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ON THE PROPAGATION OF E.M. WAVES THROUGH
THE UPPER ATMOSPHERE.

By M. N. SAHA* B. K. BANERJEA anp UL C. GUHA

ABSTRACT. This paper 1eponts a copreliensive w orking of the problems of an joniscd
atmosphere, traversed by o magnetic field, as in the case of the Earth's  atmosphere.
Lixpressions are deduced for electiical polarisation and complen conductivity for such an
atmosphicre when traversed by radio waves, in o fensor-form, s firs| snggested by Darwin,
The cauations of propagation of radin frequency waves througli such a medium are obtained
by the use of cardinal axcs, and {hen the equations of vertical propagation are deduced
Expressions are obtained for rcfractive indices of ordinary and extiaord'nary waves, which
agree with the expressions given by Appleton,  Bxpressions are oblained for polarisation,
absorption ete. of the radio waves travelling in the fonospliere. Curves are given for the
polatization rativ and refractive mdices of the two waves av fonctions of (he maguetic
Iatitude of the place o1 obst rvation.

r INTRODUCTION

Liver since the classical works of Appleton (1932) and [artree (1032),
the problem of the propagation of e.m. waves i the ionosphere has reecived
attention from numcerous workers  Summaries ol these works are available
in various reports. Recently B. K. Banerjea (1047 made a entical and
comparative study of the fundameutal methods of Appleton (10932), Bartree
(1932, Saha, Rai and Mathur ‘1937) and Saha and Banerjea (1945) and showed
that these various mcthods can be deduced as special cases of a general method
developed according to Darwin's (1925) suggestipn of treating the e,
in‘opertics of the meditm as tensor guantities,  I'he present paper continues
the treatment further and aims al giving a (rue wave formulation of the
general problem. For the convemence of the reader some results of the
previous works carricd out by the senior author and his carly collaborators are
included so that no further references to these papers are needed,  Part of the
results mentioned in the carlier parts are not new, but have been derived in a
novel, easicr and unitary way.

*

The Displacement of the Tons in the Tonosphere

'he cquation of motion of the charged ions referied to any system of
co-ordinates can be writlen as :

d_,__P+V£1.B+-£—[H)<£i£ ='E (1.1)
di* dl ¢ diy . m

* Ticllow of the Indian Physical Society.
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where P = displacement vector with components (€, 1, )

|

¢, m = magnitudce of the charge and mass of the ion respectively.
v = collision ficquency of the ions.
H = Karth's magnetic field.
E = E, cos pl, clectric vector of the incident clectromagnetic wave.

The effect of the maguetic veetor and the space charges have been omitted
as nsual. The notution conforms as closely as possible to those used by

Appleton(1932) and Sakia, Rai and Mathur (1937) and B. K. Bunerjea (r947).
r

It can easily be verified that the solution of the above equation with
E = E, cos pl is the real part of the solution obtained with E = E,¢*' ;
use E in lis latter form because solution is then casy to obtain. ’l'hc\
quantity analogous to the static conductivity now comes out as complex,
(Stratton, 1042), whose 1cal part gives ordinay refractive index and the
imaginary part gives deviation of the refractive index from unity.

Introducing the polarisation vector = 4aNcf where N is the ion-
concentration and using the abbreviations,

mp* _ gnpt _ gn
1

p ? = 4”N()J ) = p"?

