39

STRUCTURE OF THE ELECTRONIC BANDS OF THE OD MOLECULE-PART VI (ISOTOPIC SHIFT)

By M. G. SASTRY

Abstract

From the constants of the OH molecule, the vibrational and rotntional isotope shift in the OH and $\cap \mathrm{D}$ band heads have been calculated in estimating the rotationat shif, a direct method of using Fill and Vau Vleck's theorctical expression for the rotationail encrgy for doublet clectronic states representing auy stage of enopling, has heen adopted. When the total calculated shifts are compared whth the observed shifte obtained ditectly from experiment, large discrepancien are found. No electrouic shift could be postulatednand, if it exists, it is es imated to be less than a unit of wave number.

INTRODUCTION

It was pointed out in Part I of this series of papers that OH and (OD form an interesting pair of isotopic molecules, the band structure of which yields vaiuable information on the isolopic effect in band spectra. Apart from the conventional tieatment of the isotopic effect in molecular spectra; Johnston and Dawson ${ }^{1}$ cor:sidered from unpublished data the isotope effect on the spaciugs of the spin components and the Λ-coupling electronic isotopic effect associated with the ${ }^{2} \pi$ components of the OH and OD molecules. These considerations have been dealt with by the author in the earlier parts.

In a short note, Johnston and Dawson ${ }^{2}$ reported at first the presence of a large electronic isotope shift, amounting approximately to about $10 \mathrm{cms}^{-1}$ in the lines at the head of the (I, o) band. Later, they considered the isotopic displacements of three of the heads, $(2,0),(1,0)$ and $(0,1)^{3}$ In deriving the total displacuments, they have caiculated the vibrational, rotational and spin couphng effect separately and indicated that there is agieement between the calculated and obser ved displacements if, instead of postulating a large electronic shift, the spin coupling effect is taken into account. It must be pointed out, however, that according to their own calculations, the agteement is close only in the case of the $(2,0)$ band and perhaps also of the $(1,0)$ hand, but in the $(0, \mathrm{I})$ band there is a difference as large as about $10 \mathrm{cms}^{-1}$.

In $\mathrm{H}^{1} \mathrm{H}^{1}$ and $\mathrm{H}^{1} \mathrm{H}^{2}$ band systems, a large electronic shift, as high as 136 units was observed by Jeppesen ${ }^{4}$, Dicke ${ }^{5}$, and Dicke and Lewis ${ }^{6}$, from a study of the $\left.\mathrm{H}_{2}, \mathrm{HD}, \mathrm{D}\right)_{2}$ band systems observed that these electronic shifts could be actounted for by taking correction terms arising from the interaction between the dectronic motion and the rotation and vibration in the case of diatomic molecules. These correction terms, discussed by Van Vleck ${ }^{7}$, become very important in the case of such light isotopic molecules as $\mathrm{H}_{2}, \mathrm{HD}$, etc,

In view of the theoretical importance of the determination of the isotope shifts in bands where H and D are involved, a detailed study of the isotope effect in OH and OI) bands has been attempted by the author. In this paper the sinifts of the heads of the various bands are considered, as was done by Johnston and Dawson, but following a more direct method in the evaluation of the slift. In a later paper, the method will be applied for studying the displacements of the various lines in the individual bands. A very direct and appropriate method ${ }^{8}$ of investigating the isotope effect would be to determine with a high degree of precision the constants of both the molecules of OH and OD and to determine therefrom the values of the first, second and third powers of the mass factor and to compare these with the corresponding values from mass spectra data. For this purpose, experiments must be carried out with mixtures of ordinary and heavy water, obtaining thus the band systems of both the molecules without any relative mechanical shifts. Such a method is found practicable if the study is made on the $(2,0)$ and (3,1) bands of these molecules ; the results will be published in the next part of these papers.

CALCULATION OI: THE ISOTOPE SHIIT

Vibrational shift.-The vibrational isotope displacement of the ($\left(z^{\prime \prime}, v^{\prime \prime}\right)$ band can be directly determined from the cquation (Jevons' Report, p. 213):

$$
\begin{aligned}
v_{v}^{\prime}-v_{v} & =(\rho-1)\left\{w^{\prime}{ }_{e}\left(v^{\prime}+\frac{1}{2}\right)-w w^{\prime \prime} e\left(v^{\prime \prime}+\frac{1}{2}\right)\right\} \\
& -\left(\rho^{2}-1\right)\left\{x^{\prime} e \tau v^{\prime} e\left(v^{\prime}+\frac{1}{2}\right)^{2}-x^{\prime \prime \prime} e v^{\prime \prime \prime}{ }_{e}\left(v^{\prime \prime}+\frac{1}{2}\right)^{2}\right\}+\left(\rho^{3}-1\right)\{-\} \text { ctc. ... (1) }
\end{aligned}
$$

The values of the constants used in this and the succeeding equations are listed in Table Il at the end. For the (1,0) band the shift is obtained as -697.64 units.

