ON THE THEORY OF PERFORMANCE OF WIDE AND ULTRAWIDE BAND LATTICE TYPE CRYSTAL BAND.PASS FILTERS CONTAINING STABILISED NEGATIYE IMPEDANCE ELEMENTS

By S. P. CHAKRAVARTI
(Narbiad iar publiation, 小poilst, af

Abstract

. 'lise paper relates to the the oty of perfurmance of wide and ultra-wide band lattice type custal band pans filter sestions containing crystal, capacitance, inductance and tabilized vegative impedance clement developed by the author dsenl!ate. One tapical section of each of the elasses I and II has liecn chosen for consideration.

The typical lattice section of Class I consists of a series resonnmt wement in the series am and a crystal monnted between tho electrodes connceted in series with a stabilised negative impedance element in the lattiere mom. live important cases, have leen considered. Natuse of reactancen in verics and Jattice ame fon the five coses in ith (heir sul) ases has been innestigated, and the possibility of attemation peak and ' or waviness in total incertion-loss characteristics has been disconsed. The latice nection has been reduced to an equivalent I'section for calculation purpose. Characterintic impedance and its nature have been discussed. The cut-off frefuencies have heen determincd and the attemation and phase ronstants of the section have been oljtained.

The typical lattice section of Class II cousists of a crystal (motunted hetween two clectrodes) connected in paralles to a stabilised negative impedance element in the serics anm and a crystal (mounted between two electrodes) connected in series with a stabilised negative impedance element in the lattice arm. Four important canes have becn considered. Nature of reactances in series and lattice arms for the four cases with their suberses has been investigated. The lattice section has been reduced as lefore to an equivalent T -scetion. ("haracteristic impedance and its nature have been dincussed. The cut-oft frecmencics late licen determined and the attenuation and phase constants of the section have been oltained.

1. INTRODUCJION

The simplest type of crystal band-pass filter is the ladder section (Mason, 1934) cousisting of crystal and capacitance elements which gives a small transmission band-width. By using a lattice section (Mason, 1934) employing crystal and capacitance elements, it is possible to get a larger band-width which is still much less than the requirement. Lattice section (Mason, 1934, 1937; Stanesby and Broad, 1939, 194I; Stanesby, 1942) using crystal, capacitance and inductance elements is capable of giving much larger band-uidth than the lattice section without the inductance element, but this still remains nuch narrower for majority of requirements of the modern commanication systems. Besides, the use of inductance coils of comparatively lower ' Q ' value gives large attenuation in the transmission band.

The author in a previous paper (Chakravarti and Dutt, 1940) developed wide band and uitra-wide band low-loss lattice type crystal band-pass filters containing crystal, capacitance, inductance and stabilised negative impedance clements. The characteristic impedance and total insertion loss characteristics of such lattice sections have been measured and the sharpness of cut-off on the two sides has been compared to that of lattice sections using crystal, capacitance and inductance elements.

The wide and ultra-wide band crystal band-pass filters so developed have considerable applications in several types of modern communication systemsfor example, as band-pass filters in television and broad band carrier current systens and as band-pass filters and hand-pass couplings in multi-channel rado telephone transmission and reception systems. By reducing the band-width to less or somewhat less than that required for the above commonication systems (which is possible by the methods developed), they are cafrabie of being utilized for various other useful furposes in short-wave and medium wave radio systems.

The present paper relates to further investigation regarding the performance of wide and ultra-wide band lattice type crystal band-pass filter sections (designated as Class 1 and Class 11 types in the autbor's previous paper) using crystal, capacitance, inductance and stabilized negative impedance elements.
II. WJDEANII VLTRA-WIDE BAND LATTICE TYPl CRYSTAL BANJ-PASSEILTERSFCTION一CLASS 1°

Consider a typical Class I lattice section in which a series resonant element (consisting of an inductance and a capacitance connected in series) is in the series arm and a crystal (mounted between two clectrodes) connected in series with a stabilized negative impedance element is in the latlice arm [Fig. I (a)]

Fig. I

r. DIFTMRTEN CASFS

Five important cases may arise as follows-(1) in which the negative impedance element is detumed to the crystal frequency as well as to the resonance frequency of the series resonant element; (2) in which the negative impedance clement is tuned to the resonance freguency of the series resonant element but the crystal frequency is difierent; (3) in which the negative impedance element is tuned to the crystal frequency but the resonance frequency of the series resonant element is different; (4) in which the serjes resonant clement is tuned to the crystal frequency but the negative impedance element is tuned to a different frequancy; (5) in which the negative impedance element is tuned to the crystal frequency as well as the resonance frequency of serics resonant clement.

Suppose $F_{1}=$ resonance frequency of the series resonant element (in the serics arm), $\mathrm{F}_{2}=$ resenance frequency of the parallel resonant clement incorporated in the stabilized r (gative impedance element (in the lattice arm), $J_{0}=$ resonance frequency of the chystal (in the lattice arm), and $\mathrm{F}_{0}=$ overall frequency (or anti-resonance frequency) of the crystal (in the lattice anm). Then in case (1) $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and F_{0} (or f_{0}) are all different; in case (2) $\mathrm{F}_{1}=\mathrm{F}_{2}$ but F_{0} (or f_{0}) is different ; in case (3) $\mathrm{F}_{2}=\mathrm{F}_{0}$ (or f_{0}) and F_{1} is different; in case (4) $\mathrm{F}_{1}=\mathrm{F}_{0}$ (or f_{0}) and F_{2} is diflerent; and in case (5) $\mathrm{F}_{1}=\mathrm{F}_{2}=\mathrm{F}_{0}$ (or f_{0})


```
    |^T「ICNARNG
```

Fig. 2 shows the reactance-frepucncy charactoristics of the series and lattice arms duawn for the five cases mentioned above. The cure marked I refers to the chanactoristic of the scrics respmant elantint inc sotics amm; the curve matked II_{1} refers to that of the negative impedance chement in the latice amm, and the cunve marked I_{z} refers to that of the ciystal (mounted between electrodes) in the lattice arm.

The nature of the reactance characteristic of the ncgative impedance elenent in the lattice arm follows from the following calculations. The impedance of the negative impedance element is given by

$$
\begin{equation*}
{ }_{N} Z_{2}=\frac{j \omega L_{2} R_{a}}{R_{a}\left(I-\omega^{2} L_{2} C_{2}\right)-j \omega L_{2}} \tag{1}
\end{equation*}
$$

The reactance component of ${ }_{\wedge} Z_{2}$ can be shown to be

$$
\begin{align*}
j_{N} \mathrm{X}_{2} & =j \cdot \frac{\omega \mathrm{~L}_{2} \mathrm{R}_{a}^{2}\left(1-\omega^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right)}{\mathrm{R}_{a}^{2} \mathrm{R}_{a}^{2}\left(1-\omega^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right)^{2}+\omega^{2} \mathrm{~L}_{2}^{2}} \tag{2}\\
& =-j \cdot \frac{\mathrm{~L}_{2} \mathrm{C}_{2}\left(\omega \mathrm{~L}_{2}-\frac{1}{\omega \mathrm{C}_{2}}\right)}{\mathrm{C}_{2}^{2}\left(\omega \mathrm{~L}_{2}-\frac{1}{\omega \mathrm{C}_{2}}\right)^{2}+\frac{\mathrm{L}_{2}^{2}}{\mathrm{R}^{2}}} \tag{2a}
\end{align*}
$$

on dividing both numerator and denominator by $\omega_{2} \mathrm{~K}_{n}^{2}$.

(b)

(C)

(e)
(f)

CASE (I) WHIT: 11, FF, AND F_{0} (CR F_{0}) ARF DIFFERENT.

CASE (3) WHEN $F_{0}-F_{2} O R F_{0}=F_{2}$ AND F DIF FERENT.

