{K}_{1}-\frac{\mathrm{L}_{2}}{\mathrm{~F}_{2}}=\mathrm{K}_{1}+\mathrm{l}_{1} \mathrm{~F}_{1}=\mathrm{I}-{ }_{c^{\prime}}^{r}(\beta-r)\left(\beta+\omega \cos \theta \mathrm{F}_{1}\right) \\
& =1-\frac{r}{\beta 1 \omega \cos \theta \mathrm{~F}_{2}} \text {. } \tag{2.18}
\end{align*}
$$

for $C^{\prime}=(\beta-1)\left(\beta+\omega \cos \theta \mathrm{I}_{1}{ }_{1}\right)\left(\beta+\omega \cos \theta \mathrm{F}_{2}\right)$.
In thase cases where : the quantities $\frac{d l^{*}}{d u}, \frac{d^{2} I^{i}}{d u^{2}}$ can be neglected, the equations can be written as

$$
\begin{align*}
& d^{2}\left(L_{1}+i \mathrm{~F}_{1} E_{y}\right)+q_{1}{ }^{2}\left(L_{x}+i \mathrm{~F}_{1} L_{y}\right)=0 \tag{2.16a}\\
& \frac{d^{2}}{d u^{2}}\left(L_{x}+i \mathrm{~F}_{2} L_{y}\right)+q_{2}{ }^{2}\left(J_{x}+i \mathrm{~F}_{2} L_{y}\right)=0
\end{align*}
$$

'These simuly that the beam is broken up into two, with the aefractive indices q_{1}, and q_{2}, and polarisations determined by F_{1} and $F_{2}\left(d i d e \S_{4}\right)$.

We next proced to discuss the case of friction free atmosphere. In this case we have

$$
\begin{align*}
& q_{1}{ }^{2}=1-\frac{r}{1+\omega \cos \theta \mathrm{F}_{1}} \tag{2.17a}\\
& q_{2}^{2}=1-\frac{r}{1+\omega \cos \theta \mathrm{F}_{2}} \tag{2.18a}
\end{align*}
$$

Both q_{1}, q_{2} are to be continuous fanctions of r. We find from the expression for g, that for $r \rightarrow \mathrm{I}, g \rightarrow \infty$. At this point, $q_{1}{ }^{2}, q_{2}{ }^{2}$ should obey the condition of continuity, i.c.,

$$
{\left.\left.\underset{r=1-0}{L}\left(q_{1}^{2}, q_{2}^{2}\right)={\underset{r=1+0}{1} t}^{q_{1}} q_{1}^{2}, q_{2}^{2}\right)\right) ~}_{2}
$$

'faking first q_{1}, we find that if we take for the degion $r=0$ to $r=1$

$$
F_{1}=g-\sqrt{I}+g^{2}, \text { consequently } q_{1}^{2}=1-\omega \cos \theta\left({\sqrt{I}+g^{2}}^{2}-g\right) \quad(2.17 b)
$$

Then q_{1} varies from I to o in the domain $r=0$ to 1 . As the value is to be continuous, and since g on crossing over to $r=r+0$, becomes negative, we find that for this region $(r>0)$ we should put

$$
\begin{gather*}
F_{1}=\sqrt{ } \mathrm{I}+g^{2}-\mid g \\
i . e ., q_{1}^{2}=1-\frac{1}{1}+\omega \cos \theta\left(\sqrt{I}+g^{2}-|g|\right) \tag{2.17c}
\end{gather*}
$$

Propagation of E. M. Waves through upper Atmosphere

These expressions for $q_{1}{ }^{2}$ has no singutarity at any poin and it is identical with the expression for the refractive index of the ordinary wave as given by Appleton. $\mathrm{A}\left(1-q_{1}{ }^{2}\right)$ curve for different values of θ tom expressions ($2.17 b, c$) is given in F ig. 2, for $\omega<1$, and $\omega>\mathrm{r}$.

