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THERMAL CONDUCTIVITY OF LIQUID METALS
By M. RAMA RAO. M.Sc.

(Reccived for publication, November 26, 1941)

ABSTRACT. The abrupt decrcase in the thermal conductivity of metals ohserved near
the melting point is explained on the assnmption that the frequency of vibration of moleeules
anffers a change near the melting point.  The ratio of thermal conductivities in the solid and

2 A"l

liquid phases near the melting point is shown to be given hy 3 Kol wiere Ky is the Boltzman

constant and is the entropy of melting.  This is found to he in good agreement with

ohserved values. The slight decrease in the thermal conductivity in the liquid phase is
aseribed to the disordered state in the liquid.

I'he thermal conductivity of normal metals in the liquid state just above
the melting point is about half as great as that of the solid metal just below
the melting point. Certain abnormal metals, however, such as bismuth and
antimony which are poor conductors in the solid, increase their conductivity on
melting, The abrupt chaunge in thermal conductivity at the melting point has
not been explained so far. An attempt is here made to explain such a change
from the point of view of modern theory of clectronic conduction based on wave
mechanics.

From the standpoint of modern theory, the expression for the thermal
conductivity of a mectal should contain two additive termns, one duc to the
lattice and the other duc to clectron conductivity. A. H. Wilson® gives the
cquation as

K=" pclu+ n* nerKET .
3 3 m
K is the thermal conductivity ; p the density, ¢ the atomic heat, I the electron
mean {ree path in the lattice ; u the velocity of elastic waves in the lattice (sound) ;
n, the number of free electrons per unit volume ; 7 the °
(average time between collisions) ; Ko the molecular gas constant 1" the absolute

‘relaxation time'’

temperature. I we write the equation as

K =1 Iy -i-fr? ngKGT
pe i 3 nipe
o N_A,
it is in the form: =
. . . e |
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This assumes that # X T7! and /u oc ‘"1 and that p and ¢ compensate as to their
temperature effects,

The equation i this latter form is experimentally verified by data on tin,

-

lead and ziuc.?  Values of K plotied as ordinate against ,}, as abscissa give
pc

straight lines with intercepts on the y-axis and these intercepts turn out to he

v

the values of ]\r‘ for the molten state. I'he conductivity for the molten state
pe '

includes the residual atomic conductivity as  well as that due to electrons.
The conductivity of an insulating liquid is very small (1 per cent. or
less than that of a conductor). Ilence the last term on the right is,
very likely, almost entirely electron conductivity. The temperature eflect for
the solid is easily scen to be entirely duc to the c¢lastic lattice, The data indicate
little or no temperature cllect in the liquid state.  The sharp decrease of thermal

conductivity at the melting point from the solid to the liguid condition has not
been explained.

In a solid cach atom vibrates about a mecan position (which is fixed)
independently of the remaining atoms.  In a liquid the atoms vibrate about mean
positions which while not fixed move with velocities small compared with the

: . KT . . . .
velocity of the order of magnitude /\/ -~." with which the atoms vibrate. This

' m
simple picture® of a liquid near its melting point has furnished valuable
information regarding the physical properties of the liquid near the melting
point.

Guggenheim and Fowler' have shown that if there are N positions of
minimum potential energy in the gquasi-crystalline liquid and that if each atom
moves about a position of minimum potential energy in a field corresponding to
an isotropic three-dimensional harmonic  oscillator of frequency v, and if the
corresponding  frequency in the solid is denoted by v, , the entropy of melting
is given by

.

A

T

=3 K, log AT Ko

Vi
where A is the molecular heat of melting, 1% the melting temperature, K, the
Boltzman constant. ‘I'he expression given above is based on the assumption
amongst others that the vibrations arc cflectively classical, i.c., that the
temperature of melting ‘I should be large compared with the characteristic

temperature {\f" Mott and Gurney have pointed out that it is only a rough

U
approximation to retain the extra factor ¢ in the partition function {Q(T)}N as
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Jas been doue by Lyring.  The true factor is not a constant but varies with

temperature  becoming more nearly unity near the meiting point.  In that cise

the term Ky in the above cquation will fall to a very small fraction of K, and Ahe
. s v - .

tactor containing ~° becomes more important,  Mott' has applied these consi

vy
derations to explain the change in clectiical conductivity on melting according
to the modern theory of electronic conduction in nictals.

According to Bloch®, in a purc metal the electrons move to a first
approximation without resistance amongst the jons which are vibrating in an
irrcgular fashion. Tt is only to a second approximation that therc is any
intcraction between electrons and lattice vibrations so that the conduction of
hicat is a seccond-order eflect. Further, it is shown by Bloch that a finite free
path s caused by the heat motions of the lattice, so that the iree path is reduced
by raising the temperature. According to this view all the electrons in a metal
are free but it does not follow that they are all conduction electrons. Actually
the free clectrons in a solid form open and closed groups in much the same
way as do electrons in an atom and it is only when there are open groups
that conduction clectrons exist  In this way it is possible to arrive at a theory
of thermal conduction which embraces both metals and semi-conductors,
I'he conductivity depends on the extent to which the electrons may be considered
free, i.e., tothe case with which they move from atom to atom under the
influence of the temperature gradient.