S y 0 2
N¢? Pl ' m p*’ R
vip =38 1—i8 =g, o (1.2)
¢ P .
ﬂ =p = w with components w,, o, Wy,
me hy p D
(

We get from equation (1.1 replacing p (&, ), \) by —11\3
477

- (I,.l;, 1']/, I);,)

¢
ﬂl’z + lw;[)” - “"'/1)3 == —]:’l’

—iwzPp+ BPy + iwgl’; = ~T, e a)
10, Py = iwg )+ B1; = — [,

The solution of these cquations can be biicfly written as

P=AAL e (1.9)

r . . .
where A = BTE - ) and A is u tensor given by the matrix,
—-w
-

wy? ~ 32 wgy + iBu; wz0;~iPw, i
A = | wyug—ifu, v, —B* w3+ iBuy | (1.5)
wywg + ifuw, w0y~ iBwy w;'—~ ,5‘2 |

It has been shown by Saha and Banerjea (1945) that the temsor posscsses
certain "'Cardinal Axes’’ which may be demoted by 1, 2, 3. ‘1’ is the
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direction of the ecarth’s magnctic ficld
magnetic 1meridian, and ‘3"

[N
4]

: 27 s the line perpendicular to the
‘ 18 the line perpendicuiar o 4" lying in the
magnetic meridian.  The relation between these axes and the :\x\-:s‘ commonly
used m donospheric problems with XZ as magnetic meridian and O '.\-s
vertical 1s shown in the diagram below :

3 y4

Y.2

16, 1

Shows disposition of cardinal axes (1, 2, 3) with axes nsed
generally in considering vertical propagation.

In this figure 6 = £Z01 is called the angle of propagation.  The axis
OL 15 always along the positive direction of H. In general literature on
jonospheric problems, the positive dircetion of H is generally not expressed
quite clearly, with the result that the sense of rotation of the cleetric and
magnetic vectors of the returnmg radio wave is lelv unclarified. In what
follows the positive ditection of H is along the positive direction of the
magnetic lines of force, i.c. in the northern hemisphere it is downward and in
the southern the reverse is the case.

Choice of these axes is cquivalent to putting .

0, T e, W, = e =0,

il

where o,, ws, wy arc the components of w along (1, 2, 3) axes. We have then

B"' . u)"' 0 ]
A=-10 g iBw .. (1.6)
\ 0 —ifw B
The complex conductivity = of the mediuni, defined Dy the cquation
= e N P = —ipNep = ~ip P=- ipA A.E is a tensor
6.E = current = —Ne A ipNep o e

quantity defined by the matrix,
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1
0
p—av

_ iN¢” ' p—
= T ) P " ~<-\'— D
m (p--iv)2— p3
LA
(p=m)* = 3

The steady corrent conduetivity o ¥
p=0. We¢ have

1
O
v
.
W N('2 v
¢ - o TR
m pitr
O . ])"
PRt

|
0 |
E
-—i/”r E (

R . v (17)
(p=iv)*=pi
|
p—iv ‘
(p—ivi? = pi .

is obtained from above by putting

o {
FJI_'l'_"_'Z (1 8
w b |

‘I
fv;f | v¥

T'hus in the direction of the magnetic ficld, the steady current conducti-

.. N¢2 .
vity is ©© . W¢ have the components of current as
niv
Ne? ’
mv
Ne? R .
1p= w ooy WEetylg) R X))
m(pg +12) '
. N¢* \
1y = - = . (-—-,) E -}-p]:’,
3 ”7(,’)%""\'2) //l 2 3)
N¢2 N«

If Eg=o0, we have 1y N
o m(py +v*

‘
transverse conductivity.  We have hesides, the current ig= —

9
- . N Ml U .
) vE,. The quantity - 7 ——_ is known as

m(p%+v2)

Ne2py
m(p3 +v?)

1‘_2

along the 7 axis, though there may be no e.m.f. in that direction

The Polansalion 1eclor.—The polarisation vector P is defined as

and we can easily deduce that

E]=_/§P]' IizilEg_—'
T

P= 4—;—'--6.5

_BFw

r (1)2iip:1) (I.IO)

The Etectric Displacement Vector and the Complex Diclectric Tensor.—
The clectric displacement vector D=E+ P may bc expressed as D=K_ E .
where K 1s the complex diclectric tensor given by the matrix,
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J
11—/ 0 0
K=| o 1=1B3/(B*=w?) iHe/(A2=n?) (1.11)
o —ire/(82—-w?) 1-13/(82-w?)
22 THE MAXWELLIAN EQUATIONS
From the Maxwecllian cquations :
uxH="1 8D, vxE=-1 ?’H, v.D=-v.H=0 .. (2.1
¢ ot ¢ ol