CASE (4) WHEN $f_{0} \# F_{1}$ OR $F_{0}=1$, ANG F, IS DIFERENT

CASE (b)WHEN $F_{0}=F_{1}=F_{2} \quad O R I_{0}=F_{1}=F_{2}$

Fig. 2

- Assume that the total shunting capacitance C_{2} has been kept more or less constant at a suitable value (i.e., by means of an external capacitance) when h.f. voltage of varying frequency is impressed on the negative impedance element; that the resonance frequency of $L_{2}-C_{2}$ parallel combination

Theory of Performance of Wide and Ultra-wide Band, etc. 171

associated with the negative impedance element is ' F_{2} ' Mc / s. Therefore with h.f. voltage of varying frequency applied to the negative impedance element, the magnitude of the resistance component only has to be taken to change with ω according to the approxinate relation $\left|R_{n}\right|={\underset{\omega}{2}}_{m}^{m}$ [found by the author clsewhere (Chakravarti and Das, $I(1,1,3)$] where m is a constant. Then

$$
\mathrm{X}_{2}=-\frac{\mathrm{L}_{22} \mathrm{C}_{2}\left(\omega \mathrm{~L}_{12}-\begin{array}{c}
1 \tag{3}\\
\cdots \mathrm{C}_{2}
\end{array}\right)}{\left(C_{2}^{2}\left(\omega \mathrm{~L}_{12}-\frac{1}{\ldots \mathrm{C}_{2}}\right)^{2}+\frac{\mathrm{L}_{2}^{\prime}}{m_{2}^{2}} \omega^{4}\right.} .
$$

 when $\omega=\frac{1}{\sqrt{L_{2}} \mathrm{C}_{2}}=-\pi \mathrm{F}_{2}, \mathrm{~N}_{2}=0$; and when $\omega \gg{ }_{V} \frac{1}{\mathrm{~L}_{2} \mathrm{C}_{2}}, \omega \mathrm{~L}_{2} \cdots \frac{1}{\omega \mathrm{C}_{2}}$ will be positive and hence ${ }^{\mathrm{N}} \mathrm{X}_{2}$ will be negative.

Starting from a point before F_{2} as the frequency is increased the magnitude of the posilive reactance has been found to increase till a frequency say $\mathrm{F}_{2}-f^{\prime}$ and then 10 decease rapidly to zero value at F_{2}. After the resonance frequency F^{\prime}, is passed, the reactance is of negative sign and its magnitude at first increases till a certain frequency say $\mathrm{F}_{2}+y^{\prime \prime}$ and then decreases to low value as the freguency is further increased. The form of the reactance curve is shown in Fig. 3.

Fig. 3
The nature of the reactance characteristic of a typical negative impedance element can be seen from figures in Table I. $L_{2}=10 \times 10^{-1 ;} \mathrm{H} ; \mathrm{C}_{2}=44 \times 10^{-12} \mathrm{~F}$; $\mathrm{R}_{a}=2 \times 10^{3}$ ohms at $5 \mathrm{Mc} / \mathrm{s}, 1.4 \times 10^{3}$ ohms at $6 \mathrm{Mc} / \mathrm{s}, 0.9 \times 10^{3}$ ohms at $7.6 \mathrm{Mc} / \mathrm{s}, ~ 4.8 \times 10^{3} \mathrm{ohms}$ at $8 \mathrm{Mc} / \mathrm{s}$ and 0.68×10^{3} ohms at $9 \mathrm{Mc} / \mathrm{s}, 0.5 \times 10^{3}$ ohms at $50 \mathrm{Mc} / \mathrm{s}$ and $\mathrm{F}_{2}=7.6 \mathrm{Mc} / \mathrm{s}$ roughiy.

$$
6-1455 \mathrm{P}-\mathrm{III}
$$

'Tames 1

Preguency Mc $/ \mathrm{s}$	$\mathrm{L}_{4} \mathrm{C}_{2}$	$\omega L_{0}-\frac{1}{\omega C_{0}}$	$\mathrm{C}:\left(\omega \mathrm{L}_{1}-\frac{-}{\omega} \mathrm{C}_{2}\right)^{2}+\frac{\mathrm{I}_{2}^{\prime}}{\mathrm{R}_{6}^{2}}$	$\begin{gathered} { }^{N} \boldsymbol{X}_{8} \\ \text { ohms } \end{gathered}$
5	440×10^{-18}	- 406	3.25×10^{-10}	$+540$
1	440×10^{-14}	$\cdots 223$	1.40×10^{-11}	+691
7.6)	$440 \times 10^{\text {in }}$	o	123×10^{10}	-
8	440×10^{-14}	+54	1.76×10^{-11}	-135
9	440×10^{-18}	+167	$2.63 \times 10 \times 11$	-279
10	440×10^{-18}	$+27^{\circ}$	5.6×10	-21.3

It will be noted that such a variation of the reactance of negative impedance element as shown above added on to the typical variation of the reactance of a crystal agrees well with the variation of the measured vaine of total reactance ' X_{2} ' in the latlice arm with frequency for the untmed casc given in Fig . 8 , on page 305 of the author's previous paper (Chakravarti and Dutt, 1941).

It will be seen from the reactance diagrams drawn for different cases in Fig. 2 that the performance of wide band and ultra-wide band band-pass filters depends not only upon the values of F_{1}, F_{2} and F_{n} (or f_{0}) but upon their location in the freguency spectroun with respect to ouc anothen.

Further, in all cases and sub cases the probable cut-ofi frefucncies indicated on the diagrams are on the basis that the impedances in series and lattice arms are purely reactive. In actual practice the impedances have resistance components as well and the results get modified. For exampic, if the series resonant element in the series arm be taken to contain no resistance, it is evident that at F_{1} the reactance is zero and Z_{A} (where Z_{n} is the total impedance in each sen ics arm of the lattice section) is also zero. Hence the characteristic impedance of the lattice section becomes zero giving a cut-off frequency at $\mathrm{F}_{\mathbf{1}}$. On the other hand, if the series resonant clement in the series arm has a resistance component, the characteristic impedance of the section at F_{1} is not zero; and the total insertion loss characteristic will be characterised by reflection effects giving the 'effective cut-off frequency ' somewhat different from F_{1}.

Take case (I) in which $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and F_{0} (or f_{0}) are different. (a) shows the condition when $\mathrm{F}_{2}<\mathrm{F}_{1}<\mathrm{F}_{0}$ (or f_{0}), and F_{2} and F_{1} are nearer to each other. It will be observed that the reactance in the series arm and the total reactance in the lattice arm are of the same sign between F_{2} and F_{1} with the magnitude of the latter reactance greater than that of the former and further the reactance in the series arm becomes zero at F_{1}. Consequently it can be expected that there will be large attenuation and/or waviness in the total insertion loss characteristic between F_{2} and F_{1}. This condition may give rise to two band-pass filters having almost adjoining transmission bands or a single band-pass filter of larger band-width with waviness about F_{1} according as the resistance com-

Theory of Performance of Wide and Ultra-wide Band, etc. 173

pouent of the impedance in the series arm is negligible or has appreciable value and also according as F_{2} is farther away or much nearer to F_{1};
(b) shows the condition when $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{0}$ (or f_{0}), and F_{1} and F_{2} are nearer to each other. The probable positions of cut-off frequencies are indicated by arrows. In this case the transmission band-width will be large and the cut-off will be equally sharp on both the sides. The total insertion loss characteristic over the transmission band is expected to be fairly even;
(c) shows the condition when $F_{1}<f_{0}<F_{2}<F_{0}$, and F_{1} and F_{2} are nearer to f_{0}. The probable positions of ent-off frequencies are indicated by arrows. In this case the transmission hand-width will te large and the cot-ofl will not be equally sharp on both the sides;
(d) shows the condition when $\mathrm{F}_{2}<\mathrm{F}_{11}\left(\sigma_{0} f_{11}\right)<\mathrm{F}_{1}$, and F_{1} is nearer $\mathrm{to}_{0} \mathrm{~F}_{0}$. The tansmission band-width may be small as indicated by arrows $\mathrm{f}-2$, or may be large as indicated by arrows $1-3$ with waviness in the total jnsertion loss characteristic about I^{1}. The sharpness of ent-off is expected to be unequal on the two sides;
(c) shows the condition when $\mathrm{F}_{2}<\mathrm{F}_{0}$ (or $\left.f_{0}\right)<\mathrm{F}_{1}$, and F_{1} is far away from F_{0}. This condition is expected to give small transmission band-width and the sharpness of cut-off may be more or less the same on both the sides;
(f) shows the condition when $\mathrm{F}_{1}<\mathrm{F}_{0}$ for \int_{0}) $<\mathrm{F}_{2}$, and F_{2} is far away from F_{0}. '1his condition may be suitable for wide and ultra-wide band bandpass filters. The nearer F_{2} is to F_{0}, the larger will be the transmission bandwidth. The sharpmess of cut-off is expected to be the same on the two sides.