According to Bethe’” the thermal conductivity at fairly high temperatures
is given hy

/2 s 2
I\'=”J Ko 2nq M K'{ dE T R,02

3\ ¢ = m  C \ d | WK aq

Here ny denotes the number of {ree electrons per atom, M and m the nasy
of the vibrating atom and the clectron respectively, ay the radius of the first
Bolr orbit, K’ denotes the wave number of an clectron at the top of the Fermi-
distribution, ¥ the kinetic energy of such an clectron, Cis a constant depending
on the interaction between the metallic ion and a free election which is a property
of thie jon rather than the crystal structure. K’ depends only on the specific volume
and so will not alter appreciably on melting. © is the characteristic temperature..
In the expression for the thermal conductivity the quantitics which change whcu‘

dK/! ‘
small since the volume change is at most five per cent. for it can be shown

ZL' is nearly twice the maximum energy of the Fermi-distribution 'and’

this depends only on the volume. Hence any change in the thermal conductivity

melting takes place are I\'%—Ib7 and ®. The change in K’ dli is comparatively
. . . . .

that K/
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from the solid to the liquid must be attributed to a change in ®.  Bidwell's
experiments show that the conductivity at the melting point is almost entively
clectronic.  Hence we write for K at the melting point the expression

" 2
€

K= Ko 2ngM K[ (1 1

. - ‘ . K92,
3 ¢ ™2 C o\ dR! hK'qq o

‘I'he chunge in therniul conducetivity on meiting is thercfore given hy

P 2 Am

¢ ) AL L
1\ 4 Vs = t'i J\ﬂ m

Table T shows the extent to which the hypothesis is in agrecient with
experiment.

! r ‘
| Na | T !
. H " | " ] n - I -
Tlement | | : 1. ]}~ (calc ) I_‘}, (b )
i (Cal./miole) ! A | ® Ky Ik,
l - - -
. . \ A
Zinc 1700 602 2.9 2.23 ! a o1
) |
Aluminiun 1910 033 1.1 1 %0 i 1 65
I.('(ld 110 500 0.0 1 8& l.‘/‘S
Tin (not accmrate) 505 ‘ — 281 : 179
. i
Sodinm h30 370 1.85 1.58 : 1.34
- !
Antimouy 1600 Yoy : — 5.65 i 114
i
Bismuth 2600 344 ‘ . 1405 | 0.44

Alumiinium, lead and sodium  crystallize in the cubic form. ‘Iin is
tetragonal body-centered, zinc is hexagonal. Antiomony and bismuth are well
kunown to be of complex crystalline structure and so do not invalidate the
suggestion put forward.  These metals are always exceptional as compared with
others. Forinstance the ratio of electrical resistance of solid to that of the
liquid is about 0.5 as compared to values in the neighbourhood of 2 for other
metals, It is well known that bismuth contracts on melting in contradistinction
to other mctals. It is also found that the velocity of sound® in liquid bismuth
is greater than the velocily in solid bismu&h in the neighbourhood of the melting
point in contradistinction to other metals. Kxcluding the case of antimony
and bismuth the agreement between calculated and observed values is fair.
"'he lower conductivity in the liquid is due to the greater amplitude of the atomic
oscillations and not to any extent to the irregularity of the arrangement of the
atoms as contrasted with regular arrangement in the crystalline solid. I‘or
sodimin and aluminium, the assumptions on which the calculation is based,
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nv . P
.o 18 hardly justified and henee the mote correct
[}]

pemely that T, 18 greater than
Al ension
I,

1 A

o I\'(]'l‘m -1 I
o3 Kol

ll|'1
4 \
¢ I\(l’lm —1

woasee for e ratio of ‘ *in the table.  As regards the values of l"—“, the values
" e

are taken from Konno's” paper (the only data found in the literature). ‘I'he

diop in conductivity at the melting point found by Bidwell in the case of zinc

agrees with the data of Konuno.

If the decrease of thermal conductivity in liquid metals is doe entirely to
the change in the value of v, the thermal conductivity ought still to be independent
of temperature. It is found that the values of thermal conductivity in the liguid
state decrcase slightly with temperatare.  While Konno's data suggested this,
his results did not extend far enough to prove it.  But recent experiments of
Bidwell prove beyond doubt a slight deercase of thermal conductivity.  ‘The
slight decrease in the liquid phase might be ascribed to the disordered state of
the Tiquid.

In conclusion, it gives me very great pleasure to record my thanks to
Prolessor A, Venkata Rao ‘l'elang for his guidance during the progress of
this work.
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