lic. :
Variation of the square of the refrutive indea tor the o- wave wifl chethom

For the other beam we can now substitute the corresponding value of F_{2}, we oblain :

$$
\begin{aligned}
& =1-\cdots \quad r \quad \frac{r}{1-\omega \cos \theta\left(\sqrt{1}+g^{2}+|g|\right.} \text { fol } \quad 1>1 \quad \ldots \quad(218 c)
\end{aligned}
$$

It can be easily shown that for $\omega<1,\left(1-q_{2}{ }^{2}\right)$-curve stants from $(0,1)$ passes through ($1-\omega$, o) and a point of infinite simularity at $r=\frac{1-\omega^{2} \cos ^{2} \theta}{1-\omega^{2}}$ where it passes from $-\infty$ to $+\infty$, passes through the point $(1, \mathrm{r})$ and $(\mathrm{x}+\boldsymbol{\omega} .0$) for all values of θ. $\boldsymbol{q}^{2}{ }_{2}$ has therefore to be identified with the square of the refractive index of the extraordinary wave (Fig. 3).

For $\omega>1$, we find that the curve passes through (0,1) and $(1,1)$, between $r=0$, and $\mathrm{I}, q^{\prime \prime}:>1$ but after ($\mathrm{I}, 1$) the value of $q^{\prime \prime}$) beconcs less than unity and gradually tends to the valuc zero at,$=1+(1)$, after which it is uegative (Fig. 3).

The quantities $g(\omega, 1, \theta),-F=\sqrt{1+g^{2}}-|g|$ which occur in this work are functions of ω, r and θ.

In Table I, the function $g(\omega, 0, \theta)$ has been given for various valucs of ω and θ. To obtain $g(\omega, r, \theta)$ we have to divide $g(\omega, u, \theta)$ by $(r-1)$.
Table 1
$g=\omega \cos ^{2} \theta / 2 \sin \theta, \quad r=0$