Take casc (2) in which $\mathrm{F}_{\mathrm{J}}=\mathrm{F}_{2}$, and F_{0} or f_{0} is different. This case refers to F_{1} (or F_{2}) being less than F_{0}, but a similar diagram could be made for F_{1} (or F_{2}) being greater than F_{0}. It will be seen that at F_{1} (or F_{2}) the reactance of series arm becomes zero and the characteristic impedance will become zero unless modified by the resistance component of the series arm impedance. This condition may give rise to two band-pass filters having adjoining transmission bands or a single band-pass filter of larger band-width with waviness in the total insertion loss characteristic about F_{\perp} (or F_{2}) for reasons given in (a) of case (1).

Take case (3) in which $F_{0}=F_{2}$, or $f_{0}=F_{2}$, and F_{1} is different and less than F_{2}. It will be scen that when $\rho_{0}=\mathrm{F}_{2}$ the band-width is indicated by arrows (placed on the frequency axis). When $\mathrm{F}_{0}=\mathrm{F}_{2}$ the band width is smalier and indicated by arrows (placed along the frequency axis at alower level). The sharpness of cut-off is expected to be different on the two sides.

Take case (4) in which $F_{0}=F_{1}$ or $f_{4}=F_{1}$, and F_{2} is different and less than F_{3}. It will be seen that when $\mathrm{F}_{11}=\mathrm{F}_{1}$, or $\rho_{0}=\mathrm{F}^{4}$, the expected band-width may be more or less the same and is indicated by the arrows on the two diagrams. The sharpness of cut-off is expected to he different on the two sides.

Take case (5) in which $F_{0}=F_{2}=F_{2}$, or $f_{11}=F_{1}=F_{2}$. It will be secn that when $f_{0}=\mathrm{F}_{1}=\mathrm{F}_{2}$, the band-width (marked by arrowsi is slightly smaller than when $F_{0}=F_{1}=F_{2}$. The sharpness of cut-off is expected to be similar on both the sides.

S. P. Chakravarti

3. ON POSSIBLEATTENUATION TIAKKAND WAVINLSS IN TOTALINSHKTION-LOSHCHARACTERISTICS IN (CrRTATN CABIS
If the reactances in series and lattice arms are of oposite signs and same in magnitude over the transmassion band, the characteristic impedance in the transmission band is a pure resistance of magnitude same as that of one of the reactances. If Z_{n} and Z_{n}. are the total impedances in each series and each lattice arms respectively, suppose $Z_{n}=+j X$ and $Z_{n}=-j X$. Then $Z_{01}=\sqrt{Z_{i} Z_{n 1}}=\sqrt{X^{2}}$, so that the magnitude of characteristic impedance is $/ \mathrm{X} / /$. When terminated by non-reactive impedance ' X ', the refection loss in the transmission hand is zero and the total insertion loss or wain will be due to network loss or gain respectively.

If the leactances in series and lattice arms are of opposite signs but very much unequai in magnitudes, the characteristic impedance will be a pure resistance of value smaller or larger than $/ \mathrm{X} /$. When still terminated by nonreactive impedance ' X ,' there will be reflection loss (depending upon the magnitudes of the impedances) to be added on to the network attenuation or gain.

If one of the reactances say in series arm is zero and the other one in lattice arm either of positive or of negative sign, the characteristic impedance is Lero. When terminated by non-reactive impedance ' x ,' there will be very large reflection loss giving a kind of attenuation peak in the total insertion-loss characteristic. This may be modified by the resistance component of the series arm impedance (if appreciable) since in that case the characteristic impedance will not be zero but will contain both resistance and reactance components.

If both the reactances are of the same sign and their magnitudes are nearly equal or unequal, the characteristic impedance is purely reactive. When terminated by a mon-reactive impedance ' X ,' there will be large reflection loss with reflection phase shift giving large attenuation as well as waviness in the total insertion loss characteristic. The condition discussed here is typical for the attenuation band of a band-pass filter.

The waviness in the total insertion loss characteristic due to reflection effects could be noticed in the curve for $\mathrm{I}(\mathrm{x}) \mathrm{D}$) type band-pass filter shown in Iisg. 7 (page 304) of the author's previous paper (Chakravarti and Dutt, 1940).
4. I: OUIVALENTT-SECTION OF THEORItINAL

A general section (in which the negative impedance element is detuned to the crystal frequeucy as well as to the resonance frequency of series arm) is shown in Fig. $1(a)$ and its effective equivalent is shown in Fig. $1(b)$, Neglect R_{1}, R_{0} and K_{2}, the resistance compouents in the various inductances.

If Z_{A} be the total impedance in each series arm and $Z_{\prime \prime}$ the total impedance in each lattice arm, then we have

$$
\begin{equation*}
Z_{\Delta}=j\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right) \tag{4}
\end{equation*}
$$

Theory of Performance of Wide and Ultra-wide Band, etc. 175

$$
Z_{10}=\frac{-\frac{j}{\omega C_{0}}\left(1-\omega^{2} L_{0} C_{0}\right)}{I_{1}-\omega^{2} L_{0} C^{\prime}+\frac{C_{0}}{C_{0}}} \mathrm{~K}_{1}\left(1_{1}-\omega^{2} L_{2} L_{2} R_{2} C_{2}\right)-j \omega L_{12} .
$$

For a crystal mounted between two electrodes,

$$
\begin{equation*}
\frac{\mathrm{C}^{\prime}}{\mathrm{C}_{0}}=k \tag{6}
\end{equation*}
$$

where ' k ' is about I 40 for the type of quartz crystal used by the author. The expression for Z_{11} can be simplified by putting $\mathcal{C}_{11} k$ for $\left(^{\prime \prime}\right.$ from (0) as follows:-

$$
\begin{equation*}
Z_{1}=\frac{-{ }^{j} \mathrm{C}_{0}\left(1-\omega^{2} L_{0} \mathrm{C}_{0}\right)}{j+k-k \omega^{2} \mathrm{I}_{0} \mathrm{C}_{0}}+\frac{j \omega 1_{2} R_{a}}{\mathrm{R}_{u}\left(1-\omega^{2} \mathrm{I}_{2} \mathrm{C}_{2}\right)-j \omega L_{2}} . \tag{7}
\end{equation*}
$$

Since ' 1 ' can be neglected in comparison to ' k ' in the denominator of the first term on the R.H.S. of equation (7) without apprecialie error

$$
\begin{equation*}
Z_{11} \sim--\omega_{\omega C_{0}}^{j}+\overline{R_{a}(1} \frac{j \omega I_{12} \mathrm{R}_{4}}{\left.-\omega_{2}^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right)-j \omega \mathrm{~L}_{2}} . \tag{s}
\end{equation*}
$$

Now since the lattice section in Fig. $\mathrm{I}(\mathrm{b})$ is equivalent to the T-section in Fig. $1(c)$, the various results for the lattice section can be obtained from those of the equivalent T -section.

If Z_{1} and Z_{2} be the total series and total shunt inpedances of the equivalent T-section respectively in Fig. 1(c), then (deducing from Figs. 24 A and 24 B , Appendix ' D,' page 281, of Transmission Circuits for Telephonic Communication by K. S. Johnson) we have

$$
\begin{align*}
& Z_{1}=2 Z_{1}=2 j\left(\omega \mathrm{~L}_{1}-\begin{array}{c}
\mathrm{I} \\
\cdots \mathrm{C}_{1}
\end{array}\right) \\
& Z_{2}=\frac{1}{2}\left(Z_{11}-Z_{A}\right)=\frac{1}{2}\left[\frac{\omega^{2} L_{12}^{2} R_{a}}{R_{i v a}^{2}\left(1-\omega^{2} L_{12} C_{2}\right)^{2}+\omega^{2} L_{2}^{2}}\right. \\
& \left.-j\left\{\begin{array}{l}
\frac{\mathrm{I}}{\omega}-\frac{\omega \mathrm{I}_{2} \mathrm{R}_{a}^{2}\left(\mathrm{I}-\omega^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right)}{\omega \mathrm{C}_{0} k}-\left(\omega \mathrm{I}_{4}^{2}\left(\mathrm{I}-\omega^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right)^{2}+\omega^{2} \mathrm{~L}_{2}^{2}\right. \\
\omega \mathrm{C}_{1}
\end{array}\right)!\right\} \tag{10}
\end{align*}
$$