We get by the usual methods, the equations of  propagation for the
electric and magnetic vectors in the form:

H2
AE + T (1=1/p)Fy =
B
o1 4 : p2 . <
V“("‘gtlng)‘|' 2 1"",’(/3:{‘_(-1) (1’,2:")’33):(’ (l...“
-

v2H -+ 13:";1-1: ~ 4T3 % (0.E)
¢ C

The Wave FEquations jor Verlical Propagation in any Lalilnde:—
Let us first confine oursclves to the propagation along the vertical Z-axis,

. . .
so that v and ©v2 simply reduce to (—;{ and (‘:"2. Introducing  the
new variable u= pz/c, we get from (2.2)
(121.':1 T S (., )
—=lL+l1—- |E,=0 ver (2.30
du? < /3) :
2 . .
dfl_.‘z(Eg+iE3)+<I-/3{;’>(]Lg+1115):0 . (2.3b)
u
9 - : .
‘%—.,(Eg—ilﬁ) + (I -B—:'_—w) (Eq -iE3)=0 o (2030)
w2

The components of the veetor 1o in two systems (1, 2, 3) and with
X Z-plane as maguetic meridian and 07 as vertical are related as

Ey=ILzsin 0+1. cos 0; Ji, - Iy sin #—=TFy cos b. ]
=k, IS N
n " . !r (2.4)
Ez=—E cos +F. sin0; I.=E, cos 0+ Fgsin0. |

Wy=w sin 0, w, =0, Wy, = — v COS f l

The equations (2.3) as such are not suilable for use when we consider
the propagation of plane waves, for such cases we have to use in conjunction
with (2.2), the Maxwellian condition v.D=o0. For vertical propagation, this

- )
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reduces to ¢ D, =0, i.c., 1),=o0, since the steady components of D, if any,

are unimportant in the study of the wave propagation :

From I,=o0 and (1.4) and (1.5) we have climinating Pz, P,, I, and
putting w.=o.
E.=""% (. Fo +ifE,) . (2.5)
p
where C'=B(B2—w?) —1(2—w?).
Multiplying (2.3a) by sin ¢ and the diffcience of (2.3h) and (2.3¢) by
—cos 0, adding the results and then replacing 14y, Eg, 14, by their equjvalent
. . ~ A . - 3 . l .
expressions in terws ol 12, I5,, 5 from,'2.4) we get after some simplifi¢ation,

2 :
L K =Ll =0 . | (2.6)
du~ ’ \
.\\
. 32 _ B — i it 2y '
where Ky=1—1 pE=1p (.‘ _smaoy
(&Y i
\ vas (’2.7)
_=1(B—1)w cosl ‘
]‘ - RY] '
C
Again replacing Fe and Eg by Iy, 19, I:  in cquation (2.3D) from (2.4)
and E, by L, and I, from (2.2), we have after some work, . :
'd—'li.;’- -+ 1\’21_’:" k 114’.‘:.1':‘:0. vee (2.8)
du® '
A SN A
where Ko=1~7 /i—C,i/_} wee (2.0)

liquation (2.6) and (z.8) were obtained explicitly in this form by Saha,
Rai and Mathur (1937). Lquivaient cquations with vector components of
the ordinary and cxtraordinary waves intermixed in each equation werc
obtained by Rydbeck (1944). But cquations in this form do not Lielp much
in the understanding of the phenomena, unless the coupling term 1, between
the variables vanishes. This takes place at f==/2, (.c., at the magnetic
equator, where the equations of propagation become,

a2l T : )
d"‘z.r + KT_/_)’- ) L.=o0 r (2.10)
2 1
‘i _{&_‘L. + <I N - )E,,Zo
du J—
I3 B /

