ON THE CRYSTAL STRUCTURE OF PHTHALIMIDE. PART I.—DETERMINATION OF THE SPACE-GROUP

By S. N. BAGCHI and M. A. KASEM
(Plate V)

Abstract

Single crystals of phthalimide were studied goniometrically and with X-rays. Goniometric data assign it to the monoclinic holodedral class in agreement with Groth.

The axial ratios, obtained from X-ray studies, are $a: b: c=2.98: 1: 0.4946$. Phthalmide is found to belong to space group $\mathrm{C}_{2 \mathrm{~h}}-\mathrm{P}_{2} / \mu$.

According to Groth (rgof) phthalimide crystallises in the monoclinic holohedral class with axial ratios $a: b: c=1.4913: 1: 0.4967$ and $\beta=91^{\circ} 18 j^{\prime \prime}$.

The X-ray data of this substance is completely lacking. The present paper deals with the determination of the axial lengths and the space-group of phthalimide.

PREPARATIONOI゙TIIECRYSTAI
It is very difficult to get perfect single crystals of phthalimide. Neveral attempts were made to crystalise it from a solution of alcohol, alcohol and acetic acid, acetic acid and cthyl acetate. Nonc of the solvents had been found to be lighly satisfactory. However, amongst the solvents tried, ethyl acctate was found to be the best medium for crystallisation. After repeated and careful crystallisations, only a few perfect single crystals were obtained.

The crystals werc all needle-shaped. They were studied with the help of the Czapski Theodolite two-circle gonioweter. The observed angles between the various faces were found to agree with those reported by Groth (loc. (il.).

MEASUREMENTOF OXI 1 OI, IFNGTIS
Hadding-Siegbahn type of x-ray tube with copper anticathode was used. Rotation photographs were taken with a cylindrical camera.
(i) Rotation about c-axis:

The c-axis being the long axis of the crystal itself can be easily set by making the prisin faces vertical. The photograph is shown in Plate V Fig. I and the mean axial length measured from the different layer lines given by $\mathrm{Cu} \mathrm{K}_{a}$ and Cu $\mathrm{K} \beta$ is found to be $c=3.765 \AA$.
(ii) Rotation about b-axis:

The b (ono) face does not develop in the crystal. The b-axis becomes vertical when the reflections from the prism faces lie in the vertical plane and the bisector between m (1 IO) and m^{\prime} (IIO) becomes vertical.

The mean axial length, $b=7.6 \mathrm{II} \AA$, is found from the rotation photograph (Fig. 2).

(iii) Rotation about a-axis :

Both b (oro) and c (оот) faces being absent, a-axis was: fixed by setting q (ori) and \bar{q}^{j} (ori) faces vertically.

The rotation photograph (iig. , ${ }^{\text {) }}$ gives the mean value $a=22.70 \AA$.
This the axial ratios, given by the x-ray studies of the crystal are found to be

$$
a: b: c=2.98: 1: 0.4946 .
$$

Comparing the results with those given by (iroth (loc. cit.) it is found that the length of the a-axis is twice the value assumed by Groth.

In order to determine correctly the space-lattice and the space-group the reflecting spots must be identified and indexed unambiguously.

いI! IERMINATIONOT TIIFSPACE-LATTICF

()scillation photograpl :

The crystal was set with the c-axis vertical. The oscillation started with the incident heam normal to a (roo) face, i.c., parallel to the reciprocal a-vector $-a^{*}$-axis. The ocillation ranging from $0^{\circ}-180^{\circ}$ was covered in ten successive stages, each oscillating within the range of 18°.

The theoretical Bragg angle of reflection of diffracted plancs which alone can appear in the osciliation picture as judged from the reciprocal lattice are compared with those oltained from the direet measurement of the photograph. Thus every spot in the photograph is accomuted for and given the proper index. The theoretical angles are calculated from the equation

$$
\sin \theta=\underset{\sin \beta}{\lambda} V\left[\left(\frac{h}{a}\right)^{2}+\left(\frac{k \sin \beta}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}-2 \frac{h l}{a c} \cos \beta\right]
$$

where $\quad \theta$ is the Bragg augle of reflection of the plane ($h k$)) .
a, b, c are the axial leugtls already determined
β is the axial angle determined from goniometric studies.
A perusal of the indices of the planes reflected in the central layer line showed that no special conditions guide the reflection of ($h \mathrm{ko}$) planes.

Since there is no restriction in the appearance of ($h k \mathrm{ko}$) reflections, there cannot be also any systematic absent spectra in the general ($h k l$) reflections. Hence, being superfluous, higher layer lines of the c-axis oscillation photographs were not analysed.

The unit cell of phthalimide, therefore, belongs to the simple monoclinic lattice.

DETERMINANIONOT THITSPACEGROTP
Weissenberg photographs:
One of the axes being too long, the angles of reflection of (oko) planes lie very close to that for (1 ko). Hence in order to decide unambiguously the zature

Fig. 1
Rotation photur"aph about

FIg. 2
Rotation photograph
about b-axis.