5. CHARACTERISMICIM1E1)ANC1゙

The characteristic impedance ' Z_{0} ' of the T -section is given by
$Z_{0}=\sqrt{Z_{1} Z_{2}+\frac{Z_{1}^{2}}{4}}$
$=\sqrt{ }\left(\omega \mathrm{L}_{1}-\frac{1}{\omega \mathrm{C}_{1}}\right)\left[\frac{1}{\omega \mathrm{C}_{0} k}-\frac{\omega \mathrm{L}_{2} \mathrm{R}_{a}^{2}\left(1-\omega^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right)}{\mathrm{R}_{a}^{2}\left(\mathrm{I}-\omega^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right)^{2}+\omega^{2} \mathrm{~L}_{2}^{2}}-\frac{j \cdot \omega^{2} \mathrm{~L}_{2}^{2} \mathrm{R}_{2}}{\mathrm{R}_{u}^{2}\left(\mathrm{I}-\omega_{2}^{2} \bar{L}_{2} \mathrm{C}_{2}\right)^{2}+\omega^{2} \mathrm{~L}_{2}^{2}}\right]$
The imaginary term under the radical sign $\left|\begin{array}{c}\omega^{2} L_{2}^{2} R_{4} \\ R_{a}^{2}\left(1-\omega^{2} L_{2} C_{\mathbf{2}}\right)^{2}+\omega^{2} L_{2}^{2}\end{array}\right|$ is a small
fraction of the first real term $\frac{1}{\text { wciok }}$; over a large frequency band, as it can be shown by the example given below. The second real term is much smaller than the first one. As ω increases, the first real term becomes smaller and smaller with the result that after a certain frequency limit the imaginary term becomes quite appreciable compared to it.

Take a typical wide band lattice section of class I having a comparatively sualicr band-width so that $\left|\mathrm{R}_{n}\right|$ could roughly be taken to vary from 2×10^{3} ohms to 08×10^{3} olms over the band under consideration. For this section sulpose $\mathrm{F}_{1}=5.0 \mathrm{Mc} / \mathrm{s}, f_{0}=7.17 \mathrm{Mc} / \mathrm{s}, \mathrm{F}_{0}=7.24 \mathrm{Mc} / \mathrm{s}, \mathrm{F}_{2}=7.0 \mathrm{Mc} / \mathrm{s}$, $\mathrm{L}_{1}=10 \times 10^{-6} \mathrm{H}, \quad \mathrm{C}_{1}=111.0 \times 10^{-12} \mathrm{I}, \quad C_{0}=.011 \times 10^{-19} \mathrm{~F}, \quad L_{10}=10 \times 10^{-11} \mathrm{H}$, $\mathrm{C}_{2}=44^{2} \times 0^{-12} \mathrm{I}^{1},\left|\mathrm{R}_{a}\right|=2 \times 10^{, 2}$ ohmis at $5 \mathrm{Mc} / \mathrm{s}, 1.4 \times 10^{3}$ ohms at $6 \mathrm{Mc} / \mathrm{s}$, 1.0×10^{3} ollmins at $7.3 \mathrm{Mc} / \mathrm{s}$ and 0.8×10^{3} at $9 \mathrm{Mc} / \mathrm{s}$ and $k=140$.

Then the ratio of the first real term to th. inasinary term uider radical sign in (11) is given by

It will be seen that $N=135$ at $5 \mathrm{Mc} / \mathrm{s}, \mathrm{N}=34$ at $6 \mathrm{Mc} / \mathrm{s}, \mathrm{N}=17$ at $; \mathrm{Mc} / \mathrm{s}$, $\mathrm{N}=16$ at $7.3 \mathrm{Mc} / \mathrm{s}$. , and $\mathrm{N}=16$ at $9 \mathrm{Mc} / \mathrm{s}$.

Hence the imagiuary term may be dropped out in comparison to the real terms under the radical sigu at least over the frequency range $5.0-9.0 \mathrm{Mc} / \mathrm{s}$ (the lower limit has bean chosen from the consideration that at $5 \mathrm{Mc} / \mathrm{s}, Z_{0}$ will be zero). Similar calculations can be obtained for almost all other sections of this class.

$$
\left.\therefore \quad Z_{0}-\sqrt{\left(\omega \mathrm{I}_{1}-\begin{array}{c}
1 \tag{13}\\
\omega C_{1}
\end{array}\right)\left[\begin{array}{c}
\mathrm{T} \\
\omega C_{0} k
\end{array}{ }_{\mathrm{C}_{a}^{2} \mathrm{~L}_{2} \mathrm{R}_{a}^{2}\left(\mathrm{I}-\omega^{2}-\omega^{2} \mathrm{~L}_{2} \mathrm{C}_{2} \mathrm{C}_{2}\right)}^{\left.\mathrm{C}_{2}^{2}\right)^{2}+\omega^{2} L_{2}^{2}}\right.}\right]
$$

which is purely non-reactive and depends upon ω.

$\omega L_{1}-\frac{1}{\omega C_{1}}$ will be negative for values of $\omega<\frac{1}{\sqrt{L_{1} C_{1}}}$; it will be zero for $\omega=\frac{1}{\sqrt{L_{1} C_{1}}}=2 \pi \mathrm{~F}_{1}$ and will be positive for $\omega>\sqrt{\mathrm{L}_{1} \mathrm{C}_{1}}$.

Therefore Z_{0} will be pure reactance for frequencies less than F_{1}, it will be zero at F_{1} and will be almost pure resistance between F_{1} and a frequency f_{2} since the reactance component will be negligibly small between these limits. At frequencies greater than f_{2}, the reactance component of Z_{0} becomes appreciably large compared to the resistance component and hence Z_{0} becomes an impedance of more and more reactive nature.

The characteristic impelance of the wide band section mentioned above over the range $5-9 \mathrm{Mc} / \mathrm{s}$ is shown in Table II.

Theory of Performance of Wide and Ultra-wide Band, etc. 177

- Tabie II

It will be seen that Z_{01} increases with ' f ' (at first increasing rapidly and later on slowly) over the range $5-4 \mathrm{Mc} / \mathrm{s}$ whicit is the transmission band of the section as shown in the following sections.

By referring to the section on the "Nature of reactances in series and lattice arms," it may be predicted that one of the cut-ofl frequeucies will lie at or near abont F_{1} and auother of the cut-off frequencies near about the other edge of the band over which 7_{0} is more or less non-reactive.

Since Z_{0} is expected to be non-reactive over the transmission band, both $\%_{1}$ and $\%_{2}$ are to be purely reactive and of opposite signs over the same band. From (4), Z_{1} is purcly reactive. lrom erpation (10), Z_{2} has both resistance and reactance conponemts; hat since

$$
\left\lvert\, \begin{gathered}
\omega^{2} \mathrm{I}_{2}^{2} \mathrm{R}_{a} \\
\mathrm{R}_{a}^{2}\left(1-\omega^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right)^{2}+\omega^{2} \mathrm{I} \mathrm{I}_{2}^{2}
\end{gathered}\right.
$$

has bern medectod in comparison to

$$
{ }^{1} C_{0}^{\prime}
$$

in section 5 on 'characteristic impedance,' it shonld be similarly done as zeell in equation (o) to obtain Z_{2} as purely reactive.

Therefore, for calculation of the cut-off frequencies (i.c. the limits between which Z_{0} is more or less non-reactive),

$$
\left.Z_{1}=2 j\left(\omega L_{1}-\begin{array}{c}
1 \\
\omega C_{1}
\end{array}\right), \quad[\text { same as (} 0)\right]
$$

$$
\text { If } \quad Z_{1}=0 \text {, then } \omega^{2}=\frac{r}{Z_{2}} \mathrm{~L}_{1} \mathrm{C}_{1} \text {, or } \mathrm{t}_{1}=\frac{\because}{2 \pi \sqrt{L_{1} \mathrm{C}_{1}}}=\mathrm{F}_{1} . \quad \ldots \quad\left(\mathrm{I}_{5}\right)
$$

Hence lower cut-off frequency $\mathrm{f}_{1}=5 \cdot \mathrm{Mc} / \mathrm{s}$ for the section taken.
or
or

$$
\begin{aligned}
& { }_{(11}{ }^{4}\left(\mathrm{C}_{2}+\mathrm{C}_{0} k\right) \mathrm{L}_{2}^{2} \mathrm{C}_{2} \mathrm{R}_{a}^{2}-\omega^{2}\left(2 \mathrm{R}_{a}^{2} \mathrm{C}_{2}-\mathrm{I}_{2}+\mathrm{C}_{0} \mathrm{kR}_{a}^{2}\right) \mathrm{L}_{1_{2}}+\mathrm{R}_{a}^{2}=0 .
\end{aligned}
$$

