EXPERIMENTS IN SCATTERED LIGHT．ANGLES OF FIRST MINIMUM

By R．V．TAMII IANKAR
ANI）
G．R．PARANJPE

Abstract

Starting with Mic＇s formula，tha distaibutinn of intemity of light scathered gations was $150^{\circ}-180^{\circ}$ ．The calculatiom tercal that ：shanp minimum of intersity exists in the range considered and that it has to be asertained verv corefully．＇Thic minimum，which the first order corman ring fon the denponize comendered

The theoretical results have lee verifiot experimentally tom the firat time．The wattered intensity has been measured by the nise of a platerelertric a lf compled with a mitable ampli－ fication arrangement．The results have loen compared wilh Mic＇s theory and alsin with the （）f all the methods so far used for measuring the instantancoun size of fog droplets，the corona ring method is very convenicut．By apllying labinct＇s principle the formula

$$
\sin \theta=(n+0.22)_{2(1}^{\lambda}
$$

is obtained，giving the relationship，between the average radius of the drops in the clond，the wavelength of light and the angle subtended loy the nth dark ring．

The theory has been studied by C．T．R．Wilson（risu7），Mitken（ficer－9r） and（ 1892 －03），Bricard（ 10,3 ir），Rayleigh（ 16,11 ）and several others，who found that it gives satisfactory results．While Mecke（土⿹勹巳）（1）asserts that the theory fails to give reliable results for drops smaller than 4μ ．Mitral（ f （28）confirms Mecke＇s view and reveais the oscillatory nature of difiraction pattern by means of photographs in monochromatic light．Reccutly T．A．S．Balkrishman（1941） has put forth，following Mecke＇s and Mitra＇s views，a correction to the theory of coronas on the assumption that the droplets in the cloud are transparent． Paranjpe and Lajami（1439），have theoretically compared the angles of the first order corona rings for various drop－sizes with the angles of first minimum in the transmilted direction on Mie＇，（Iu， 0 ）theory．

Theoretical calculations for scattering by the application of Mie＇s theory at very close intervals for any drop－size in the transmitted direction，near about

$$
7-1,4,5 \mathrm{P}-\mathrm{V}
$$

1:o', have revealer the presence of a sharp minimum of intensity in the scaltered light. Thus minimum differs for different values of a where

$$
a=\begin{gathered}
\text { Cincumference of the drop } \\
\text { Wavelength of light }
\end{gathered} .
$$

This minimum of intensty is here termer 'the angle of the first minimum on Mic's theory.

D dailed derivation of Mie's furmmata is treated in a paper loy Paranjpe and Lajami (1 (in). It is only neeessary to indicate here the final results.
where J_{1} and J_{2} are intensity components of scattered light polarised in hori$\%$ ontal and vertical planes, d the wavelength of incident light, and , the distance of point of observation from the eentre of the scattering particle. The factor $\frac{\lambda^{2}}{\sqrt[4]{2} \pi^{2}}$ becing constant the values of J_{1} and J_{2} depend on Mod which may be termed as I_{1} and I_{2}. Λ_{n} and $\Gamma_{\text {。" }}$ are complex functions depending on (i) the tadius of the particle (ii) the wavelength of light used for scattering and

$$
\begin{aligned}
& \text { (iii) } m^{\prime}=m^{\prime}, \text { i.i., R. I. of the material of the particle } . \\
& \text { R. I. of the surrounding mediunn }
\end{aligned}
$$

A_{n} and P^{\prime} ate calculated by evaluating series of coefficients in terms of cylin. drical tunctions depending on α and β where $\alpha=\frac{2 \pi}{\lambda}$ and $\beta=m^{\prime} \alpha . \quad \pi n$ and π_{n}^{1} are functions of the seattering angle θ derived from $v=\cos \theta$.

In Trables I and II below are given results of calculations of angles of first minimum on Mices theory for seattering in the transmitted direction ($\pi-1^{\circ}$) for two dron size $\alpha=1.5$ and $\alpha=10$. .