θ°	$\omega=.1 . \quad \omega=2$		$\otimes=$	$\omega=.5$	$a=.8$	$\omega=\mathrm{I}, \mathrm{O} \quad \omega=\mathrm{I}, \mathrm{E}$		$a=2 \quad a=5$		$x=10$	$\cdots=20 \quad a=5$		a 100
91°	2.86	5.7270	8.591	14.315	22008	28635							
$92^{\circ}{ }^{\circ}$	1.4310 .9525	2.8620	4.893	7.155	$1 \mathrm{H}, 448$	14.310	42955 21.465	57,276 28.026	10315 715	28685 143 80		14315 -15	$\because 285$
$93{ }^{\circ}{ }^{\circ}$	-9525	1.935	2.858	4.763	$\begin{array}{r}7.620 \\ \hline 7.605\end{array}$	19.525 9.5	-1.29\%	19.05	7. 4.5	14316 9525	20゙2	-15	:31 ${ }^{\text {a }}$
94.	- 7135	I. 4270	2.141	3. 568	- 5.70 S	7.135	10 05	$1 \rightarrow 2$	- 3.65	-	İ2	4-8\%	9:2 5
95 190 190	. 3695	1.1390 .5586	1.700	${ }_{2} 84{ }_{4}$	4.556	5605	S. 545	II	- ${ }^{\circ}$	5695	113.	8,	733
$105{ }^{\circ}$	-18:2	.5586 .3604	. 534	1397 .097	1 2.234	2.793 1.802	4100	$5{ }_{5} 50$	13.5	27,93	568	1,90	5ry $2-9$
110°	.1291	. 2581	. 38.	. 64.	+1.142	1.802 1291	2.795 1.935	5.604 2.541	901	18 S	$5{ }^{5} 8$	${ }_{6} 1$	ISい
$115{ }^{\text {c }}$	0972	. 1944	. 292	. 456	. 77	1.89 .972	1.935	${ }^{2} 2.511$	¢ 4	12 Cl	-581	645	120.1
120°	. 075	. 1500	225	.375	. 60	. 750	1.113	19.4 I. 50.	48	C1.-2	10.44	480	97
$125{ }^{\circ}$. 0585	. 1170	.176	. 295	. 468	485	1.15	I. I		- 5	150	37	75.1
130°	. 0457	. 0913	. 137	. 225	. 3^{65}	. 45	. 655	1.913	20, $=.28$	585	11.-:	293	585
$135{ }^{\circ}$.0354	0707	. 106	.17	. 283	. 354	. 530	.70-	- 7	45	9.13	22.6	45%
140°	. 0270	. 0539	.OSI	. 135	. 16	2-r	455	339	I.	-	70	1\% 7	35.4
1455°	. 0201	0402	.06:	.100	.10́r	201	. 300	-430	1.1.	2.0		135	27.1
150°	.0144	0289	. 043	. 0.2	. 115	.144	. 215	. 289	-2\%	144	+192		21.1
155°	$\therefore 099$. 2197	.c30	. 049	.079	. 099	.15	.19 ${ }^{-}$	-180	$\begin{array}{r}19 \\ \hline 99\end{array}$	280 19%	4	11.7
	,0062	.0125	. 019	. 031	. 05.	.0 2	-	. 125	-ir	. 62	1.25	4	9.9
1650° 170	. 0135	. 00069 .	. 10	. 12	. 28	. 035	. 050	060	.1-	. 35	(6)	3.11 172	
${ }^{170}{ }^{\circ}$. 03015	. 003 I	. 105	. 018	. 012	. 015	. 025	$1 \mathrm{~S}_{1}$	3	. 15	. 31	8	3 S
176°	. 0002	. 0004	. OCI	. 002	.003	004	. 005	\therefore - ${ }^{\text {c }}$	\cdots	14	\% 8	21	1.
177°	. 0001	. 0003	. 000	, O	. 02	. 027	. 004	\cdots	\checkmark	. 02	04	. 10	. 2
$178{ }^{\circ}$. 0001	. 0001	. 000	, Cor	-rip	-01	. 002	.ons	905	, 01	© 2	. 05	. 1
179°	. 0000	. 0000	. 000		.on	, 0 O1	-.001	. 001	200 31	.0ni61	'I	03	.016:
180°	. 0000	.0000	. 000		.on			. 010	0	00	,oo	. 20	. 0
									\cdots	0	\cdots	. 00	. 00

Propagation of E. M. Waves through upper Atmosphere 191

Fig. 3
Variation of the synare of the refractive index for the f -wave
 and $p_{n} / p=\omega>$ I (hicre 1.5$)$

3 IINIT「: IAMPINC;

We next discuss the case when $\delta \gg 0$, and in so doing we have to formulate the expressions for polarisation ratios and refractive indices in such a way that if $\delta \rightarrow 0$, these general expressions shoukd reduce to those discussed in the previous section.

In this case F, and F_{z} are complex roots of the equation (2.1,3). Iet us put

$$
\begin{equation*}
\mathrm{F}_{1}=-\rho i^{i \phi}, \text { and consequentiy } \mathrm{F}_{2}=\frac{I}{\rho},^{-i \phi} \tag{3.1}
\end{equation*}
$$

since $\mathrm{F}_{2} \mathrm{~F}_{2}=-\mathrm{I}$, with the condition that ρ is always positive. In the particular case $\delta=0$, we have $\phi=0$ or π. Since $\Gamma_{\text {, }}$ is negative for $r<1$, therefore $\phi=0$ for $r<1$. Agann F_{1} is positive for $r>1$, therefore, $\phi=\pi$ for $r>1$. So we get for $\dot{\delta}=0$,

$$
\rho=\sqrt{\mathrm{I}+g^{2}}-\left|\mathrm{g}^{\prime}\right| \text { for } r>=,<\mathrm{I}
$$