Solving the biquadratic equation and putting $2 \pi f_{2}$ for ω, we have
$\mathrm{f}_{2}=\frac{1}{2 \pi}\left[\begin{array}{c}\left(2 \mathrm{R}_{\mu}^{2} \mathrm{C}_{2}+\mathrm{R}_{n}^{2} \mathrm{C}_{0} k-\mathrm{L}_{2}\right) \pm\left\{\left(2 \mathrm{R}_{4}^{2} \mathrm{C}_{2}+\mathrm{R}_{a}^{2} \mathrm{C}_{0} k-\mathrm{L}_{2}\right)^{2}-4 \mathrm{R}_{a}^{4} \mathrm{C}_{2}\left(\mathrm{C}_{2}+\mathrm{C}_{0} k\right)\right\}^{\frac{1}{2}} \\ 2 \mathrm{~L}_{2} \mathrm{C}_{2} \mathrm{R}_{a}^{2}\left(\mathrm{C}_{2}+\mathrm{C}_{0} k\right)\end{array}\right]^{\frac{1}{2}}$
where ' $\mathrm{f}, 2$ ' is the real admissible value.
Taking values of C_{0}, L_{2}, C_{2} and k and appropriate value of $\left|\mathrm{R}_{n}\right|$ at the frequency concerned, $m=\sqrt{3} 2.20 \times 10^{1 \prime}=56.8 \times 0^{\text {² }}$ r.p.s.,

$$
\because \quad \mathrm{f}_{2}=0.06 \mathrm{Mc} / \mathrm{s}
$$

Hence the cut-off frequencies of the typical section considered are 5.0 and $4.00 \mathrm{Mc} / \mathrm{s}$, or F_{1} and $f_{2} \mathrm{Mc} / \mathrm{s}^{\circ}$. It may be said that if F_{0} be the overali frequency of the crystal in the lattice arm, the cut-off frequencies of the section are rery roughly $\mathrm{F}_{0}-\frac{\mathrm{l}}{2}$ and $\mathrm{F}_{0}+\frac{\mathrm{B}}{2}$ where ${ }_{2}^{\mathrm{B}} \sim 2,0,3 \mathrm{Mc} / \mathrm{s}$.

8. ATTENUATION AND PHASECONSTANTS

The ratio of the current at the input $\left(I_{1}\right)$ to the current at the output (I_{2}) when the equivalent Γ-section is terminated in Z_{0} in the transmission band is given by

$$
\begin{aligned}
& \begin{array}{l}
I_{1} \ldots \mathrm{n}+\frac{Z_{1}}{1_{2}}+Z_{11} \\
1_{2}
\end{array} \\
& 2\left(\omega \mathrm{~L}_{1}-\begin{array}{c}
1 \\
\omega\left(\mathrm{C}_{1}\right.
\end{array}\right)
\end{aligned}
$$

$$
\begin{align*}
& +j \ldots\left[\begin{array}{c}
1 \\
\omega C_{0} k
\end{array}-\frac{\omega I_{12} \mathrm{R}_{n}^{2}\left(1-\omega_{0}^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right)}{\mathrm{R}_{a}^{2}\left(1-\frac{\left.\omega^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right)^{2}+\omega^{2} \mathrm{I}_{12}^{2}}{}\right.}+\left(\omega \mathrm{I}_{11}-\frac{1}{\omega \mathrm{C}_{1}}\right)\right] \tag{17}\\
& \text { Let } l=\underset{\omega C_{0} k}{\mathrm{I}}-\begin{array}{c}
\omega \mathrm{L}_{2} \mathrm{R}_{a}^{2}\left(\mathrm{I}-\omega^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right) \\
\mathrm{R}_{a}^{2}\left(\mathrm{I}-\omega^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right)^{2}+\omega^{2} \mathrm{~L}_{12}
\end{array} \quad \text { and } \quad m=\omega \mathrm{L}_{1}-\underset{\omega \mathrm{C}_{1}}{\mathrm{I}} . \\
& \text { Then from (13), } \\
& Z_{11} \sim \sqrt{1 m} .
\end{align*}
$$

The equation (17) can be written as

$$
\begin{align*}
& \mathrm{I}_{1}=\mathrm{I}-\frac{2 m}{l+m}+\cdot j \cdot \frac{2 \sqrt{ } \bar{m}}{l+m}=\frac{l-m}{l+m}+j \cdot \frac{2 v}{l+m} \tag{1S}\\
& \mathrm{I}_{2}
\end{align*}
$$

If $\mathrm{P}=$ propagation constant $=\log _{\rho}\left(\mathrm{I}_{1} / \mathrm{I}_{2}\right)=a+j \beta$ where $a=$ attenuation constant and $\beta=$ phase constant of the section, then

$$
u=\log _{,} \quad \sqrt{\binom{l-m}{1+m}^{2}+\frac{4 l m}{(1+m)^{2}}=\log _{\rho} \sqrt{(l-m)^{2}+4 l m}(1+m)^{2}}=\log _{\rho 1}=0
$$

Theory of Perjormance of Wide and Ultra-wide Band, etc. 179

Hence there is no attenuation in the transmission hand, F_{1} to f_{2} Mc/s. Actual measurements of netuork attenuation have shown lowe loss in the transmission band for the sections of this class. Further,

$$
\beta=\tan ^{-1} \quad \begin{gather*}
2 v i m \tag{20}\\
1-m
\end{gather*}
$$

Table III shows the values of β over the frequency range $5-\mathrm{c} \mathrm{Mc} / \mathrm{s}$ for the lattice section considered.

Thbine III

Consider a typical class II ultra-w ide band section in which a crystal (mount(d between electrodes) connected in parallel to a stabilised negative impedance element is in the serics arm and a crystal (mounted between two electrodes) connected in senes with a stabilised negative impedance ejement is in the lattice arm [rig. 4(a)].

FIG. 4

1. DIIEFRENTCARES

Four important cases may arise as follows-(I) in which the resonance frequency of the equivalent parallel resonant circuit formed from $L_{1}-C_{1}$ combination associated with the stabilised negative impedance element and equivalent

$$
7-4455 \mathrm{P}-\mathrm{III}
$$

circuit of the crystal (mounted between two electrodes) in the series arm, the frequency of the crystal in tie lattice arm and the resonance frequency of the parallel resonant circuit in the stabilised negative impedance element in the lattice arm are all different; (2) in which the resonance frequency of the equivalent parallel resonant circuit referred to above in the series arm is equal to the resonance frequency of the parallel resonant circuit iucorporated in negative impedance element in the lattice arm, and the frequency of crystal in the lattice arm is different; (3) in which the resonance frequency of the cquivalent parallel resonant circuit (referred to above) in the series arm is equal to the frequency of the crystal (resonance or anti-resonance frequency) in the lattice arm, and the resonance frequency of the parailel resonant circuit incorporated in negative impedance element in the lattice arm is different; and (4) in which the resonance frequency of the equivalent parallel resonant circuit (referred to above) in the series arm, the resonance frequency of the parallel resonant circuit incorporated in negative impedance element in the lattice arm and the frequency of the cryotal in the lattice arm are all the same.

Suppose $F_{1}=$ resonance frequency of the squivalent parallel resonant circuit (referred to above) in the series arm, $\mathrm{F}_{2}=$ resonance frequency of the parallel resonant circuit in the stabilised negative impedance element in the lattice arm, $\rho_{0}=$ resonance frequency of the crystal in the lattice arm and $F_{0}=$ over all frequency (or anti-resonance frequency) of the crystal in the lattice arm. Let $f^{\prime} 0$ and $\mathrm{I}^{\prime \prime}{ }_{0}$ be the corresponding frequencies of the crystal in the series arm. Then in case (x) $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and F_{0} (or f_{0}) arc all different; in case (2) $\mathrm{F}_{1}=\mathrm{F}_{2}$ but F_{0} (or f_{0}) is different; in case ($\left(_{3}\right.$) $\mathrm{F}_{1}=j_{0}$ or F_{0} but F_{2} is different; and in case (4) $\mathrm{F}_{1}=\mathrm{F}_{2}=\mathrm{F}_{0}$ (or f_{0}).