Rotational shift.-The rotational isotopic displacement of a band line is given by the expression (Jevons' Rejort, p. 216):
$v_{r}^{i}-v_{r}=\left(\rho^{2}-1\right)\left\{B^{\prime}{ }_{c} \mathrm{~N}^{2}-\mathrm{B}^{\prime \prime}{ }_{\text {, }} \mathrm{N}^{\prime \prime 2}\right\}-\left(\rho^{3}-1\right)\left\{\alpha^{\prime} \mathrm{U}^{\prime} \mathrm{N}^{\prime 2}-\alpha^{\prime \prime} \mathrm{U}^{\prime \prime} \mathrm{N}^{\prime \prime 2}\right\}$

$$
\begin{equation*}
\left.+\left(\rho^{4}-1\right)\left\{\mathrm{D}^{\prime}{ }_{c} \mathrm{~N}^{\prime 4}-1\right)^{\prime \prime}{ }_{c} \mathrm{~N}^{\prime 4}\right\}+ \text { etc. } \tag{2}
\end{equation*}
$$

negecting higher terms.
In estimating the proper values of N^{\prime} and $\mathrm{N}^{\prime \prime}$ in equation (2), use is made of general expression for the rotational energy derived by Hill and Van Vleck (Jevons' Report, p. 124) for doublet electronic states representing any intermediate stage of coupling between Hund's Case (a) and Case (b).

$$
\begin{equation*}
F(J)=B_{v}\left[\left(J+\frac{1}{2}\right)^{2}-\Lambda^{2} \pm \sqrt{ }\left\{\left(\mathrm{J}+\frac{1}{2}\right)^{2}-\frac{\Lambda^{2} \mathrm{~A}}{\mathrm{~B}_{v}}\left(\mathrm{I}-\frac{\mathrm{A}}{4 \mathrm{~B}_{v}}\right)\right\}\right] \tag{3}
\end{equation*}
$$

neglecting the small term involving γ and the term in D_{v}.
The following illustration shows the calcuiation for the (r, o) band :
(a) The baud lines are expressed by the formula

$$
\begin{equation*}
v=v_{0}+\left(\mathrm{B}^{\prime}+\mathrm{B}^{\prime \prime}\right) \mathrm{M}+\left(\mathrm{B}^{\prime}-\mathrm{B}^{\prime \prime}+\mathrm{D}^{\prime}-\mathrm{D}^{\prime \prime}\right) \mathrm{M}^{2}+2\left(\mathrm{D}^{\prime}+\mathrm{D}^{\prime}\right) \mathrm{M}^{8} . \tag{4}
\end{equation*}
$$

By differentiation,

$$
\begin{equation*}
(d v / d \mathrm{M})=\left(\mathrm{B}^{\prime}+\mathrm{B}^{\prime \prime}\right)+2 \mathrm{M}\left(\mathrm{~B}^{\prime}-\mathrm{B}^{\prime \prime}+\mathrm{D}^{\prime}-\mathrm{D}^{\prime \prime}\right)+6 \mathrm{M}^{2}\left(\mathrm{D}^{\prime}+\mathrm{D}^{\prime \prime}\right) \tag{5}
\end{equation*}
$$

Equating this to zero we get the value of M corresponding to the head. In general this value is not integral. Hence in choosing the proper value, that particular nearest integer is adopted for which the value of v is maximum. This procedure is considered to be justiliable as the band is degraded to the red. lerhaps the experimental value of M might be preferred to that derived from equation ${ }^{4}$ in the above manner but it is to be noticed that even the experimental value is not unique, the head of the band often being assigned two or more values of J , for want of adequate resolution.

Substituting the values of the rotational constants shown in Table II at the end, we oblain $M=6.58$. The proper integer chosen is $M=7$; the head of the band (I, O) then corresponds to $\mathrm{J}^{\prime}=7$, and $\mathrm{J}^{\prime \prime}=6$.
(2) Hence for the initial state, from equation $(3) \mathrm{N}^{/ 8}=48.75$ and for the final state $\mathrm{N}^{\prime \prime 2}=3$. 25 .
(3) Substituting thesc values of N^{\prime} and $\mathrm{N}^{\prime \prime}$ in equation (2) we obtain,

$$
v_{r}^{\prime}-v_{r}=6 v_{r}=-59.67 .
$$

The results oltained in the case of all the bands in the ahove manner have been collected in Table I. In the fifth column of this talle are given the shifts directly obtained from the measurtments on the plates in which the OH and OD bands are obtained in juxtaposition on either side of the standard $F e$ are splectrum.