Now

$$
\mathrm{F}_{1}+\mathrm{F}_{2}={ }_{\rho}^{1} c^{i \phi}-\rho,-i \phi=2 \mu \cos \alpha c^{i \alpha}=2(i
$$

Equating real and imaginay parts,

$$
\begin{align*}
& (1-r) \cos \phi\left(\frac{1}{\rho}-r\right)-j \sin \phi\left(\frac{1}{p}+\rho\right)=-\frac{-v \sin \theta}{\cos \theta} \tag{3.2}\\
& \delta \cos \phi\left(\begin{array}{c}
1 \\
\rho
\end{array}-\rho\right)+(1-r) \sin \phi\left(\frac{\mathrm{I}}{\rho}+\rho\right)=0
\end{align*}
$$

or $\quad \cos \phi\{(r / p)-p\}=2 g \cos \alpha, \quad \sin \phi\{(1 / \rho)+\rho\}=-2 g \sin \alpha \cos \alpha$.
Solving the above equations (3.2) we ex.

$$
\sin ^{2} \phi=\frac{2 g^{-} \sin \alpha}{1+\alpha^{2}+\sqrt{1+2 g^{2} \cos 2 \alpha+s^{4}}}, \quad \tan p=-\frac{1-\rho^{2}}{1+\rho^{2}} \tan \alpha \ldots \quad \text { (3.3) }
$$

and

$$
\begin{equation*}
\rho= \pm \sqrt{ } 1+g^{\prime} \cos ^{2} \alpha-\sin ^{\prime \prime} \phi \pm \sqrt{ } g^{\prime \prime} \cos ^{2} \alpha-\sin ^{2} \phi \tag{3.4}
\end{equation*}
$$

This expression for ρ can reduce to the correspondang relation for $\delta=0$ only if we lake

$$
\rho=\sqrt{I+r^{2} \cos ^{2} \alpha-\sin ^{2} \phi}-\sqrt{g^{2} \cos ^{2} \alpha-\sin ^{2} \phi} \quad \ldots \quad(\beta .4 a)
$$

Hence $\mathrm{I} / \mu-\rho=2 \sqrt{g^{2}} \cos ^{2} \alpha-\sin ^{2} \psi>0$, for all values of α and g. 'Thus $\rho<\mathrm{x}$. 'Then retaming to the equations (3.2), we have for northern hemisphere for the region $r<\mathrm{r}$, i.c., $g>0$

$$
\cos \phi>0, \quad \sin \phi<0, \quad \text { i.r., } 3 \pi / 2<\phi<2 \pi
$$

and for the reaion $r>r$, i.c., $g<0$

$$
\cos \phi<o, \quad \sin \phi<o, \quad \text { i.c. }, \pi<\phi<3 \pi / 2 .
$$

The ease in the southern hemisphere is just the oprosite. The results can be tabulater as :

'Table II

With these complex expressions for F_{1} and F_{2} which reduce to the expressions disenssed in the previous chapter, we get the ordinary and extraordinary complex refractive indices as

$$
q_{11}{ }^{\prime}={ }_{\mathrm{I}}-\frac{r}{\beta+\omega \cos \theta \mathrm{F}_{1}}=\mathrm{I}-\frac{r}{\beta-\omega \rho \cos \theta c^{i \phi}}=\mathrm{I}_{\mathrm{I}}-\frac{r}{\mathrm{X}_{0}}-i \overline{\mathrm{Y}}_{v} \ldots \quad \text { (3.5) }
$$

where

$$
\mathrm{X}_{1}=\mathrm{I}-\omega_{\rho} \cos \theta \cos \phi, \quad \mathrm{Y}_{0}=\delta+\omega \rho \cos \theta \sin \phi
$$

$$
\begin{equation*}
\boldsymbol{q}_{r}^{2}=1-{ }_{\beta}{ }^{r} \cos _{\theta \mathrm{F}_{2}}=\mathrm{I}-\frac{r}{\beta+\omega / \rho \cos \theta_{c}-i \phi}=\mathrm{I}-\frac{r}{\mathrm{X}_{r}-i \mathrm{Y}_{e}} \cdots \tag{3.6}
\end{equation*}
$$

where

$$
\mathbf{X}_{,}=\mathrm{I}+\omega / \rho \cos \theta \cos \phi, \quad \mathbf{Y}_{e}=\delta+\omega / \rho \cos \theta \sin \phi,
$$

