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WAVE-TREATMENT OF PROPAGATION OF ELECTRO-
MAGNETIC WAVES IN THE IONOSPHERE

By M. N. SAHA* anp B. K. BANERJEA

ABSTRACT. Wave-cquations for the propagation of ¢ m. waves through the jonosphere
have been obtained hy the nse of a new mathematival method involving the use of dyadic
amalysis ivtroduced by Gibbs  Iixpressions for steady current  conductivity of the
ionosphere have been obtained hy this method and the results are concordant with those of

Chapman; an extra (erm for the conductivity, which 1« more prominent in the I'ylayer has
been obtained.

It has heen shown that the wave is split np into three waves, as in Zeeman efteet, one of

which is  ordinary, (he other two extraordinary, in aceordance  with observations by
Toshniwal, and Harang.

1 INTRODUCTION

The subject of propagation of clectrompgnetic waves in the ionosphere
appears to bhe at the present time in a rathier confused state.  Appleton (1032),
in his pioneering work, used what is now connnonly known the ray {reatment,
i.e., starting from Maxwell's cquations, he obtained a value of the refractive
index of the ¢.m. waves in terms of the clectron concentration, the carth's
magnetic ficld and the damping cocfficient of electrons.  He further postulated
that the wave gets reflected when the refractive index vanishes.  From the two
values of refractive index it was deduced that the wave sqlits up into two, one
ordinary and the other extraordinary and the sense of polarisation of each wave
was determined. ‘I'he condition of reflection of the extraordinary wave is,
however, satisfied, at two distinct Jevels given hy the condition p,*=p*+ pp,.
It appears to have heen assumed that only one of these waves, corresponding
to the nepative sign existed. ‘I'oshniwal (1935) and Harang (1936) have
however, obtained at times reflections corresponding to the conditions
poi=p*+ pp,, so that it is legitimate to think that {he wave really gets split into
three components on entry into the ionosphere, one of which fails usually to
get reflected owing to heavy absorption. Further, we have to explain the
phenomena of M-reflections, which prove that the wave does not get completely
reflected even when u=o0, but may leak through the ion-layer in considerable
intensity, and get reflected from a higher iayer.

The wave treatment was first attempted by Hartree (1929, 1931) in three
important’ papers. The papers of Hartrce are extremely difficult to follow on
account of the difficult notations used and some unnecessary complications
introduced. He used throughout the notation of dyadics, introduced by (ibbs,
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‘This notation, though much convenient for mathematical working is not
gencerally familiar and to make the deductions intelligible the results have to be
transcribed to ordinary notations which was not carried out by Hartree, Hartree
obtained the displacement of the electron or the ion as 8.E where S is a tensor,
E = Flectric ficld. This part is rendered rather complicated because the electron
is regarded as bound Dby a quasi-elastic force. From the expression for 8, he
obtained an cexpression for @ called the scattering tensor. The underlying
physical idea is borrowed from a paper by Darwin (1925), who has shown that
almost all optical phenomena, .z, reflection and refraction can be explained in
terms of scattering by elementary constituents of the medium.  Hartree has shown
from the equivalence of two different processes that the cquation of propagation
of the clectromagnetic waves in the ionosphere continues to obey the Maxwellian
form. ‘Ihe treatment was also rendered complicated by the introduction of the
term f, the Lorentz polarisation term which he took not much far from 1/3.
It has, however, been shown by Darwin (1934) that B=o0, and this considerably
simplifies Hartrec’s method. ‘'I'he expression for refractive index was obtained
by considering the case of normal incidence in a stratificd mediuin where g is
supposed to be coustant.  ITe ultimately obtains the same result as Appleton.
So far his treatment led to a justification rather than laying the foundations of a
rigorous wave treatment. In alater paper he takes the wave equation with a
variable ¢ and tries to solve this equation for a few simple cases but it is obvious
none of these assunptions corresponds to reality.