Table 1*
Isotope shifts

Band ($v^{\prime}, v^{\prime \prime}$)	Vilurational	Rotational	Total calculated shift	Olsserved shift	Obs.-calc.
(1, 0)	+ 76.7	-90.1	- 13.4	- 124	-1. 1.0
$(1,0)$	- 6976	- 59.7	- 7573	-749.3	$+8.0$
$(2,0)$	-1380.2	- 468	-1427.1)	-1414.8	$+12.2$
$(3,0)$	-19712	- 39.7	-2010.9	-1994.5	$+16.1$
(0. I)	+1014.8	-140 4	+8744	+ 860.6	-13.8
(I, I)	+ 240.6	- 75.3	+ 165.3	+ 1667	+1.4
$(2,1)$	- 442.0	- 52.8	- 494.8	- 486.7	$+8.1$
$(3,1)$	-1033.1	- 40.7	-1073.8	10618 $+\quad 3586$	+8.0 $+\quad 3.0$
$(2,2)$	$\begin{array}{r} \\ +418.7 \\ \hline\end{array}$	-635 $-\quad 458$	($+\quad 355.2$ $-\quad 218.1$	+ 358.6 $-\quad 200.1$	+3.4 +18.0
$(3,2)$	-172.3	-- 45.8	- 218.1		+18.0

* The values quoted in the above table are a revision of those published in Current Science (Vol. X, No. 8, 1941 pp .362 .63). In the note
(1) in estimating the vibrational shifts the third term in y^{\prime}, w^{\prime}, has been omitted,
(2) in estimating the rotational shifts from the general expression the value of M, is directly substituted for N, hence the difference.

The last column in the table shows rather large discrepancies betucen the observed and the calculated values, the differences showing an increase with increasing values of v^{\prime}. It is possible that they may be due partly to the uncertainity in the choice of M , but on calculation with different integral values of M a change of only 2 to 3 units in the final values of the rotational shift is obtained.

A definite electronic isotope shift cannot be postulated; and, if at all there is onc, it must be less than a unit as the obscrved minus calculated values for the (0,0) and (I, I) bands are only of this order. It would seem therefore that the differences are to be ascribed either to the inadequacy of or the approximations made in the theoretical expression used for the rotational energy; for instance, in neglecting the terms $\mathrm{D}_{n} \mathrm{~J}^{2}(\mathrm{~J}+1)^{2}$, and the small term involving γ; it must be emphasised also that the errors in the evaluation of the various constauts for the OH molecule adopted in obtaining the shifts cannot be negligible.

Tabie: II
Valucs of the Constants:

$$
\begin{aligned}
& \mathrm{H}^{1}=1.0077 \mathrm{~S}^{5} ; \quad \rho-1=-0.271931 ; \quad \rho^{3}-1=-0.6 \mathrm{t} 4062 . \\
& \mathrm{H}^{2}=2.01363 ; \quad \rho^{2}-\mathrm{I}=-0.460915 ; \quad \rho^{4}-\mathrm{I}=-0.719011 . \\
& ()=16.000 \\
& \omega^{\prime}{ }_{e}=3184.1 ; \quad x^{\prime}{ }_{e} \omega^{\prime}{ }^{\prime}=97.7 \\
& \omega^{\prime \prime}{ }_{\text {, }}=3734.9 ; \quad \mathrm{r}^{\prime \prime \prime} \text {, } \mathrm{\omega}^{\prime \prime}{ }_{\text {, }}=82.6 \\
& 13^{\prime}{ }_{c}=17.375 \quad \mathrm{~B}^{\prime \prime}{ }_{\mu}=19.009 \quad \mathrm{I}^{\prime}{ }_{c}=-2.07 .10^{-3} \quad \mathrm{D}^{\prime \prime}{ }^{\prime}=-\mathrm{I} .97 .11^{-3} \\
& { }^{3}{ }^{\prime}{ }_{0}=16.954 \quad \mathrm{~B}^{\prime \prime}{ }_{0}=18.663 \quad a^{\prime}=0.838 \quad a^{\prime \prime}=0.680 \\
& \mathrm{~B}^{\prime}{ }^{\prime}=16.101 \quad \mathrm{~B}^{\prime \prime}{ }_{1}=17.052 \quad \beta^{\prime}=4.3 .10^{-5} \quad \beta^{\prime}=5.0 .10^{-5} \\
& \mathrm{~B}^{\prime}{ }_{2}=15.233 \quad \mathrm{~B}^{\prime \prime}{ }_{2}=17.216 \quad \gamma^{\prime}=-0.0075 \quad \gamma^{\prime \prime}{ }_{e}=-0.0125 \\
& B^{\prime}{ }_{3}=14.350 \mid \mathrm{A}=141.0
\end{aligned}
$$

The aththor is indebter to Dr. K. K. Kao and to Dr. K. K. Asundi for helpful advice in the preparation of this paper. His thanks are also due to the Andhra Iniversity for the award of a Fellowship.

Andher University
Guntur.

	Ihy	2 Naturuiss., 21, 495 (2933).
3	Quoted by Urey and Teal, Rev. Mod. Phys., 7, 83 (1934).	Phys. Rcv., 46, 480 (1934).
5	Phys. Rev., 47, 66x (1935)	Phys. Rev., 82, 100 (1937).
7	Journ. Chem. Phys., 4, 327 (1936).	
	(a) Babcock and Birge, Phys. Rcv., 37, 233 (1931); (b) 42, 464 (1932) ; (c) McKellar, Phys. Rcz , 44, 155 (1933)	ins and McKellar, Phys. Rcv, (d) Dieke and Lewis, loc, cit.
	or the isotopic masses : Bainbridge, Phys. Rev., 41, in rotational constants of OH : Johnston, Daw son and	32) ; For the vibrational'and r, Phys. Rev., 43, 480 (1933).

\dagger Iixtrapolated value.