Propagation of E. M. Waves through upper Atmosphere

Following Booker, we may put $q=\mu-\left(i, k_{i} / p\right)$
Then

$$
\begin{equation*}
\mu^{\prime}-\frac{c^{2} k^{2}}{p^{2}}=1-\frac{r \mathrm{X}}{\mathrm{X}^{\prime \prime}+\mathrm{V}^{2}} \quad \underset{p}{2 \mu c k}=\frac{r \mathrm{X}}{\mathrm{X}^{\prime \prime}+\mathrm{V}^{\prime}} \tag{3,7}
\end{equation*}
$$

and for the non-deviating repion, where $1 k / h \lll 1$

$$
k=\frac{P}{2 c}\left(\frac{\mathrm{I}}{\mu}-\mu\right)_{\mathrm{X}}^{\mathrm{Y}}, \quad \mu^{2}=1-\underset{\mathrm{X}}{\mathrm{X}}+\mathrm{X}
$$

We have thus for the non-deviating region :

The corrcetucss of the above expressions can be tested for suecial cases .
For the mannetic equator, $\theta=\pi / 2$ we have from $(3.4 a), \rho=0$ and $\sin _{p} \theta_{r}{ }^{-i \phi}=\frac{{ }^{\prime \prime}}{\beta-1}$. Hence, we pet the equations (2.10), as succial cases of (2.16a), For the maguetic north pole, $\theta=\pi, p=\mathrm{I}, p=\pi$, hence (2.16 in) reduce to equat:ons (2.11). For the mannctic soutl pole $\theta=0, p=1, f=0$, lenies (2.16a) reduce to equations (2.1 Iu).
4. JOI, ARIS ATION.

Let us next discuss the polarisation of the down-commg wave for any station for a stratified, slowly varying ionos, here wilh finite damping. Since the e.m. waves which are propagated in such a mediun are not transverse in the electric vector \boldsymbol{E}, but are transverse in the magnetir vector \boldsymbol{H} and in the method of detection, the \boldsymbol{H} vector is utilized, it is customary to express the polarisation of the waves with respect to the latter. So we start with the equations of propagation of the magnctic vector, viz.,

$$
\begin{align*}
& \frac{d^{2} H_{x}}{d u^{2}}+\mathrm{K}_{2} H_{x}-2 \mathrm{~L}_{4} H_{u}=0 \tag{4.1}\\
& d^{2} H I_{u}+\mathrm{K}_{1} H_{n}+i \mathrm{~L} H_{4}=0 \tag{4,2}\\
& d u^{2}=0
\end{align*}
$$

in place of the corresponding equations (2.6) and (2.8) for the electric vector. Equations (4.1) and (4.2) follow immediately from (2.6) and (2.8) and (2.1). Fliminating $H_{\|}$and H_{x} from (4.2) and (4.3) respleci ively we get

$$
8-1639 \mathrm{P}^{2}-4
$$

:1114

$$
\begin{aligned}
& \frac{d^{4} I_{x}}{d u^{4}}+\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right) \frac{d^{2} I I_{2}}{d u_{2}}+\left(\mathrm{K}_{1} \mathrm{~K}_{2}-\mathrm{L}_{1}^{2}\right) I_{x}=0 \quad \ldots \quad(4,3) \\
& \frac{d^{1} H_{v}}{d u^{4}}+\left(\mathrm{K}_{1}+\mathrm{K}_{v i}\right) \frac{d^{2} H_{n}}{d u^{v}}+\left(\mathrm{K}_{1} \mathrm{~K}_{v}-\mathrm{I}_{4}{ }^{2}\right) H_{\mu}=0 \quad \ldots \quad(4 \cdot 4)
\end{aligned}
$$

