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THE SCATTERING OF FAST ELECTRONS BY ATOMS
Br K. C. KAR

ABSTRACT. The wave statistical theory of seattering of fast electron by atomic nucleus
is developed by taking into account the elfeet of relativity and spin-orbit interaction. The
correction terim due to the spm-orbit interaction is derived from entirely statistical consideration
and is in exact agreement with Mott's sceond correction obtained from Dirac’s theory.
However, Mott's first correction whieh is independent of the atomic number is not derived by

the present method. It is soggested that this correction is due to the spin-spin interaction
hetween the incident electron and the nuclens

The problem of the scattering of fast clectrons by atoms has been treated
theoretically by Mott (1929) using Dirac’s equations. Accordingly Mott’s
formula is valid for clectron spin + (h/47) and it takes account of the effect of

relativity. The relative intensity of scattering at an angle between 6 and 0+ d#
and per unit solid angle is according to Mott
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It is evident that the second factor 1—(22/¢2) gives a general correction for
relativity.  In the last factor, the first term, viz., cosec? 36 mives the Rutheérford
value ot intensity while the sccond and third terms, viz., —(v2/c?) cosec? 36 and
p U2 E-Q—S-;ﬁ-e give the two corrcctions for spin-relativity, ‘lhese two
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corrections will be hereafter called the first and second spin corrections of Mott.
Of the two corrections, the second is appreciable only for heavy elements, i.c.,
for high value of 2, whereas the first is independent of .

It should be noted that in deriving the above formula Mott has taken
the interaction potential to be —(ze2/r) due to the nuclear charge +ze of the
atoms. In other words, the repulsive potential of the orbital electrons for the
incident clectron is completely neplected. Tlis may be justified only when
the incident velocity is very high and the interaction is very close,

In the present paper I proposc to develop the wave-statistical theory of the
ahove problem.

It is well-known in wave-statistics (Kar and Mukheijee, 1934) that on
taking into account the cffect of yelativity and spin, the wave equations are
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wheie for positive spin lmw=o0 while fo negative spin min=1. It is evident

A% Ve . .
that the term ., 0+1) or 7 in the above cquations represents the spin-

orbit interaction potential for positive or negative spin. On neglecting it one
gets the usual Schrodinger’s relativistic wave equation which does not pive the
correct eigen-value of energy for fine-structure. (On the other hand, it has been
already shown (Kar and Mukherjec, 1934) that the wave-statistical equations
(2.1) and (2.2) do give the conect eigen-energy. Therefore, in developing the
theory of the present problem, we should use these fundamental cquations.
Now, we take for I, the minimumn vaiue for both the spin. Thus the two

equations (2.1) and (2.2) become identical and we have
Ax + 4"—3 [(E—-V)'-’—EO”—( v ) ]x=o o {203)
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the last term being written (V?2/2)y4, in order to distinguish it from the other
terms not connected with spin but involving V.
Outside the potential ficld the spin-orbit interaction cvidently vanishes
and so (2.3) becomes
2 :
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On proceeding in the usual way (Kar, Gliosh and Muklierjee, 1437) we
have for the differential equation satisfied by the first order scattering function
(Aypx)
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Of the three perturbation terms on tie righthand side of Eq. (2.5), the
first is evidently thc most important, the other two give oniy lhigher order
corrections. On solving {2.5) as hefore (Kar, 1937) with only the first perturbas
tion term we have for the scatteting function
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where A is the amplitude of the incident wave and

£z
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To

in which
M=k Sin 400 o (3,2)

and 19 the  eritical  approach. Now, because  the interaction potential
Vir)= =(z¢*/7), we have from (3.1)

; F(ro)= —ze? cos I'ry.
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On substilulinﬁ; the above value of Flry) in (3) and also remembering that
E=Eq/(1=B%)*, we have from (3) after simplification
1l
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On solving (2.5) with only the second perturbation teim on the righthand side,
we have for the scattering function [1ide (3) |
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On substtuting for V oand mtegrating we get trom (1)
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On combiniug (4) and (4.2) and after ~<impiification we get
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It mav be casily seen that the last spin perturbation term in (2'g) will
give for the scattering function, —4 the value given in (4.3). However,
because it is the case of a spin-orbit perturbation there may arisc two cases.
The scattered clectron may have the same o1 the opposite spin-direction as the
incident.  Of course, in assigning the spin direction one should not give much
importance to the geometry. It should he rather looked at from the statistical
point of view. Now, in order to take account of the two events mentioned
above we have to multiply the scattering function by a spin-factor (8), which
may be evaluatea in the following way.