Thide 1
cling medium

These values are ploted in l＂ig．1．We see from the lizime that the ．ungle of the first minimum for the cases considered are ：

Fig． 1

				π－r	
	15．	（i）	$\therefore 10$	11.	$31{ }^{1}$
	$11 . .6$	${ }^{1}$	22.1	1．：＂	13

It is of importance to
 are eally the angles of first mininnm an meatured fomm the tranmitted drection $(\pi-a)$ ， and that there exists mo other manimum in that interval．If stuliciently smail intervals are not taken both in the theoretiad and experimental work it is likely that this hrsh oder mini－ mum may be missed altegether and the lnghes order minima might le mistaken for the first order one

Ray（ぃぃぇ）calculated in－ lembities for $\alpha=12, \beta=16$ un Rayleigh＇s theory and found out the angle for the first minimum neat about
 inten vals for the same case according to Mic＇s theny formed out the angle of the first minimum near ahout $\pi-1.1^{\circ}$ and the angle of the second minitumum near alout $\pi-27^{\circ} 30^{\prime}$ Considering the ahove results it appears that Ray＇s value，namely $\pi-2: \quad$ n＇，should be in reality the value of second minimum on Rayleigh＇s theony， narticularly since Mie＇s theory and Rayleigh＇s theory do not diffen so widely from each other（vide Note by M．M．Paranjee，1omz）．If Ray had calculated intensities for angles between $\pi-0^{\circ}$ and $\pi-27^{\circ} 30^{\prime}$ he would have probably found a mininum between $\pi-0^{\circ \prime}$ and $\pi-27^{\circ} 3^{\prime}$ and that too at about $\pi-14^{\circ}$ since the angles of second minimum by the two theorics appar to be the same．

The following method may be employed to find out theorctically the amples， of the first minimum．In Table $I I I, I_{1}$ ank I_{2} are given separately．I_{1} and I_{2} each consists of a real component and an imaginary compencint，which when squared and added together give I_{1} and I_{2} ．

A careful camination of the alove table reveals the following:
lor I_{1}
(1) The weal terms ane smaller than the inaginary ones mp to $\pi-17^{\circ} 30^{\prime}$. The sumares of the feal terms would be therefore smalle than those of the imagnary ones, and thus it can be seen that the values of I_{1} in the interval $\pi-0$ ' and : $:-17^{3}$. and $^{\prime}$ depend mainly on the values of the imaginary terms.
(2) The imaginary icrus of I_{1} decrease gradually in magnitude from $-151 . ;$ at $\pi-0^{\prime \prime}$ to -3.1 at $\pi-17^{\circ}$, $0^{\prime \prime}$. At $\pi-20 "$ the (imaginary) value is 1t.t. It is clean from this that the imaginaty values pass through zeto and then change the sign at some point in the interval $\pi-17^{\circ} 30^{\prime}$ and $\pi-20^{\circ}$.
(3) Fromin $\pi-17^{\prime \prime} 30^{\prime}$ the real guantities for I_{1} are greater than the imaninary ones. This state contimes thereafter, indicating that I_{1} has passed through a change in the values.

For I_{2}
(1) The real tems in I_{2} are alson small an compared to the jumaginay ones till alout $\pi-15^{\prime \prime} 51^{\prime}$. The watal value of l_{2} can we sulposed to be due, mainly (1) the value of the inasinay guantitics in the interal $\pi-1^{\circ}$ to $\pi-15^{\prime \prime} 51^{\prime}$.
 $\pi-0^{\prime} 20+3.6$ at $\pi-25^{\prime \prime} \times 3^{\prime}$. 'They pass through zero and change in sign from +3.0 to - 3.4 somewhere in the interval between $\pi-25^{\circ} 23^{\prime}$ and $\pi-27^{\circ} 3^{\prime}$.
(3) But it is seco that the preponderence of imaginary values over the real ones ceases at $\pi-17^{\circ} 30^{\prime \prime}$, where hoth the values ate almost cyual, viz., +6.8 and +6.7 . liom this point onwards the ieal terms are mainly responsible for the values of I_{2}.

These inferences show clearly that the values of I_{1} and I_{2} decrease gradually in the interval $\pi-0^{\circ \prime}$ to $\pi-17^{\circ} 20^{\prime}$.

Somewhere near alout $\pi-17^{\prime \prime} \mathfrak{s}^{\prime}$ they pass through a minimum. Since the Lutal intensity is equal to $\mathrm{I}_{1}+\mathrm{I}_{2}$ it is clear that there is no minimum in the range $\pi-0^{\circ}$ to $\pi-17^{\circ} 30^{\prime}$, except the one investigated presently.

Other cases can be worked out similarly.
II
Lexperimental determination of the intensity of scattered light in fle fonnand direction was made for various sizes of the drop usins monochromatic sudium light. Scattered light was made incident on a photoelectice cell whith conld be moved freely to any desired angle. A new photoclectric amplification circuit was specially designed and constructed for masuing very fedhe intensithe: in the scattered light. The amplified current was taher promentional to the intensity of scattered light. Readings of scattering wors taken at intervals of alomit $2^{\circ} \mathbf{n n l}^{\prime}$ round the cloud chamber by receiving the seatered light on the phoneceil phaced at the desired angles for the clouds of refuired partick size.