Saba, Raiand Mathur (1o37) expressed the displacement of the ions in
simpler analytical form, which may be shown identical with those of Hartree in
spite of the apparent differences in form.  From this displacement they obtained
the value of the diclectric tensor for a stratified medium and ultimately obtained
the same expression for p as that of .\ppleton.  ‘I'he wave treatment was applied
in a simple case for the O-wave and the penctrability of the electron barrier for a
simple ¢ase was deduced.

In the preseut paper the foundations of a rigorous wave treatment have heen
laid down and the cxpressions for refractive index, conductivity and dirdet
current conductivity have been deduced. ‘I'he solution of the wave-equations
has not yet heen tried.

,
2. THE DISPLACEMENT OF THIR TONS IN THERE
TJIONOSPHERE

The equation of motion of the charged ions referred to any system of axes
can be written in the form

dt | dr e [ H x d-xj] _ ¢E

p — = (r
dt? dt e dt My )

where =displacement vector of the ions with components (¢, 1, {)
my=mass of the ions
v=collision frequency of the ions
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H=Jarth’s magnetic field with direction cosines {. nt, n.
E;-‘-E., cos pl, the electric vector of the incident e.m. wave with direction
cosines I', m', n',
"T'he effect of the maguetic vector and space charge have been omitted as usual.
T'he notation conforius as closely as possible to those used by Appleton (1932)
and Saha, Rai and Mathur (1937).

It can be casily verified that the solution of the above equation with
E=E, cos pl is the rcal part of the solution when we put E=E ¢'*'; weuse E
in this form, because the solution is now ecasy to obtain. 'The guantity analogous
to static conductivily mow comes out to be complex {Stratton, 1930) whose
real part gives ordinary conductivily, imaginary part gives the deviation of the
refractive index from unity.

Starting with E=E¢'”’ and introducing the notations

I 71’1\1(‘2 . 2 ell
pr= TN =gty = O
Hly, HipC
B=ippu s e= (g, Wet

and breaking up the above cquation into components we get

ol ippalmi=np = UL,
m,

an+ippp(né=1) = Lo, v (2)
Ny

al+ippllp—=mé) = ST O
m

0

Solving these equations by the usual determinant method, we have

E=~Q~':-“ [0 + B2%) + m! (@B + ) + w!((B2nl = Boom) | [ owlo® + )| .o (3)
n

Iy

n= el [I’(ﬂ“mi —Bon) + (& + Bm2) + ! (Bmn + Pal) ] | [a(a* + )]
Ny

Z=-C-L"- LB L+ Bom) + m! (B2 mn = Bai) + ' (0% + 82n%) ] [ [a(0® + 8) |

Hiy

Let o denote the complex conductivity,  We have
Ldr '
c.E=cuwrrent =—I\cd—1—t= — (N o (g)
4
Substituting the value of P from (3) we get 6.1 the tensor form

o -+ 542 Bl ~ on UBAul A Bom l
{
2lm+Boan o+ B*m? B2mn—fual
| B2nl—=Pom Brmn+pal  o¥+ 70"

= —mo[ipNe?
alo?+ %)

i
!
|
i
]
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Let us next find out the principal axes of the tensor  cllipsoid by using the
Hamilton-Cayley method.  The principal components are gciven by the roots ot

the equation, .
A=A+ P A= Dy=0 ... (6

where P, =spur of the tensor, v, g=.x, v, z

"’:=3("qu Tom0y o) 8, g= X, 0, 5 8 Fy

4ry = Determinant of o
We obtain from (5)

by =30° + 8%, b, =302 (a* + B?); P, =0 (a* + 3%)*
Hence the cubic cquation reduces to
A= (304 1A 4 3ot (o + B4 — o (o + ) =0

or (A= 4 p)] [A=ta® +iaf3)] [N —(x*=iaf3) | =0 e (D

If v=o, &, iaf3, and % are all real, and the roots are all real, such a dyad has
been classified by Gibbs as a tonic dyad.