where the derivatives of $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and L have been neglected as before. The neneral solutions of (4.3) and (4.4) are
wiere

$$
\begin{gathered}
s_{1}^{\prime \prime}=\mathrm{K}_{1}+\mathrm{K}_{2}-\sqrt{\left(\mathrm{K}_{1}-\mathrm{K}_{2}\right)^{2}+1 \mathrm{~L}^{2}} \\
s_{2}^{\prime}{ }^{\prime}=\mathrm{K}_{1}+\mathrm{K}_{2}+\sqrt{\left(\mathrm{K}_{1}-\mathrm{K}_{2}\right)^{2}+4 \mathrm{~K}^{2}} \\
2
\end{gathered}
$$

It can lie easily shown that

$$
s_{1}^{2}=q_{1}^{2}, \quad s_{2}^{2}=q_{2}^{2}
$$

Ketaining only the solutions for the down-coming waves, we get

$$
\begin{array}{ll}
H_{x}=\mathrm{A}_{1} c^{i} q_{Y^{\prime}}+\mathrm{A}_{2} c^{i q_{1} "} & \ldots \\
H_{y}=\mathrm{B}_{1} c^{i} q_{Z_{2}}+\mathrm{B}_{2} \mathrm{c}^{i q_{1} \prime \prime} & \ldots \\
(4.5) \\
(4.6)
\end{array}
$$

Whare q_{1} and q_{2} are those roots of $s_{1}{ }^{2}$ and $s_{2}{ }^{2}$ respectively which have the imadinay parts positive. Substituting (4.5) and (.1.0) in (4.1) we get,

$$
\left(-q_{1}{ }^{"} \Lambda_{2}+\mathrm{K}_{2} \mathrm{~A}_{2}-\mathrm{iL} \mathrm{~B}_{2}\right) c^{i q_{1} \prime \prime}+\left(-\mathrm{q}_{2}{ }^{2} \mathrm{~A}_{1}+\mathrm{K}_{2} \Lambda_{1}-\mathrm{iLB} B_{1}\right) c^{i q_{2}}{ }^{\prime \prime}=1
$$

which being an identity in u yields

$$
\begin{aligned}
& -q_{1}^{\prime} A_{2}+K_{2} \Lambda_{2}-i L B_{2}=0 \\
& -q_{2}{ }^{2} A_{1}+K_{2} \Lambda_{1}-i L B_{1}=0
\end{aligned}
$$

whence we have, referring back to (4.T) and (4.2),

$$
\frac{\mathrm{B}_{1}}{\Lambda_{1}}=i \frac{\mathrm{q}_{2}{ }^{2}-\mathrm{K}_{2}}{\mathrm{~L}_{1}} ; \quad \begin{gather*}
\mathrm{B}_{2} \tag{4.7}\\
\mathrm{~A}_{2}
\end{gather*}=i \frac{\mathrm{q}_{1}{ }^{2}-\mathrm{K}_{2}}{\mathrm{~L}}
$$

From the peneral solutions of (i.f.1) and (4.2) it is evident that these equations represent two waves given by

$$
\begin{aligned}
& H^{(1)}=\Lambda_{1},{ }^{i q_{2 u} u}, H_{!}^{(1)}=\mathrm{B}_{1} \iota^{i q_{1} u} \\
& H_{a}^{(2)}=\mathrm{A}_{2} r^{i q_{1}}, H^{(2)}=\mathrm{B}_{2} c^{i q_{1}}
\end{aligned}
$$

travellin! with complex phase velocities c/ q_{2} and c / q_{1} respectively. Following the nomenclature adopted before $H^{\prime \prime \prime} \notin H^{(1)}$ combine to give the down coming extra-ordinary wave and $H_{x}^{(2)} \& H^{(2)}$ give the downcoming ordinary wave, and the polarisation ratios for the two waves ane