For the magnctic poles, #=r and o, and for these values of #, K, =Kg; for
f==, i.c., mag N-pole, the cquation of propagation takes the form :

g".z (ls,iuv:y)+(1—/,1 )(Ii,izlf,,):o o (2.11)

" Y+ w
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For 8=o0, i.c., mag. 8-Pole, the equation similarly reduces to
a? N .
dul (lzkils,) + . (I :+iE,)=0 (2.110)
Equation in these forms were studied by Saba and Rai (103%), for the
case when damping is nepligible, t.c., =1, from the wave mechanical point
of view. The Chapman layer of ion-distribution was (reated as a potential
barrier and the penctration of the waves under certain simplifyiong assump-
tions were studied in the same way as Gamow did i his famons work ou the
*““ Penctration ol the Potential Bainer of Nuclei of Atoms by High Lnergy
Particles.” Recently Rydbeck (1012) has studied these cquations when the coup-
ling term I, vanishes ; he has given an ciaborate treatment of the wive cquations
for magnetic cquator and taking a parabolic ion-layer and using Weber's
parabolic functions hic has obtained expressious for the 1eflection co-cfficient,
transmission co-eflicient and phasc retardation of the wave in a thin {riction
free parabolic layer. In the ray (reatment of Appleton we practically
confine oursclves to these two Hmitiny cases, @iz., their quasi-longitudinal

. - a4 hd : : - N 21 N — "
case is for O=m, o, i.c., K=Ky and their quasi-transverse case, i.c., 0= -

2
L=o.
The following mahod wiil be found applicable to all stations.  Multi-
plying both sides of (2.§) by “O8,7 and adding to (2.6), where ¥ is an
indeterminate multiplier to be presently, deternined, we have

/
2, 27; ) . N
d‘-i—l.’,»'f- + iR dd%— (K —TL)LE -+ (1\2-—; TE:=0 .. (2.12)
u“ n
. . R .
Now choose F in such o way that Ky ~IFL=Ky - ;
so that It is given by the equation
N T - ey
1S Tk (IR sl :G=2gcosoe’?
Put L~ (r=Blcoso '
o2 s
where 2= ('“ 5!1;. 9 p = -'-r v (2.14)
. = 1) CO»

Let Ky, Fy be the roots of cquation (2.13). Then
Fy, Fy=G+vV1+G? |
=g+ V1 *‘22 for 6=0 v (2.15)

Now turning to cquation (2.12) we can rewrite 1t the form

. dI'\ (.lhu _idz'l"“ ]"\
<

d 1y=0 e (2.[6)

2 . > . I N B —_— )
du? (Ls +iFL) Fg®(lg i iLidiy) =2 du du du
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where g has the two values given by

g1°=Ky— -P!’ ‘—‘-K2+LF2:I—;7,-. (B=v)(B+wcos b Fyp)
]

=y (2.17)
[+ o cos 0 I“]
N L _, . _ r ] p s
g2 =Ky~ I =K+ LI _I—r’ (B=1)(B+wv cosb Fy)
1 2 "
;
L s Fy ‘(2.18)
|
for C'=(B=1)(l+w cos O B +o cos 0 1,). (
.. JdIEq210 .
In those cases where the quantities g d” can be neglected, the equaions
" au
can be written as \
y .
(;L-z (2, 41 B )+ gy 2+l 1) =0 . (2.160)

2
.‘;:4.2 (l‘:.’l,' + l’I"QI'I !/) + qgg(.lf:r + iI‘\2]_':!/)= 0

These sigmify that the heam is broken up into two, with the refractive
indices gy, and go, and polarisations determined by ¥, and Fo (4:ide §4).