LATMICFARMS

Fig. 5 shows the reactance-frequency characteristics of the serics and lattice arms drawn for the four cases mentioned above. The cuive marked I refers to the characteristic of the negative impedance element together with crystal (mounted between electrodes) in parallel in the series arm; the curve marked II_{1} refers to that of the crystal (mounted between electrodes) in the lattice arm and the curve marked II_{2} refers to that of the negative impedance element in the lattice arm.

The nature of the reactance characteristic of the negative impedance element together with crystal (mounted between electrodes) in parallel in the series arm can be shown to follow from the consideration given below.

The impedance of the crystal (mounted between electrodes) in the series arm is given by

$$
\begin{equation*}
{ }_{c} Z_{1}^{\prime}=\frac{-j / \omega C^{\prime}{ }_{0}^{\prime}\left(\mathrm{I}-\omega^{2} L_{0}^{\prime} \mathrm{C}^{\prime}{ }_{0}\right)}{1-\omega^{2} \mathrm{~L}^{\prime}{ }_{0}^{\prime} \mathrm{C}^{\prime}+\mathrm{C}^{\prime} / \mathrm{C}^{\prime}{ }_{0}} . \tag{21}
\end{equation*}
$$

Theory of Performance of Wide and Ultra-wide Band, etc. 181

Substituting $C^{\prime}{ }_{0} k$ for C^{\prime} in (2r) and neglecting ' ${ }^{\prime}$ ' in comparison to ' k ' in the denominator, we have

$$
\begin{equation*}
{ }_{{ }^{\prime} Z_{1}^{\prime}} \simeq-\frac{j}{\omega \mathrm{C}_{0}^{\prime}{ }_{0}{ }^{2}} \tag{22}
\end{equation*}
$$

Hence the impedance of the crystal (mounted between electrodes) may be

S. P. Chakravarti

approximately regarded as purely reactive due to a capacitance $\mathbb{C}_{0} k$, and the usual equivalent circuit of the crystal (mounted between electrodes) may be replaced by the effective capacitance $\mathrm{C}^{\prime}{ }_{0} k$. Since this capacitance is shunting the capacitance C_{3} of the $\mathrm{L}_{1}-\mathrm{C}_{1}$ parallel resonant circuit of the negative impedance element in the series arm, the total capacitance in parallel resouant circuit is now $\mathrm{C}_{1}+\mathrm{C}^{\prime}{ }_{0} k$. Hence the reactance component of the negative impedance element shunted by the crystal in the series arm can be written as follows similar to that in equation (3).

$$
{ }_{n} \mathrm{X}^{\prime}{ }_{1}=\frac{L_{1}\left(C_{1}+C_{0}^{\prime} k\right)\left|\omega I_{1}-\frac{1}{\omega\left(C_{1}+C_{0}^{\prime} k\right)}\right|}{\left(C_{1}+C_{0}^{\prime} k\right)^{2}\left[\omega I_{1}-{ }_{\omega 1}\left(C_{1}^{-}+C_{0}^{\prime} k\right)^{-}\right]^{2}+\frac{L_{1}^{2}}{m} \omega^{4}} .
$$

 ${ }_{\mathrm{N}} \mathrm{X}^{\prime}{ }_{1}$ will be positive ; when ${ }_{10}={ }_{\sqrt{ }} \mathrm{L}_{1}\left(\mathrm{C}_{1}+\mathrm{C}_{0}^{\prime}{ }_{0} \bar{k}\right)=2 \pi \mathrm{~F}_{1},{ }_{\mathrm{N}} \mathrm{X}^{\prime}{ }_{1}=0$; and when $\omega>\sqrt{\mathrm{L}_{1}\left(\mathrm{C}_{1}+\left({ }^{\prime}{ }_{0} k\right)\right.}, \omega \mathrm{I}_{11}-\frac{1}{\omega\left(\mathrm{C}_{1}+\mathrm{C}_{0} k\right)}$ will be positive and hence $\mathrm{X}_{\prime_{1}}$ will be negative. As frequency is increased from a point before F_{1}, the magnitude of the positive reactance has been found to increase at first till a frequency $F_{1}-\psi^{\prime}$ and then to decrease rapidly to zero value at F_{1}. After the resonance frequency is passed the reactance is of negative sign and its magnitude at first increases till a certain frequency $\left(F_{1}+\phi^{\prime \prime}\right)$ and then decreases to low value as the frequency is further increased. It will be noted that the nature of variation of the reactance of the negative impedance element sluunted by the crystal (mounted between clectrodes) in the series arm is similar to that of the negative impedance element in the lattice arm.

In all cases and sub-cases discussed below the cut-off frequencies indicated are for conditions in which the effects of resistance components of the impedances in series and lattice arms have been neglected. If the impedances are taken to consist of both resistance and reactance components, the effective cut-off frequencies will be different.

Take case (I) in which $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and F_{0} (or f_{0}) are all different. (a) shows the condition when $F_{1}<F_{2}<f_{0}$ (or F_{0}), and F_{1} and F_{2} are nearer to each other. The probable positions of cut-off frequencies are indicated by arrows. It will be seen that at $\mathrm{F}_{1} \mathrm{Mc} / \mathrm{s}^{\circ}$ the characteristic impedance will be zero unless the resistance compouent of the impedance in the series arm has an appreciable value. The condition can give a very wide band with slight reflection effect about F_{1}.
(b) shows the condition when $\mathrm{F}_{1}<f_{0}$ for F_{0}) $<\mathrm{F}_{2}$, and F_{1} and f_{0} and aiso F_{2} and F_{0} are nearer to each other. The probable positions of cut-off

Theory of Performance of Wide and Ultra-wide Band, etc. 183

frequencies are indicated by arrows. This condition is expected to give a band-pass filter of lesser band-width than that of (a).
(c) shows the condition whon $\mathrm{F}_{2}<\mathrm{F}_{1}<f_{0}$ or F_{0}. If F_{1} and f_{0} are wearer to each other, the band-width is expected to be very large.
(d) shows the condition when $\mathrm{F}_{1}<f_{0}$ (or F_{0}) $<\mathrm{F}_{2}$, and F_{2} is farther from $\mathrm{F}_{\mathbf{0}}$. This condition will give a very wide band band-pass filter of cut-off frequencies marked by arrows.
(c) shows the condition when $\mathrm{F}_{2}<f_{0}\left(\right.$ or $\left.\mathrm{F}_{0}\right)<\mathrm{F}_{1}$, and F_{1} is farther from H_{0}. 'This condition will give a very wide band band-pass filter of cut-off frequencies marked by arrows. 'There may be slight wariness in the total insettion loss characteristic between f_{0} and F_{0}.

Case (2) shows the condition when $\mathrm{F}_{1}=\mathrm{F}_{2}$, and F_{0} (or f_{0}) is different. The band-widths are marked hy arows when F_{1} (or F_{2}) is less than f_{0} and also when F_{1} (or F_{2}) is greater than F_{0}. 'The band-width in the latter case may be less than that of the formet cate if there be a large attenuation in the total insertion loss characteristic about F_{0}.

Case (3) shows the condition when $F_{1}=f_{0}$, and F_{2} is difierent as well as when $\mathrm{F}_{1}=\mathrm{F}_{0}$, and F_{2} is diffcrent. Two band-pass filters of different transmission band widtles can be obtained under this condition and they could be made to give a single band-pass filter of larger band-widtl by altering the condition slightly in certain way:

Case (4) shows the condition when $\mathrm{F}_{1}=\mathrm{F}_{2}=f_{0}$ and also when $\mathrm{F}_{1}=\mathrm{F}_{2}=\mathrm{F}_{0}$. It will be seen that in the former case there may be two band-pass filters one of large and another of small transmission band width wheneas in the latter case there may be only one baud-pass filter. The probable cut-oft frequencies of the band-pass filters are indicated by arrows.

Among the subcases of case (I) the sharpness of cut-off is expected to be morc or less the same on both the sides in $(c),(d)$ and (c) and different on both the sides in (a) and (b). For case (a), it is expected to be nearly the same in (b) and different in (a) on both the sides. For case (3) it is expected to be different for the band-pass filter involving the lower frequency range and same for the one involving the higher frequency rauge on both the sides. For case (4) it is expected to be different for the band-pass filter involving, the lower frequency range and same for the one involving the higher frequency range on hoth the sides in (a), and it is expected to be different on both the sides in (b).
3. EQUIVALENTT-SECTIONOFTHEORIGINAL LATTICESECTION

A geveral section in which the resonance frequency of the equivalent parallel resonant circuit in the stabilised negative impedance element in the series arm, the frequency of the crystal in the lattice arm and the resonance frequency of the parallel resonant circuit in the stabilised negative impedance element in the latice arm are ali different, is shown in Fig. $4(a)$ and its
effective equivalent is shown in Fig . 4(b). Neglect the resistances in various inductances in series and lattice arms (that is, neglect $R^{\prime}{ }_{0}, R_{1}, R_{0}$ and R_{2}).