Great difficulty was experienced mf finding the pesition of the minimum of intensity in the transmitted direction. The scattered light in this tegion is superposed on the difiraction rings and also mixed with direct lieht and the light diffused and reflected by the glass of the chanlore. The incident ham was therefore cut down to a very narrow pencil which reduced the chance of settme pronounced corona rings and also kept ont the direct and the diffised light from falling on the photocell.

Results of scattering in the fornard dinetion are siven in Trale IV and their curves drawn in Fis, 2. A refer. ence to the figure shows that the angles of first minimum are not so well defincel as in the cases of other minima. In fact the minimum is only to be suspected in some of these cases. The following procedure is adopted: When intensity values for consecutive scaltening angles are very near to cach other, hat is, the ratio betwen these consecutive readness is much less than those of the peceding and succeeding pairs, a minimum is suspected somewhere near about that angle. The reason for lack of sharpucss in the nature of these minima is that there is a vast amount of scattered light in this region, since forward scattering is much more prominent than in other regions. There is besides scattcred light, a large amount of extra light in this region due to reffections and icfractions

I'IG. 2
of the incident beam of light by the glass of the cloud chambe:.

In lif．：the curves atoc drawn both for theoretical and experimental values of the diont $\alpha-15,21,25$ and 30 ．

The corves are xeen to show a fair agreement between theory and experiment． Below is given a table showing a comparison between the theoretical and （xperimental data．

> 'Tıbit: IV'
> (1)

Averaged wer a set of ofindependent ohservations．

sathenmor athed	Ihemetic．11 athtering	$\begin{aligned} & \text { incerved } \\ & \text { wattering. } \end{aligned}$	Sallaing angle．		I＇herretical icoittering．	！	ntserved scattoring
＇S＇	1ヶい1	2.5 .11	16）＂		13761		1.5 .7
$1 \therefore \square^{\prime \prime} 5$	108tis	276	$162{ }^{\prime \prime} 30$		．．．		18.5
けt＂3i\％	砳ってい	$\therefore 5$	16゙\％		\ldots		20.1
15＊＇${ }^{\text {\％}}$	$\times 17.4$	． 304	$167^{\circ} 30^{\circ}$		\ldots		22.6
1111）	小106．1）	30 4	〕＂，		2422 ＂		22.1
16．3＂，吅	1236	$3^{8} 2$	$171^{*} 5.3$		1．181．0		．．．
11．4＂ 9	2.75	． 108	172° \％		3.327 .0		352
$16_{7}{ }^{\prime \prime} 30$	小S1．9	55．0）	1750		．．．		．．．
170＇	170＂－？	ハ j	$177^{\circ} 30^{\prime}$		…		\ldots
1\％＂4，	ハッハリ．6	Rearlimp， hevond stale	185＊		19172．2		1.343
18：	fix 0	－．．					－

$$
\begin{gathered}
\text { (1) } \\
\alpha-25, \beta=33 \cdot 33 .
\end{gathered}
$$

Averaged orer a set of 1 independent observations．

Scattering ample．	Thentelical satterims．	1 Descried natlering：	Scattering angle	Theoretical scattering	（）bserved seattering．
100.	Theonctial	11.3	$\left.{ }^{160}\right)^{\circ}$ ．	\ldots	16.3
$1022^{\circ} 3^{0}$	ralues not	25.	$102^{\circ} 3^{31}$	．．．－	29.2
$16.5{ }^{\circ}$	arailahle．	3.16		\ldots	36.4
$31177^{\circ} 301$	\ldots	127	1670 ${ }^{\text {a }}$		39.5
170°	．．．	42.5	「7い＂	111212	39.6
$171^{\circ} 15^{\prime}$	．．．	42.4	$171^{n} 53$.	22828.0 12297.0	
$172^{\circ} 30^{\circ}$	\cdots		${ }^{1775^{\circ}}{ }^{\circ}{ }^{\circ}$	12297.0 \ldots	
${ }^{17755^{\circ}} 30$	\ldots	Readings luyond scalc．	${ }_{177}{ }^{\circ} 30^{\prime}$	．．．	Readings beyond scale．
$180^{\prime \prime}$	\ldots		180°	391438.0	

（1）Angles of first minimum obtained on Circular Disc theory $\pi-v_{c}$ ，（2） angles of lirst minimum calculated on Mic＇s theory $\pi-v_{m}$ and（3）angles of first minimum obtained experimentally $\pi-v_{0}$