Propagation of E. M. Waves through upper Almosphere

Taking

$$
H_{x}^{(0)}=\mathrm{R}_{0,1} c^{i\left(\gamma_{1}, \ldots+1\right)}, H_{u}^{(1)}=\mathrm{R}_{\ldots,}, i_{1} \ldots+\mu .
$$

as the two true solutions of the problem with

$$
\boldsymbol{E}=\boldsymbol{E}_{0} \cos \mathrm{~m} \text { in place of } \boldsymbol{E}=\boldsymbol{E}_{\ldots},
$$

whence

$$
r=\frac{\mathrm{K}_{n}, \|}{\mathrm{R}_{n}}
$$

and

$$
\gamma_{0 u}-\gamma_{n, r}=\psi-\frac{\pi}{2} .
$$

are the ratio of the axes and the constant phase difference lotween the x and x componcuts of the magnetic vector respectively. The cunation of the pelarisation ellipse for the ordinary wave follows immediately ly climinatine " p " between the 1 we e equations in (-1.8): We have

This equation shows that the axes of the elliphe are tilted to the womertive y and x axes, the amome ψ, of tilt to the y^{\prime} axis beins, given by

$$
\tan 2 \psi_{0}=-\frac{2 \rho \sin \phi}{1-\rho^{2}}
$$

The points of contact of this chlyse with the corcumserbed actamele are

Fig. 4
Polarisation ellipse for the reflected
O-wave (northern hemisphere)

Fic: 5
lobarisation cllipse for the reflected O -wave (southern hemisphere)

For the other wave

$$
r=\mathrm{R}_{1, \prime}, \gamma_{, x}-\gamma_{, x}=\psi+\bar{\pi}_{2}^{\pi}
$$

and it can casily he shown that

$$
r=\frac{\mathrm{J}}{\rho} \text { and }\left(\gamma_{r!}-\gamma_{r, r}\right)-\left(\gamma_{n, 1}-\gamma_{n, r}\right)=\pi
$$

ronsequantly the equation of the polarisation ellipse for the e-wave is

$$
\frac{H_{x}^{\prime 2}}{\rho^{2}}+\frac{2 I_{x}^{\prime} I_{i}^{\prime}}{H^{\prime}} \sin \psi+H_{u}^{\prime 2}=\frac{\mathrm{R}^{2} x}{\mu^{2}} \cos ^{2} \phi
$$

which_ hows the same ellipse rotated through an angle $\pi / 2$. For this einnse (Fic. 5) the angle of tilt and the points of contact with the circumseribed rectangle aresiven by :

$$
\begin{equation*}
\tan 2 \psi=-\frac{2 \mu \sin \psi}{1-\rho^{2}}=\tan \left(2 \psi_{0}+\pi\right) \tag{3}
\end{equation*}
$$

and $\left(\pm R, \sin \phi, \pm \frac{R_{r}}{r}\right),\left(\pm R_{0}, \pm \frac{R_{e}}{\rho} \sin \phi\right)$,
In the experimental methods of determining the ratio of the axes of the polarisation ellipse, it is generally assumed that the polarisation or the downconin!: wave is mainly determined by the lowest layers of the ionosplere Where N the ion concentration tends to vanish. Recently lickersly (ig45) has determined the polarisation of the downcoming waves for $p=6.1,6.4$ and 7.6 Me. and has remarked that in order to agree with his experimental results, the polarisation of the downcoming wave should le determined not by the lowest layer of the ionised strata but somewhere inside. Since there is as yet no definite and convincing evidence either experimental or theoretical, of the particular strata or the entire layer fixing the polarisation, we have ploted ρ, the ratio of the axes for the 0 -wave as a function of $\theta^{\prime}=\theta-\frac{\pi}{2}$, the magnetic latitude of the place of observations for varions values of ω, for $r, \imath . c, \mathrm{~N} \rightarrow 0$.