If there is no change in the direction of spin due to scattering the spin
factor should evidently be unity. The same result may also be obtained for
i=3, m=4, if we take the spin factor as the product
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where the I,egendirce functions (vide Appendix)
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It should be noted that the possible values of 1and m taken in (5) are symmetrical
and form a complete group.
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Now, of the thiee spin functions, namely,
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the product of any two gives the corresponding spin factor. Again, bhecausc
the scattering has axial symmetry, the spin factor must be taken independent
of ¢.  From the above considerations, we find for the spin-factor
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where (vide Appendix)
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and l’1 I(0) 18 given i (5.1), Now, to the observer of scattering the spin factor

2

in (5.3) shouid be obtained by putting =—=#¢ for 6. "Thus, on substituting for
the Legendre functions we kave from (5.3)

S= — oy # . (5.5)

The spin-factor in (5) is not changed by putting - for . Hcnee, we have
for the total spin factm

0=1-cos # .. (5.6)

Thercfore, we have for the scattering function due to the spin-orbit perturbation
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On adding the scattering [unctions m (3.3), (3.3 and (6) we have for its
total value
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Iet B he the amplitude of the incident wave with opposite spin.  The
scattering function corresponding to it is obtained from f7) by simply putting
B for A. Thus remembering that the total intensity of the incident wave is
(A2 + B2) we have for the relative intensity of scattering
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The second term in (8) gives the spin-orbit correction for the sclative
intensity of scattering. If the critical approach is neglected, it reduces to the
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second correction of Mott [vide Kq. (1)]. We'do not get Mott’s first correction
by considering the spin-orbit interaction. It appears that Mott’s first correction
which is independent of z, might be due to the spin-spin interaction between the
incident electron and the nucleus

Critical Approach

let us next find the corrected critical approach (ry) appearmg in the
formula for the intensity (8). Using the weli-known boundary conditions at
r=rq, iz.,

dxe  dxa) o,
dr dr

(9)
XotAx1=o0
T=170
we have as hefore (Kar, 1937)
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wlhen we take only the scattering function (3.3), without the spin-orbit correction.
The ditference between (g.1) and the previous value of 7, is the additional

relativistic factor (,_.,32)3= in (g.1). It is evident that the above value of the
critical approach is only approximate, and it should be corrected for the spin-
orbit interaction. ‘T'his correction for the VZ-perturbation and the spin-orbit
interaction may be evaluated m the following way. The total scattering function
for the VZ2-perturbation and the spin-orhit interaction may he taken in the
form [vide ligs. (4) and (6)]
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where (1) is given in (4.1). Now, on using the second boundary condition

in (g) and procceding in the usual mamner (Kar, 1937) we get
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On remembering that 74 cannot be negative, the above ay he written in the
form
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Or, transforming as before with the help of the inst boundary condition in (g),

we get
.
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C being Fuler constant, ' ' Cf
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On adding we get from (0.1) and (11.2)
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heing the corrccted critical approach. It is obvious that (11 1) reduees to (y.y)

when = is small. Thus, toa first approximation, one may use the uncoriected
critical approach given in (o 1).

APPENDIX

The general value of the Legendre function P () is {Hobson, 1931

EaT
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where ul = cos #) is restricted to be real and 1, m are real but porestricted. TP
(12) is the well-known hypetgeometric function,
special cases.
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Case Il :-—Put I=-=%, m=+14. We have from (12)
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Case 111 :—Puat [=+1, m=41, We have from (12
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Now, it may be easily proved from the dehinition of hypageometin function
that
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‘I'hus from (32.3)

M
3 cot 0
= - sy Ha=p=3a =R+ 4, 35 45 A -t

L C A (12.5)
TH) (sin6)}



152 K. C. Kar

The above results may also be obtained from an alternative general formula

given by Hobson (L.c.), viz

1‘( [+m=1 + )
" ™" + g + - P
P7 ()= 2" cos tm —1—2 (l—p')imF (L---’"—tl ,;_n__l; 1, #2)
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where [ and m arc unrestricted. L (13)
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