Table：V

Drop－size		$\pi \rightarrow 14$	$\pi-1 / n$	－$\cdots{ }^{+}$
$\alpha=30$	$\beta=40$	$7{ }^{\circ} 20^{\circ}$	$0^{*} 3{ }^{\prime \prime}$	11°
$a=25$	A 33．${ }^{\text {A }}$	$3^{\circ} 49$		0°
$a=20$	$\beta=26.07$	$11^{\circ} 0$	11 ${ }^{\prime}$＊	（1）＊
$a-16.8$	$\beta=22.4$	13 ＂10	ゴら゙	
$a=15$	$B \div 20$	14^{4}－${ }^{\prime \prime}$	$11^{\circ}{ }^{3}{ }^{\circ}$	$17^{\circ} 3{ }^{\prime \prime}$
$\alpha=12$	$\beta \cdot 10$	15＂3い	1．4＂	．．．
$a=10$	$\beta=133$	$\therefore \square^{\circ}$	パ「＊＊	．
u－1）	$\beta=12$	$\therefore 3^{\prime \prime} 12$	$1 \therefore^{\circ}$ ，＊＊	．．．

（Results marked with asterisk are taken from calentations be fanaju amd lajami；
The above values are plotted against a in lig． 3 ．

Fíg． 3
The curve $\pi-r_{c}$（Circular Dise theory）is a repular curte showing a sine relationship between a and the angle of the first minimmm．

This curve $\pi-v$ ，shows that the value of the first minimmon $\pi-v$ incrases as the drop－size decreases．This resolt is perfectly in acordance with the Circular Disc＇Theory．

The curve $\pi-r m$（Mie＇s theory）exhibits the presence of a well defincel maximum at $u=15$ and a defined mininum at $a=12$ ．These reversing： points cannot be accounted for but it appears probable that the curve $\pi-r_{m}$ may exhibit more maxima if a sufficient number of points are plotted． It is seen from the figure that $\pi-1 r_{m}$ crosses $\pi-v_{c}$ at $a=16.1$ and at $a=14$ ，the two curves draw closer to each other at $a=30$ and may cioss at $a=33$ ，if both of them were produced beyond，in．It thus appears that the curve $\pi-1$ in of an oscillatory nature interlinking itself with the curve $\pi-v_{c}$ by crossing it a number of times．No definite conclusion can lic drawn
from this lechaviour becanse of the meagre data available．If an oscillatory nature is to be assumed for $\pi-r^{\prime}$, and its interlinking with，$\pi-v_{c}$ ，this might lend supprot the mature of the correction to be applied to the theory of the coronas as derived by Balkishnan（ior．cil．），who conelndes that the correction to the Circular I ise theory is of a periodically oscillatory mature．
＇The curve $\pi-1$ ，（Ifucrimental）drawn with the points available appears to be of the same wature as $\pi-1_{1}$ ．It is seen that both these curves are almost patallel except at $a=30$ where the experimental value is moch higher than that expecterl theoretically．In other respects the curve appears to be identical with $\pi-r^{\prime \prime}$ except that it is laterally shifted to higher values of $\pi-r$ ．It was not possible to extend the expenimental verification below $u=15$ because of the experimental limitations．If it were possible a complete refation between $\pi-r^{\prime} m$ ， $\pi-v$ e and $:--1$ ，conld have been estahlished．

Judging from the results available，it can he concluded that the theoretical and the experimenta！curves for amgles of first minmmmane almost identical in mature and it may be said that they agtee considerably within the limits of the experimental errors．＇Ithe experimental values appear to be slightly higher than the theoretical ones．But，in general，deviation from the theory is such， ats would be accounted for by considering the difficulty in spotting out the minimum experimentally．

It is thus possible to empioy Mie＇s theory as a method of determining the particle size of large wate droplets．The method is found to be capable of Living，reiable aesults in the range 1μ to $f \mu$ ．

The above discussion leads to another important conclusion，wamely，that the （irculan Dise theory is certainly not as defective as is thought by Mecke（loc．cit．） who concludes that the theory fails to give correct results below 4μ ．In the present investigations dop－sizes considered were between 1μ to 4μ and the restults are found to agrec with those on Mie＇s theory，and the method can be used as a fair estimate of the sise of droplets considered．

 Bッलाज5


```
    .. (18゚ロ2+1, 3), 19, z(x).
```



```
「атаије (10̣42). , \(\quad, \quad 10,167\)
```



```
    " (202j), " , ", , ., 8, 23.
```