We next proceed to discuss the case of friction free atmosphere. In this
casc we have

@ 2=1 LA (2.17a)
1 1 +tw COSHF] .
2 T

gol=1——m veo (2.180)

1+wcos b T,
Both g, g» arc to be continuous functions of . We find from tlie expression
for g, that for r—»>1, g—>o0. At this point, g2, q22 should obey the
condilion of continuity, i.c.,

Lt (g:% q2%)= Lt (g%, q3?)
re1-0 re1+0

I'aking first q,, we find that if we take for the 1egion =0 to r=1x

Fy=g— ¥ 1+ g2, consequently g,2=1—- (2.17b)

-T2
1—wcos 8 (V1+g°—g)
-
Then gy varies from 1 to o in the domain r=o to 1. As Lhe value is to be
contlinuous, and since g on crossing over to r=1+o0, becomes negative,
we find that for this 1egion (» > o) we should put
Fi=v1+tg*-|g

. 2 —
ie. =1 o . “es 2.17C
» 9 1+wcos 6 (V1+g%—] g|) (17
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. )
" 2 e < - .
T?ese expressions for g,2 has uo singularity at any poinl and it is identical
with the expression for the refractive index of the ordinary wave as given
. _ 0 . « oo
by Appleton. A ¢ qy”) curve for different values
N C . .
(2.17 b, ¢} is given in T'ig. 2, for o < 1, and © >,

10

of # {1om expressions

[ic. »

Variation of the square of the refractive index for the o - wave with cleetion

o

coucentration (r 2 N), for pu/p w1 there 5) and w> 1 (here 1,51
I

T'or the other beam we can now substitute the corresponding value of
Iy, we obtain :
r I

- S =g . for r <1 ...(2.180
IT+wcosl 1y, 1-17111005(/(\/'1“"8'”1';..’) (3180)

2_
g2"=1

.
S B — — forr>1 o (218¢)

11— cos 0 (/1 'ng-l*lgl
It can be easily shown that for o <1, (1=go®)—curve staits from (o, 1)

1-w? cps26

passes through (1—w, o) and a point of jnfinite sincularity at r= 5

1w
where it passes from =00 to + o0, passcs througlh the point (1, 1) and (14 w. 0)
for all values of 6.
g”. has therefore to be identificd with the square of the refractive index of the
extraordinary wave (Fig. 3).

For o> 1, we find that the curve passes through (o, 1) and (1, 1),
between r = o, and 1, ¢*s> | butalter (1, 1) the value of ¢”; becomes less
than unity and gradually tends to the valuc zero at » = 1+, after which it
is negative (Fig. 3).

‘I'he quantities g(w, 1,6), = = ¥'1 +¢" =] g1 which occur in this work
are functions of w, » and f.

In Table I, the function g(w. o, #) has becn given for various valucs of
wand 6. To obtain glw, 7, 6} we have to divide (v, o, 6) by (r—1).
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5

1-Q

1. 3

Variation of the square of the refractive index for the e —wave

. . "2
with electron concentration {r 4"; N} for pu/p= w<s (here °5)
\ nip*

and p/p=w>1 (here 1 5)
3 TINITE DAMPING

We next discuss the case when 825 o, and in so doing we have to formulate
the cxpressions [or polarisation ratios and refractive indices in such a way
that if 8 = o, these general expressions should reduce to those discussed in the
previous section.

In this case F, and I'; arc complex roots of the equation (2.13). Let
us put

I, = —p ¢lo, and consequentiy J¥y = ; e~ e (3.1)
since F,F, = =1, with the condition tirat p 15 always positive.  In the parti-
cular case 8= o, we have ¢ = o or 7. Since I', is negative for r <1, there-
fore 9 =0 forr << |I. Agam [\, is positive for r > 1, therefore, ¢ = = {or
r> 1. So we getford=o,

p=N1+g =gl for r > =, <.