If Z_{a} be the total impedance in cach series arn and Z_{n} the total impedance in cach lattice arm, then we have

$$
\begin{align*}
& Z_{\Delta}=-\frac{j \omega \mathrm{~L}_{1} \mathrm{R}^{\prime}{ }_{a}}{\mathrm{R}_{a}^{\prime}\left[1-\omega^{2} \mathrm{~L}_{1}\left(\mathrm{C}_{1}+\mathrm{C}_{0}^{\prime} k\right)\right]-j \omega \mathrm{~L}_{1}} \tag{24}\\
& Z_{n}=-\frac{j}{\omega \mathrm{C}_{0} k}+\frac{j \omega \mathrm{~L}_{2} \mathrm{R}_{a}}{\mathrm{R}_{a}\left(\mathrm{I}-\omega^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right)-j \omega \mathrm{~L}_{2}} \tag{25}
\end{align*}
$$

If Z_{1} and Z_{2} be the total serics and total shunt impedances respectively of the equivalent 'I-section in I'ig. $4(c)$, then

$$
\begin{align*}
& Z_{1}={ }_{\mathrm{R}^{\prime}{ }_{a}\left[1-\omega^{2} \mathrm{~L}_{1}\left(\mathrm{C}_{1}+\mathrm{C}^{2 j \omega} \mathrm{C}_{1}{ }_{0} \mathrm{R}^{\prime}{ }_{a}\right)\right]-j \omega \mathrm{~L}_{1}} \tag{26}\\
& Z_{2}=\frac{1}{2}\left[\begin{array}{l}
-j \\
\omega \mathrm{C}_{0} k^{j}{ }^{r} \mathrm{R}_{4}\left(1-\omega^{2} \mathrm{I}_{2} \mathrm{C}_{2}\right)-j \omega \mathrm{~L}_{2}
\end{array}\right. \\
& \left.-\frac{j \omega L_{1} R_{a}^{\prime}}{R^{\prime}{ }_{a}\left[1-\omega^{2} L_{1}\left(C_{1}+C^{\prime}{ }_{0} k\right)\right]}-j \omega L_{1}\right) . \tag{27}
\end{align*}
$$

4. CHARACTERISTJC IMPINDANCE

separating the real and imaginary portions in the expressions on the R.H.S. of equations (26) and (27) and putting

$$
\begin{align*}
& a=\frac{\omega^{2} \mathrm{~L}_{1}^{2} \mathrm{R}_{a}^{\prime}}{\mathrm{R}_{a}^{\prime 2}\left[\mathrm{r}-\omega^{2} \mathrm{~L}_{1}\left(\mathrm{C}_{1}+\mathrm{C}_{0}^{\prime} k\right)\right]^{2}+\omega^{2} \mathrm{~L}_{1}^{2}} \tag{28}\\
& b=\frac{\omega \mathrm{L}_{1} \mathrm{R}^{\prime 2}\left[{ }_{a}-\omega^{2} \mathrm{~L}_{1}\left(\mathrm{C}_{1}+\mathrm{C}^{\prime} k\right)\right]}{\mathrm{R}_{a}^{\prime 2}\left[1-\omega^{2} \mathrm{~L}_{1}\left(\mathrm{C}_{1}+\mathrm{C}_{0}^{\prime} k\right)\right]^{2}+\omega^{2} \mathrm{~L}_{1}^{2}} \tag{29}\\
& a^{\prime}=\mathrm{R}_{a}^{2}\left[1-\omega^{2} \mathrm{\omega}_{2}^{2} \mathrm{~L}_{2}^{2} \mathrm{C}_{2} \mathrm{R}_{2}\right]^{2}+\omega^{2} \mathrm{~L}_{2}^{2} \tag{30}
\end{align*}
$$

and

$$
\begin{equation*}
b^{\prime}=\frac{\omega \mathrm{I}_{2} \mathrm{R}_{4}^{2}\left[1-\omega^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right]}{\mathrm{R}_{a}^{2}\left[1-\omega_{1}^{2} \mathrm{w}_{2}^{2} \mathrm{~L}_{2} \mathrm{C}_{2}\right]^{2}+\omega^{2} \mathrm{~L}_{2}^{2}} \tag{3I}
\end{equation*}
$$

we have

$$
\begin{equation*}
Z_{1}=2(a+j b) \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{2}=\frac{1}{2}\left[\left(a^{\prime}-a\right)+j\left(b^{\prime}-b-\frac{1}{\omega \mathrm{C}_{0} k}\right)\right] \tag{33}
\end{equation*}
$$

Therefore finally the characteristic impedance of the equivalent T-section is given by

$$
Z_{0}=\sqrt{\left[a a^{\prime}-b b^{\prime}+\frac{b}{\omega C_{0}} \dot{k}\right]+j\left[a^{\prime} b+a b^{\prime}-\frac{a}{\omega \mathrm{C}_{0} k}\right] \quad \ldots \quad \text { (34) }}
$$

5. NATCREOFTHECHARACTIRRISTICIMPEDANCE

In order to estimate the relative values of real and inuaginary terms under the radical sign in (34) over a frequency range, it is desirable to consider a typical

Theory of Performance of Wide and Ultra-wide Band, etc. 185

ultra-wide band section of class II. Take a section in which $\mathrm{L}_{1}=10 \times 10^{-1} \mathrm{H}$, $\mathrm{C}_{1}=19 \times 10^{-12} \mathrm{~F}, \quad \mathrm{C}_{0}^{\prime}=.015 \times 10^{-12} \mathrm{~F}, \quad k=140, \quad\left\langle\left.\mathrm{R}^{\prime}\right|^{*}=2 \times 10^{3} \quad\right.$ ohms, $\mathrm{I}_{12}=100 \times 10^{-6} \mathrm{H}, \mathrm{C}_{2}=.28 \times 10^{-6} \mathrm{~F}, \mathrm{C}_{0}=.011 \times 10^{-12} \mathrm{~F},\left|\mathrm{~K}_{a}\right| \dagger=7.05 \times 10^{3}$ ohms, $\mathrm{F}_{2}=30 \mathrm{Kc} / \mathrm{s}, \mathrm{F}_{1}=11.5 \mathrm{Mc} / \mathrm{s}, f_{0}=7.17 \mathrm{Mc} / \mathrm{s}$ and $\mathrm{F}_{0}=7.24 \mathrm{Mc} / \mathrm{s}$.

Table IV shows the values of $a, b, a^{\prime}, b^{\prime}$ and Z_{0} as well as of the real and imaginary terms under the radical sign in (31).

Tamile IV

It will be seen from 'Table IV that the imaginary term under the radical sign in (34) varies from 0.16% to about 27% of the real term under the same sign over the range $50 \mathrm{Kc} / \mathrm{s}-6 \mathrm{Mc} / \mathrm{s}$ and therefore Z_{0} may be regarded more or less as pure resistance between those limits. At frequencies higher than $6 \mathrm{Mc} / \mathrm{s}$, the imaginary term becomes greater and greater percentage of the real term and Z_{0} will be an impedance with both resistance and reactance components, and further beyond a certain frequency Z_{0} will be highly seactive giving conditions for the attenuation band. Further it will be noted that the magnitude of Z_{0} varics in a wavy manner in the transmission band-at first increasing, then decreasing, then increasing,

* Magnitude of negative resistance in serjes arm at $5 \mathrm{Mc} / \mathrm{s}$.
\dagger Magoitude of negative resistance in lattice arm at $5 \mathrm{Mc} / \mathrm{s}$. It will be noted that in actual case, $\left|R_{a}\right|$ for both series and lattice arm will vary irregularly with frequency over such au ultra-wide band (i.c., $30 \mathrm{Kc} / \mathrm{s}-11.5 \mathrm{Mc} / \mathrm{s}$) as under consideration at present. The values of $\left|R_{\|}\right|$taken from the mean curve (following the inverse square law for this large range are liable to introduce great errors. Hence $\left|\mathrm{R}_{n}\right|$ at $5 \mathrm{Mc} / \mathrm{s}$ has bren taken for both cases in calculation.