In general case, for v+ o, we separate the  compilex conductivity tensor 6 in
(5) into 1eal, and imaginary parts. “Ihen forming the corresponding Tamilton-
Cayley cynations for the real and the imaginary pants we get the roots for Ree as

A= N NG ki NG e T
mp P R e pEa e i) T PR (v =ipy)? '

and for 1,0
I\I:Nrf 1 ,,\2=_I\c“ | Age Nc* 1 o

® m /!'“' ! m -.-1—)_2-{-»(1:-1; 4"/1,,)E ’ mo° i.(l"‘ 1/!;,)
Dyads of this type, having two complex  conjugate joots of the H. C. cquation
are classificd by Gibbs as cyclotonic dyad.  All the properties of  the ionosphere
are of this type.

Lel us next find out the orientation of the characteristic principal axis of

tlie tensor e, to the cartin’s magnetic ficdd. We consider a vector @ such that
up.—_,\p ~
where A ds a proportionality factor.  If I, he the idem factor

cp=ALp  or (@=Al)p=0

.. (”“"'\])L"'"“}l\l"‘lr“;N =0 |
co 1l +logy~ A )M+ ryNo =0 . (10)

o Loy N ('r:%:t'—’\)"\: =0
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where L, M, N are the direction  cosines of the principal axis.  Substituting
A=a*+ % and the corresponding values of o4, @, ete., and remembering that

L2+ M+ N=1
we get
['= i], M = i’”’ N= +n “s {ll)

We thus sce that the real characteristic principal axis of the tensor 6. coincides
with the earth’s magnetic field.  Similarly we can show that the other pro-
pertics like ordinary conductivity, dielectric constant, c¢te., have the same charac-
teristic principal axis. ‘The other two axes of the eyclotonic dyad are in a piane
perpendicular to this axis, and may be oriented arbitrarily.

Let us next choose a new system of axes with the direction of the curth’s
magnetic field as {he N-axis, Z-axis being in the magnetic meridian and Y axis
horizontal perpendicular to the magnetic meridian.  Referred to this new coordi-
nate system, let us now express the displacements and the tensor 6 in the new
coordinates, We put [=1, m=n=o0 in (5). Then

H (X2+!')m ! 0o
—iPNe’/ ; .
6= 1/-'}L LTI o —o G
0((0(‘ } ,H‘)
T ) o*
and from (3)
G- CLreE ) ] oo )] e (13)
.,—-—-‘]': | oo’ flon” | flala™ F (5%) ]
1T
R "1‘: v 5 ‘ - 2 )
o= ot = Bead ] el 157 |
.,

Let us next form that thic real parts of the displacements, which are the true
solutions of cquation (1) with LE=L, cos pl. We lave, putting L(/, w', n')

= (E-‘h El/o sz,)

b= — L -

Re ¢ ny (ﬂ 'i 1/2) I: vs pl - sin [)!:l (14)
dondi Re= - - ( ,’_"__1.1. ) . _— II b vl

(Re i Red) - 0“) o II);,) | lu)b Pl l Ny

From the above expressions, we can casily obtain expressions for the steady
current electrical conductivity in the fonosphere as obtained hy Schuster, Chap-
man and Pedersen.  We have to put p=o

We get
- —SP" . = _ i ) L ol 10 LPEt 73 P
T Ul ”lu(/""““[‘lﬂ + palic ] ¢ ’0([):_4_‘,;)[' c= 1l
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N \PIXA
We have therefore I = Nef= Ne e and
mv

2
v =I. /¥ = conductivity parailel to the magnetic ﬁeld=«1\59»- o (15)
mv

If pow I, =0, i.c. the cand. is ig the horizontal plane perpendicular to the
magnetic meridian, we have
N ¥

my " (ir”+j;;‘:) (x6)

o=

I'his is known as the transverse conductivity
We have an additional current along the Z-axis, i.c., in the meridian plane
perpendicular to the lines of force, and the conductivity

T, = - __y_cz,f)_"..
mo(v® -+ l’i)

1, o, but Liy=1,=0, we have flow of currents both along YV and 7/

eee (17)

AXus,
We obsarve from these results that even when v tends to zeto as in
the I oregion, we have o conductivity  transverse o the magnetic weridian