Now . ' ' ‘
F,+F.="¢l¢ —p ¢—!% = 20 COS acie = 20,
TP

Equating real and imaginary patts,

' sain o (L) S0
(1—7)cos ¢ pF —h st (—P- P)" T s

(3.2)
fCos ¢ (;) -—p>+(1~1) sin ¢ (; +p) = (O
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or cos pi(r/p)=pt=2g cos’a,  sin ¢{(1/p)+ pt=—2g sin & cos &,

Solving the above equations (3.2) we get

s 207 ST I—
sinfp= -~ — = , lan¢=-— _— tan 0. (3.3)
1 25+ A/ T+ 20%cos 200+ 2° f
and p= 4+ 14 p" costa—sin’g + 4 ¢¥cosax —sin’e e (3.4

This expression for p can reduce to the correspondmy relation for =0 only
if we take

P= M T+ 07COS K—Sin g — o g7C08 K — Sin’p o (3.4a)

Hence 1/p—p=24 g'cos’a—sin“p > o, for all values of & and g. ‘I'hus p & 1.
Then returning to the cquations (3.2), we have for northern hemisphere
for the region r < 1, i.0., >0 ‘\
- . . \
cosp >0, sinp <o, irc., 3w/a<<¢<am \
and for the repion » > 1, i.0., ¢ < o0
cosp <o, sing <o, ic., n<¢p<zr/2.

The case in the southern hemisphere s just the opposite.  The results can be
tabulated as :

»
TasLe II
d=0 >0
0 r ,_ . wsin? | - - e
2(r—=1)cos @ ! 1
X p=—T ¢ p i ¢
I R R T T
N, 11 <1 (+) Vilgt-g | o 3/am<pgar
w/2g0<T | >1 (=) vitgltlel) m | it pRosta—sinip | TE9<3/an
S, H. <1 -) vitgl+lgl| = — Vglcola—sinip o< p<n/2
oglgm/2 >1 (+) ST Fgl—g o |7m/2<¢<m
j

With these complex expressions for F, and F, which reduce to the ex-
pressions discussed in the previous chapter, we get the ordinary and extra-
ordinary complex refractive indices as

-
qui=1- r = 1— r =p— T . (3.5)
' B+wcos OF, B—wpcos b ci® Xy = iY, .
where X, =1-wpcosbcos¢, Y, =3d+wpcosbsing.
o r r r
"‘ = —_— e e B ] T s s = 1= = e 3'6
q- =1 £+ wcost F, B+w/pcosf o™i X, —1Ye (3.6)

where X.=1+w/pcosbcos¢p, VY¢=08+w/pcosfbsing,
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Following Booker, we may put g=p=_{(ick/p)

Then lu" [ I‘. =1— r_}{___ apck - r_X
I) X.+Y‘_'l f’ Xﬂ +\,_ (5,’)

and for the non-deviating region, where «k <1

W /‘X. PEIT Gy

We have thus {for the non-deviating region :

pi=1—p_ . . T—wpcosfcosg
(1 —-w/; oS ¥ cos ) + (A +pm cos ()Hlll 'P) \
\ (3.8)
/\'.. = —l’—(i -—lu) B_+!)u; Cos 0 s ¢ ' l
H [~wpcasfcos ¢ ,
R 10 (mp(()\() cos ¢
(L) wi /?(.m B cosp)* -+ (54 w,pu)ﬁ()\lll ¢ |
‘\ (‘)._f,)
b = j)(I——/l) -I—m/p(us(l\“u/: l
o\ (14 wipcosfcosp) ,

" . e M ~ .
I'he correctuess of the above expressions can be tested for special cases .
For the magnetic eguator, 6 =a/2 we have from (3.44), p= o and
sin 0 (.—ilp _ W
[ /)—'

(2.16a), Tor the maguetic north pole, #=r, p=1, p=:7, hence (2.16a) reduce

"y

Hence, we net the equations (2.10), as special cases of

to cquatrons (2.11). Tor the magnetic south pole f=o, p=1, p=0, hence
(2.16a) reduce to cquations (2.1 1a).