Sense of rotation of the polarisation ellipse can be inferred from equations (A. 8). Since the damping has no eflect on the sense of rotation of the magnetic vector, we infer the sense of rotation for the case where damping is alsent. In this case for northern hemisphere $\psi=0$ and hence equation (4.8) gives

$$
\begin{aligned}
H_{،}^{\circ} & =\mathrm{R}_{n, c} \cos \left(\gamma_{0 x}+p t\right) \\
H_{\|}^{(i)} & =\rho \mathrm{R}_{0, t} \sin \left(\gamma_{0 x}+p t\right) .
\end{aligned}
$$

Hence as t increases from o, $H_{x}{ }^{0}$ decreases from $\mathrm{R}_{0, x} \cos \gamma_{0, x}$ to o and remains positive, while $H_{y}^{(0)}$ increases from $\rho \mathrm{R}_{0 x} \sin \gamma_{0 x}$ to $\rho \mathrm{R}_{0 x}$ showing that the vector $H_{r}{ }^{\circ}$, whose components are $H_{x}{ }^{\circ}$ and $H_{y}{ }^{\circ}$ and which describes the cllipse given by (4.9) is moving in the anticlockwise direction. Thus for all waves received in the northern hemisnhere the down.

Rropagation of E．M．Waves through upper Atmosphere 197

「ルに，い
$0=\frac{\omega \sin \theta^{\prime} \theta}{2 \cos \theta}$ for vaions values of ω－lnit，for dillement angles
of propagation $\rho-\infty$ means circular polarisation．
coming ordinary wave is polarised in the anticlock－wise direction an viencel along the direction of propagation．For the extraordinary wave，

$$
\begin{aligned}
& H_{n}^{\prime}=\mathrm{K}_{1}, \cos \left(\gamma_{e}+\rho t\right) \\
& H_{u}^{\prime}=-\mathrm{R}_{1}, \sin \left(\gamma_{n x}+p\right)
\end{aligned}
$$

Hence as t increases from o，$H_{c}^{\prime \prime}$ decreases as before but H_{i}^{\prime} becomes mone and more negative showing that the vector J° whose components are $H_{s}{ }^{\circ}$ and H_{n}^{*} and which describes the ellipse given by（4．12）moves in the cluck－ wise direction．Thus for all stations in the northern hemisphere，the downcoming e－wave is polarised right handed as vowed along the direction of propagation．

For the southen hemisphere the sense of the rotation of the two ellijses will be just opposite since $\phi=\pi$ for $\delta=0$ in the southern hemispluere in place of $\phi=0$ for $\delta=0$ in the northen hemisphere．

ACKNOWLED（：MENT

．Two of us，B．K．Banerjea and U．C．Guha，have been the recipients of two Research scholarshius from the Radio Research Cómmittee of the Council
of Scientific and Industrial Research (India) and wish to express their thanks to the Council for facility to work and permissiun to publish this paper.
l'alit Lahoratory of I'hysics, Calcotita Univirsity.

REIJJRENClis

Appleton 1932, lon' Insl. Ehc. Eng., 71, 646
Banerjea a47, Poor. Kuy. Soc. A , 196, 67.
Hurker נ93(i, P'or. Koy Soi. A., 156, 235.
Iickersley 1945 Pom. Rov Sir .1., 184. 196.
Darwin 1025, 1 ans. (amb). l'hil. Suc., 23, 137.
Hartree 1932, l'on. Camb. Phil. Soc., 29, 143.

Saha, Rai and Mathut r937, Not. Inst. Sci. (India), 4, 53.
Sahn and Rai ${ }_{1937}$, Nal Inst, ici. India), 4, 319 .
Salia and Ianerjua 1945, Ind. follm. I'ly', 10, 151).
Stratton 3942, Electomaguctic Theors, p 32 F .

[^0]: * I'chlow of the Indian Physical Society