Fig 3
Rotation photograph
about a-axi:.

Fig. 4
Retation phetgraph
about c-axis.
of (oko) reflections, Weissenberg photograph of the central layer line around c-axis of the crystal was taken (Fig. 4).

All the spots were correctly indexed. It was found that no systematic absent spectra occur in the reflection of ($h k o$) planes, as already indicated by oscillation photographs, but (hoo) and (oko) reflections occur only when h and k are even.

Since the crystal belongs to the monoclinic bololedral class, halving of ($n k 0$) indicates a two fold screw axis along b while halving of (hoo) indicates a glideplane of symmetry normal to the b-axis and having a glide of a/2 or $(a+c) / 2$.

To choose between these two alternatives we have to study the nature of (hol) reflections.

For this purpose a Weissenberg photograph of the central layer line around b-axis of the crystal was taken. This also gives us directly the angle β between a-and c-axes.
β was found to agree satisfactorily with the value reported by Groth.
Indices of all the spots showed that not only the odd orders of (hoo) and (ool) are absent but also all reflections from (hol) where $(h+l)$ is odd, are absent. This means that the glide is $(1+c)_{1} 2$ and not $a / 2$.

As all the necessary and requisite conditions of finding out the correct spacegroup of a monoclinic lattice (cf. Astbury and Yardley) have heen determined, the nature of (okl) reflections were not studied.

To sum up, it is found that (i) b-axis is a two fold screw axis, sume odd orders of ($0 k$ o) reflections are absent and (i) the plane nornal to the b-ixis, i.c., (oro) phane is a glide plane of symmetry with a glide of $(4+c) / 2$, since all reflections from (hul) where ($h+l$) is odd are alsent.
(on comparing these critenia with those given by Astbury and Vardley (loc, cit.) the spacc-group, is found to be $\mathrm{C}_{2}^{5}-\mathrm{P}_{2} / n$

The number of molectules per unit cell, n, is given ly the relation

$$
\rho=n . \text { M. } m / \mathrm{V}
$$

where $\rho=$ density of the phthalimide crystal.
$n=$ the number of molecules of phthalimide $\mathrm{C}_{6} \mathrm{IH}_{4}(\mathrm{CO})_{2} \mathrm{NH}$ per unit cell.
$m=w t$. of $\mathrm{H}: \mathrm{atom}=1.649 \times 10^{-2.4} \mathrm{gm}$.
$\mathrm{M}=$ molecular weight of p hthalumide $=\mathrm{I} 47$.
$\mathrm{V}=\mathrm{volume}$ of the unit cell

$$
=a b c \operatorname{Sin} \beta
$$

$$
=22.7 \times 7.611 \times 3.765 \times \operatorname{Sin} 91^{n} 183^{\prime \prime} \times 10^{-24} \text { c.c. }
$$

$$
=6.504 \times 10^{-29} \text { c.e. }
$$

The density was determined by the flotation method fiom a solution of zinc sulphate. It was found to be 1.452

Hence the number of molecules, n, per unit cell

$$
{ }_{4-1576 \mathrm{P}-3} \quad \rho \mathrm{~V} / \mathrm{Mm}=3.896 \approx 4.0
$$

SUMMAKY

The axial lengths a, b and c were found out from the three rotation photographs. The length of the a-axis is found to be twiec that assumed by Groth.

The axial ratios are $a: b: c=2.98: 1: 0.4946$.
Uscillation photographs around c-axis showed the general nature of (hko) and ($h \mathrm{k} / \mathrm{l}$) acflections indicating the presence of the simple lattice.

Zern-layer-line Weissenbetg, photographs around b and c-axes were taken. The b-axis photograjh gave β angle agreeing fairly weli with that found optically, viz., $91^{\circ} 188^{\prime \prime}$.

All reflections from ($h o l$) planes where $(h+l)$ is odd are absent.
From c-axis photograph it was found that all ocld orders of (oko) reflections are absent.

Hence b-axis is a two-fold serew axis and ($a c$)-planc is a glide plane of symmetry with a glide $(a+c) / 2$, and the space-gromp is $\mathrm{C}_{2}{ }_{6}-\mathrm{P}_{2} / n$

$$
\begin{aligned}
& a=22.700 \AA \\
& b=7.611 \AA \\
& c=3.765 \AA \\
& \beta=91^{\circ} 18_{i}^{2 \prime} \\
& 1=7 .
\end{aligned}
$$

()ur lest thanks ate duc to Puf. S. N. Bose for his guidance and contimoed interest in this work. (ne of the anthors (S. N. B.) wishes to record his thanks to the Imperial Council of Agricultural Research, India, for financial help and to Prof. J. N. Mukherjee for making it possible for him to work at Dacca.

X-ray Lahoratory,
 Dacea University.

RİINRINNCIS

Astbury and lardley, 1934, lhil. Tians. Foy Soc. Ind., 224A, 221.
Groth, 1906, Chem. Krist., 4, 712.