4 POLARISATION.

Let us next discuss the polarisation of the down-commyg wave for any

‘ station for a stratified, slowly varying ionosphere will finite damping.  Sinee

the e.m. waves which arc propagated in such a medinm are not transverse in

the electric vector E, but are transverse in the magnetic vector H and in the

method of detection, the H vector is utilized, it is customary to express the

polarisation of the waves with respect o the lalter. So we start with the
cquations of propagation of the magnctic vector, viz.,

‘(liH‘+1\zH —LH, =0 . (4.1)
d 11”'{’1\ [{u+lLII o (4’2)
du®

in place of the corresponding equations (2.6) and (2.8) {or the clectric vector.
Equations (4.1) and (4.2) follow immediately from (2.6) and (2.8) and (2.1).
Fliminating H, and H. from (4.2) and (4.3) respectively we get

8—16391—4
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4] 2
ek Y R Ke-La =0 o (4,3)
du du.
1 2

and CHegigvx) Ty Lk x,-190, = o (4
du du’

where the derivatives of Ky, K, and L have been neglected as before.  The
veneral solutions of (4.3) and (4.4) are

isu +is.u —is,u —issU
H,= A R A.ce Sult + Aye Y Ae -

", = BI(“I.\’,H + B.e ivau + B, —nu " li,,c‘-isul‘ |
where
o = Kt Kom ¥ (K, —K) 4L

1
2

o0 = Kt R+ WK =Ko + 4K

It can he easily shown that
s =q/, 8. = gt
Retaiming only the solutions for the down-coming waves, we get .
Te=Ay ittt + Ag cim” . 5(4,5)
H, =B, ¢l + By ciqun ee (4.6)
where gy and go are those roots of s,° and s,” respectively which have the
imaginay parts positive.  Substituting (4.5) and (1.6) in (4.1) we get,
(=q," Ap+ Ko Ap—iLBy) ciiti +(=g," Ay + Ky Ay —iLB;) ¢/t =0
which heing an identity in u yields
—q, Ap+ Ky Ap—il, By=0
—q.° Ay+ Ko Ay —iL By=0
whence we have, referring back to (4.1) and (4.2),

Bl ~Q_22—K2 . BQ :'QIH.{\'_2> ( )
Ay L Ay L w47

From the peneral solutions of (.1) and (4.2) it is evident that these equations

represent two waves given by
HV=Ay g, H D =B cigu
H2 =7, ciqu, H'P =By cinu

travelling with complex phase velocities ¢/gy and ¢/q; respectively. Follow-
ing the nomenclature adopted before [1'} & H'}’ combine to give the down
coming extra-ordinary wave and H'® & H% give the downcoming ordinary
wave, and the polarisation ratios for the two waves a1e '
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HY B, S
i A, L T
1" F
o = T
Io A I, 2
Taking HZ'=Ro, el i, HO=R,, (0. kpt

Aypaye )
where Ror, Ry, Yor and vy, . are rcal functions of u, we et
0y — ~
=R . cos (yor 4 p, 11 =R, con lyand pt)
as the two true solutions of the problem with

E=E. cos pi m placc of E=E., ¢t

)
I[ v =5.‘_'__'L,~'(~I'0l' -“-Yﬂr)

Hence - @ e e ilg=all)
=qliy= —=ip el =y
HY® R, ! re e
)
whence p= R,
1{7)1'
T
and You=Yoa=th— " .
2]

are thie ratio of the axes and the constant phasce diffierence between the v and v
components of the magnetic veetor respectively.  ‘I'he cquation of the polarisd-
tion ellipsc for the ordinary wave follows immediately by climinating “pt*’
between the two cquations in (4.8) : Wi have

o 5

"Il("v)]](") . ”(n;z . .