S. P. Chakravarti

again decreasing and finally increasing with frequency. At least for the frequency range over which Z_{0} is more or less of non-reactive type, Z_{1} and Z_{2} can roughly he taken to be pure reactances of opposite signs. Hence over this range,

$$
\begin{align*}
& Z_{1}-j .2 b \tag{35}\\
& Z_{2} \sim-\frac{j}{2}\left[\cdot b+\underset{{ }_{3}}{\underline{\prime} \mathrm{C}_{0} k_{2}}-b^{\prime}\right] \tag{36}
\end{align*}
$$

The characteristic impedance Z_{0}^{\prime} arrived at from (35) and (36) will be

$$
Z_{n}^{\prime}=V\left[\begin{array}{cc}
b \\
\omega C_{m} k
\end{array}\right] \quad \text {. } b^{\prime} \text {. } \quad \text { (37) }
$$

Which can be compared to the value $\%^{\prime \prime} 0$ obtained by neglecting $a^{\prime} b+a b^{\prime}-{ }_{\text {whe }}{ }^{\prime} \mathrm{k}$ in (3.1),

$$
\begin{equation*}
Z_{0}^{\prime \prime}=\sqrt{ }\left[a a^{\prime}-b b^{\prime}+\frac{b}{w C_{0} \bar{k}^{\prime}}\right] \tag{38}
\end{equation*}
$$

Z_{0}^{\prime} is nearly equal to $Z^{\prime \prime}{ }_{0}$, since $a a^{\prime}$ is very small.
6. CUT-OI゙ IFREOUENCIVS

The value ω - o is madmissible. Hence whe of the cut-off frequecies say, ' $/ 1$ ', in given hy

$$
\begin{equation*}
f_{1}=\frac{1}{2 \pi v^{\prime} L_{i}\left(C_{1} \overline{+}\left(L_{0}^{\prime} k\right)\right.} . \tag{39}
\end{equation*}
$$

In the ease of the nitra-wide band section considered above $f_{1}=10.03 \mathrm{Mc} / \mathrm{s}$.

$$
\text { If } \quad Z_{1}=-4 \text {, then } j .2 b=2 j\left[b+\frac{1}{\omega C_{0}{ }_{0}}-b^{\prime}\right] \text {, or } \frac{1}{\omega C_{0}^{\prime} k}=b^{\prime} \text {, }
$$

or

$$
\omega^{4}\left(C_{2}+C_{0} k\right) \mathrm{I}_{2}^{2} \mathrm{C}_{2} \mathrm{R}_{1}^{2}-\omega^{2}\left(2 \mathrm{C}_{2} \mathrm{R}_{11}^{2}+\mathrm{C}_{0} k \mathrm{R}_{a}^{2}-\mathrm{I}_{2}\right) \mathrm{I}_{12}+\mathrm{R}_{n}^{2}=0 \quad \ldots \quad(40)
$$

on evaluating b^{\prime} from (3i). Solving the biquadratic and putting $\omega=2 \pi f_{2}$, we have

where ' f_{q} ' is the real admissible value.
Taking $\mathrm{C}_{2}=0.28 \times 10^{-11} \mathrm{~F}, \mathrm{~L}_{2}=100 \times 10^{-1} \mathrm{H}, \mathrm{C}_{0}=.011 \times 10^{-12} \mathrm{I} \mathrm{F}, k=140$, $\left|R_{a}\right|=7.05 \times 10^{3}$ ohms from the data given for the ultra-wide band section,

$$
\begin{aligned}
f_{2} & =\frac{\mathrm{I}}{2 \pi} \sqrt{353.5} \times \mathrm{J}^{8} \\
& =30 \mathrm{Kc} / \mathrm{s} .
\end{aligned}
$$

Theory of Performance of Wide and Ultra-wide Band, etc. 187

Hence the cut-off frequencies of the ultra-wide band section considered are roughly $30 \mathrm{Kc} / \mathrm{s}$ and $10.93 \mathrm{Mc} / \mathrm{s}$. If $\frac{\mathrm{F}_{0}+\mathrm{F}^{\prime} 0}{2} \mathrm{Mc} / \mathrm{s}$ be the arithnetic mean of the overall frequencies of the crystals in series and lattice arms, then the cut-off frequencies will be $\frac{\mathrm{F}_{0}+\mathrm{F}^{\prime} 0}{2}-3 B^{\prime}$ and $\mathrm{F}_{0}+\mathrm{F}_{2}^{\prime} 0+2 B^{\prime} \mathrm{Mc} / \mathrm{s}$ where B^{\prime} varies from $\therefore 12$ to $2.22 \mathrm{Mc} / \mathrm{s}$.

7. ATTTNTATION AND PHASE COONSTANTS

The ratio of the current at the input (I_{1}) to the current at the ontput (I_{2}) when the T-section is terminated by Z_{0} in the transmission band is given by

$$
\frac{I_{1}}{1_{2}}=1+\frac{Z_{1}}{2 Z_{2}}+\frac{Z_{0}}{Z_{2}}
$$

Thking Z_{1}, Z_{2} and Z_{0} from equations $(35),(36)$ and (38) respectively we have

$$
\begin{aligned}
& \mathrm{I}_{1}=1-\frac{2 b}{b+\frac{1}{\omega \mathrm{I}_{0} k}-b^{\prime}}+j . \quad \frac{2 \sqrt{a a^{\prime}-b b^{\prime}+b / \omega \mathrm{C}_{0} k^{\prime}}}{b+-\frac{1}{\omega \mathrm{C}_{0} k}-b^{\prime}}
\end{aligned}
$$

It will be seen from Table IV that $/ b^{\prime} \mid$ is very small except over a small portion of the transmission band near the lower cut-off frequency and aat and $b b^{\prime}$ are also very small in comparison to $\frac{\mathrm{I}}{\omega \mathrm{C}_{0} k}$.

Therefore

$$
\begin{equation*}
\frac{I_{1}-\frac{I}{\omega C_{0} k}-b}{I_{2}} \frac{1}{\omega C_{0} k}+j \cdot \frac{2 \sqrt{ } b / \omega C_{0} k}{b+\frac{I}{\omega C_{0} k}} \tag{43}
\end{equation*}
$$

If the propagation constant $\mathrm{P}=\log _{e}\left(\mathrm{I}_{1} / \mathrm{I}_{2}\right)=a+j \beta$, where a and β are ittenuation and phase constants respectively, then

$$
\begin{align*}
& \beta=\tan ^{-1} \frac{4 b}{\omega \mathrm{C}_{0} k} /\left(\frac{1}{\omega \mathrm{C}_{0} k}-b\right) \simeq \tan ^{-1} 4 b \tag{45}\\
& \text { since: ". } \\
& 8-1455 \mathrm{P}-\mathrm{III}
\end{align*}
$$

Hence therc is no attenuation in the transmission band of the section. Actual measurements of network attenuation have shown lon loss in trausmission land for sections of this class.

The phase-shift angle (in degrees) is almost the same at all frequencies in the transmission band, as shown in Table V.

Tabiel V

f in Mc/s	. 05	. 5	1	2	3	4	5	6	7	8	10
tan β	32.5	126	252	506	8.8	1168	1532	2116	2508	3496	3234
β			>	$>$	near						
(degrees)	85 "30'	$89^{\prime} 33^{\prime}$	$89^{\circ} 4^{8}$	$89^{\circ} 54^{\prime}$	90°						

IV. ACKNOWIJ J? DGMENT

'The whole of the work has been carried ont at the Flectrical Communication Finginecring Section, Lepartment of Applied Physics, University of Calcutta. The author desires to thank heartily Prof. P. N. Ghosh, Sc.l)., for his very kind interest in the work and for giving him all facilities.

Chakravarti and Dns, 1943, Nature of Dynatron Type Negative Impedances at lirequencies from i to 40 Megacycles/Sec, Ind. J. Phys., 17, 51.
(Clakravarti and Dutt, 1940, Ind. /. I'hys., 14, 295.
Mason, 1934, Bell Sysicm Tech. Jour., 13, 360.
Mason, 1937, Bell System Tech. Joll', 16, 540.
Stanesly, x942, P. O. E. E. J., 35, 4.
Stanesly and Broad, 1943, P. O. F.. I.. J., 31, 254 .
Stancoly and Rroad, 1941, I. O. J.. E. J., 38, 176.