N('2 ) . P - Ne?
BEc -, I"2 aud this has a inkting value
me  (v* [’h) ngps
We have thus got an extra term for transverse conductivity, viz.
‘N(,"-! I’h

e (n“ﬁf} 2)- in addilion to thosc already known but we have not yet had
0 ! )
h
time to examine its probable contribution to the theory of L and S teims in

geomagnetisin,
3 TIHE TUNDAMIENTAIL MAXWELLIAN BQUATIONS

The {fundamental cquations for the propagation of the e.m. waves in the
ionosphere arc

vxH=Lh+ 7L, e (18)
¢

C

v xIj=—LH. o
c

V-E=4np
V.H=0

ITere ‘I' denoles total curreut, \\'lliC]l requires some c¢lucidation. We have
I=0.E, where E=={otal field (i.c. sum of incident field plus radiation field duce
to surrounding ions. Also in the iouospliere, it is customary to take p=o-
Thus (18.1) is modified as

vxH=L1E+47E
C g
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It can now be easily shown, taking curl of curl Ii, etc., that T satisfies the
equation

=

V‘E -']‘_Q= - 4:2.6E
o
or V2E+f;(l‘,+ 4’;" )_E:u . (10)

and similarly H satisfied the the equation
v*H- L H=-1"¢x (6.E) o (20
¢ ¢

Now for @ we have to substitute in the case of any  coordinate system expres-
sions (5), but it will simplify matters if we inttoduce the principal coordinates
defined in (12). We have then

2
+1)'-' 0 0
| o
1,+ 47C :l o 1 paa - B (21)
° b , ot 3P o’ - 3*
Ny ]
! ol i [ AN -
The equations (10) can then be split up into three equations
o 2 K
O, + f’f(, _ __‘1'3.”--)]{,::0 . (22)
LN v
\7”1'2,,+£’; (b, =cli) =0
\val O +f’;,p|«‘.,,+h]<f,)=o
¢
Pia _ PiB
7 ) = -} - o]
where b=1 of + 7 C= ot g 2
T'he lasl two cquations had hetter be written in the form
2 D)
B, +ili)+] {I-—,.-—-:—/)--"-—-'- } (K, #ik.) =0 o (28)
VAR EEE U T i E S

From thicse cquations, we sec clearly that on entrance into the ionosphere,
the three components E,, E,+ili., X, —ili, ttavel with different velocities,
depending on p2, v, and py. Il these quantitics are slowly varying, we can talk
of refractive index. The I -component (electiic displacement parallel to the
magnetic field) has the complex refractive index

Po=1=-
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and the Ii, +iE., E, —=iI{, components have the refractive indices

Po=I= oy T
pe=ivh+ pp,

The analogy with Zecmann-cfleet is obvious 5 (I, 4 i1¢,) denote anticlock-
wise circular polarisation and (15, —il%:) denote clockwise circular polarisation.
1f we neglect v and put p,=o we gel Appleton’s  conditions for the reflexion of
the o-wave, p2=p2 and if we put p, =o, we get the two conditions for the
reflexion of the two extraordinary avaves 3= p2F pp,, which have different
sense of polatisation.

The complete solution of the cquations (21), however, are rather difficult, for
we are using a coordinate system which, exeept at the magnetic equator, and at
the magnctic poles, cannot be linked to the local coordinates in a simple manner.

At the magnetic cquator, the X and YV axes are horizontal and Z-axis is
vertical. In a vertical propagation of the e.n. wave, Ii. =0, and we have only
I, and 1, definite. The reflected wave will therefore have its o-component
polarized parallel to the magnetic field, the N-component polarized parallel to the
Y-axis, i.¢., perpendicular to the magnetic field in a horizontal direction. We
have, however, not yet tried to evaluate 19, I{, in terms of the amplitudes of the
wave sent out by the antenna,

For the magnetic pole, the X-axis is vertical, and for a vertical propagation
we have 16,=0, and we have only 1i,4: I, re., two circularly polarized
NX-waves. We have to obtain the reflexion cocfficient from a solution of (21),
which will be attempted in a future paper. .
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