LI sin g = =RE2L cosy v ()

r n

I](;J_)‘.! —

I'his cquation shows that the axes of the ellipse are tilted to the respeetive y
and x axes, the amount ¥, of tilt to the y axis being gwven by

—2psme e (1710)

tan 2¢o= 2
§=p*

The points of contact of this clhipse with (he arcumuseribed rectimgle are
(F16. 4) respectively (2R, sing, LR,z pjand (£Re, £p Ry sin ¢)

y Y
v\
Yo/
/ Ho
X
/
-]
F1c. 4 F16. 5
Polarisation ellipse for the reflected Polarisation cllipse for the reflected

O-wave (northern hemisphere) O -—wave (southern hemisphere)
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For the other wave

R, —ya
1=, oY e Yea=0t .
N\ ¢ -~

and 1t can casily he shown that
. (4.11)

P, = /T and (‘}’ag/""‘/r r)-(‘)'n.: —7""‘)=ﬂ

consequently the equation of the polarisation cllipse for the c-wave is
1,2 oIl 1,
p* P

. » R2
sin ¢ + I132 =7"F cos¢
P

which_shows the same ellipse rotated through an angle =/,. Tfor this c‘hpSc
(F16. 5) the angle of 1t and the points of contact with the circumseribed

rectangle are given by : \
. \
tan 29, = — =P ‘\m;,-‘/' = fan (2. +7) o (g.13)
1— 2
h] )
and (i R, sing, 4 R, \ ( TR, 4+ R sin ¢
\ ", : :

In the experimental methads of determining tlie ratio of the axes of the
polarisation ellipse, it is gencrally assuned that the polarisation ok the down-
coming wave is mainly determined by the lowest layers of the ionosphere
where N the jon concentration tends to vanish.  Recently Lickersly (1945) has
determined the polarisation of the downcoming waves fo1 p=6.1, 6.4 and 7.6
Me. and has remarked that in order to agree with his experimental results, the
polarisation of the downcoming wave should he determined not by the lowest
inyer of the {onised strata but somewhere inside. Since there is as yet no definite
and convincing  evidence either experimental or theoretical, of tlie particular
strata or the entire layer fixing the polarisation, we have plotted p, the ratio

m

of the axes for the o-wave as a function of @=60~" the magnetic latitude of

2

the place of observations for various values of , for +, 1.¢., N=—>0.

Sensc of rotation of the polarisation ellipse can be inferred from equations
(4.8).  Since the damping has no eflect on the sense of rotation of the magnetic
vector, we infer the sense of rotation for the case where damping is absent.
Tu this case for northern hemisphere ¢ =0 and lLence cquation (4.8) gives

H,°=R, . cos(y,z+pt)
11,=p R, sin (y, .+ pi).

Hence as f increases from o, H.° decreases from R,,c0sy,, to o and
remains positive, while M, increases from p R,z sin ¥, to p R,z showing
that the vector I1,°, whose components are H,° and H,° and which
describes the cllipse given by (4.0) is moving in the anticlockwise
direction. ‘Thus for all waves received in the northern hemisnhere the down.
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1-00[‘

~60\—
A S
-30—
B e e r
4 30° 60" i W
JU.
MG, o
Variation of the polarisation ratio p V14 ¢*= ¢ where
w sin’ 0 . , .
g=———- for vatious values ol @ - po /b, for different angles
2c0o8 0

of propagation  p->1 means circular polarisation.

coming ordinary wave is polarised in the anticlock-wise direction as viewed
along the direction of propagation. For the extraordinary wave,
Hi=R,, cosly,, +pl)

11’,;==—R' osin (v, -+ pl)
N

Hence as 1 increases from o, H' decreases as before but /15 hecomes more
and more negative showing that the vector J1° whose components are 15
and H; and which describes the ellipse given by (4.12) moves in the clock-
wise direction. Thus for all stations in the northern hemisphere, the
downcoming e-wave is polarised right handed as viewed along the direction of
propagation.

For the southein hemisphere the sense of the rotation of the two ellipses
will be just opposite since p=7 for =0 in the southern Lemisphere in place
of =0 for 6=o0 in the northein hemisphere.
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