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ELECTRICAL ENERGY OF TWO CYLINDRICAL CHARGED
~ PARTICLES

By G. P. DUBE
(Recetved for publication, April 20, 1943)

ABBTRACT. Using the approximate Debye-Hiickel theory, an expression for the electri-
cal energy of two cylindrical charged particlés has heen worked ont. This energy is found Lo
exhibit a minimum for a certain value of the interparticle distance and may be of importatice
in explaining thixotropic properties.

It is weil known that colloidal systems, exhibiting thixotropic phenomena,
generally consist of non-spherical particles.. They are rod-shaped in the thixo-
tropic sols of vanadium pentoxide, disc-like in the sols of iron-oxide and paste of
clay. A general mathematical theory of the mutual interaction energy between
two spherical colloidal particles and its applications to general problems of stability
of colloidal sols has been developed by the author (Dube, 1940) and has proved
to be quite successful in explaining several phenomena. The same procedure has
been adopted in finding out the- electrical energy "of two cylindrical charged
particles immersed in water containing a known electrolyte.

‘Let us consider two parallel cylindrical particles of circular cross-section,
radius a, with distance R apart and having surface charge density 0. They are
immersed in water containing a known clectrolyte. We are required first to find
out the electrical potential at any point in the dispersion medium. The electrical
polential ¥ is assumed to be given by the approximate Debye-Hiickel equation in
the theory of strong electrolytes,

V= k2 we (1)
where V2 is the Laplacian operator and k is the characteristic quantity occurring
in Debye-Hiickel theory. 1/k is called Debye distance and is expressed in terms
of the ionic strength J by the relation

(e |
%=2.81><10"°(%!) cms, v (2)

It is extremely difficult to solve this equation in the two-particle case considered
here. Hence to get the qualitative features of the result, we suppose a linear -
suﬁerposition of the two potentials, which is equivalent to the supposition that if
the two particles approach one another, the distribution of charge on their surfaces j
and in their ionic. atmospheres remams undistorted.

N.B—Onthe suggesuon of Prof. J D. Bernal, F.R.S,, a similar problem was being tackled
by Mr. 8. Eevine “of 'jomnto but due to commumcatmn dlfﬁClﬂlIE'a his resnlt conld not he
pscertained, ‘
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Let ¢, py be the potential and charge density in the ionic atmosphere of one
of the particles and Y3, py be the corresponding quantities for the second particle.
The energy required to bring one of the particles along with its ionic atmosphere
into the electrical field of the other is now

F‘-"if P1¥ady + f oYedS, . (3)
\Y $1

where 8 is the surface area of the first particle and V is the total volume of the

medium excluding the volume occupied by the two particles.

Soiution for a single particle.—The potentials Y3, Yo separately satisfy the
equation (1) which in cylindrical co-ordinates becomes

0% 1 oy ;'r)t,b_’_ !,b

or? r Or v‘” 062  Jz%

Let us assume axial symmetry and confine ourselves to the plane z=o0. Then
-this becomes

—k%=o0.

O  10¥_ .,
g,? o+ . "; ?¢ 0.

The solution* of this will be

Y=A'To(ikr) + B'Y o (ikr)

where Jo and Y, are Bessel functions of order zero (Watson, 1922). Since ¥ must
vanish when 7 tends to infinity, we have 4

¥=AKq(kr) e (4)

where A is a constant quanﬁty to be determined by the boundary conditions

Dfay) _ ‘

D being the diclectric constant of the dispersion medium. Thus
D a > ) D ; - TU

= =A =AKglkn) (=0, or =ARK,(ka)=0, A=_477 __
gy o= or o CARK(ka) =0, o A= ©

where r=ka is a dimensionless quantity. Thus the required solutjon becomes

Y L - .
';b Dk I\l\) KQU’T) “es ( )

The zeta or electrokinetic potential is then given by

G ATT Ko(f)

TR K)o @
Fvaluation of the integrals in (3). --Lousxdermg umt length of tlu, patticle
I!z[ dS, = 4™ . z 6.
. Slp'\l‘z 1= Di. I\ (—r) ; I\o(k?’g) d 1

* Inthe case k=0, the solution is y="¢;+cy Inr,
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a
Now Kolkrg)= m:?‘__w K, (ER).Tnlkry).cos mb, for <R
w -
=mg_wl\m(k'rl)-lm(,\‘vR) cos mf,; for r; > R.
2r 274
Hence f Ko(kry)dt, = f 3 JKnlkR). Ty(ka). cos mydf,
Iid 5 "

which is different from zero only when m =0 and then its value is

27K o (kR)I (7).
Therefore we have

4 2 2 { v

where R=ysa.

The other integral is

.2 27
Q=a£f,ul¢2d"um - If)S{: fl]/l\,b,_)d'v: DK (:( fl\o(k’r) ug)dv.

v

The integrand can be expressed as u function of (ry,#,) only and then
using Kr, =wu and simplifying, the integral can be shown to be '

5T
D{%::‘[;(T) [(J f )I\Q(S")I\o(“) Io(u)u. du+bj;lo(sr) Ki(u) uduJ

Therefore,

Q=- Dkiio:f’() [Ko(s){L(s7) + 1 0)— 2L(7) } -+ To (sm){J{x) — ) (s7) } | i

where J(u)=fu1\’%(u)du=§;- [K3w)—K3w)]

2 -
u)=/K0(u)Io(u)udu=1t [Tow)Kgu)+ X (u)K, (1)].
For small values of u,
Ko(u) ~ ln~ I\l(u)—~~~ To(w)=1, I)(u) = g“

where y=FEuler’s constant, '

Heunce it is easy to verlfy that
: L(o)==0. J(oo)==0
Therefore.

-

W{ Ko(s7)L(s7)~ Io(“‘)](s‘“ ZKO(ST,L(T) }



192 G. P. Dube

. ,
Now  Ky(st)L(s7) =Ig(s7) ] (s7) = 'g?“‘Kl (st){Ko(s7)T1 (s7) + I (s7)K, (ST)}‘
= S—TKl (ST).
2
Thus
Q= - amaer [s.K1(s7) = 27K (s7) {19(r)Ko(r) + 11 (1)K, (1) }] (10)
D’»zK'{(T) e g 0 0 1 1 | . e (
Combining (y) and (10) and defining
o(7)= 27T (7)K o (7) + 1, (DK, (1)} eee {11)

2,2
Fliad
we have r= _2

) [Ko(s7)p(r) = 57K (s7)]

o 1
8 " Ki()
This has a minimun value at a certain value of s, which is given by

oF _

s

[Ko(s7)g(r) —s7K 1 (s7)]. (2

st (s7)
or e e, . 1
¢(r) X, (s7) (13)
This equation can be solved by numerical mcthods and the results are *

T = 0.1 0.5 1.0 1.5 2.0 2.5 3.0

Sm™=44-26 9:35 5.35 4.00 343 3.11 2,91

Then taking £=10"* e.s.u, D=80, length of the particle=10"* cm. and
kT=4x10"'4, the values of Fuiu/kT are found to be 0.26, 1.4, 3.2, 7.3, 0.0,
11.3, 13.5 respectively.

The existence of an clectrical energy minimum as a function of interparticle
distance may be of considerable importance in explaining the thixotropic pro-
perties of non-spherical particles. The van der Waals energy must also be
considered in a more rigorous treatment of the problem. Unfortunately, due
to integtation difficulties (Dube and Dasgupta, 1939), it has not yet been possible
fo find an expression for the van ‘der Waals energy between two cylindrical
particles.

sScuinet COLLEGE, PATNA.
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