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THERMAL CONDUCTIVITY OF LIQUIDS

By M. RAMA RAO, M.Sc.

{Recelved for publication, November 20, 1991)

ABSTRACT. Considering a liquid near its melting point as an assemblage of a large num-
per of linear harmonic oscillators each vibrating with a frecuency v and assuming that com
munication of thermal encrgy takes place at each extreme vibration an expression for the ther-

8
MV,
whete 8, is the melting point of the liquid on the absolute  seale of temperatore, M the mole-
cular weight, V, the molecular volume. A brief 1eview of the subject is attempted and it is
<hown that the thermal conductivity K is intimately connected with the free volnme of {he
liquid at the melting point.  Caleulated values of thermal conductivity according to the above
expression are in agreement with observed values

mal conductivity of the liquid at the melting point is deduced, viz, K=2 oyh x 1oh \/

The thermai conductivity of liquids is a subject which has been without any
seneral theoretical basis. It has been recognised that the mechanism of conduc-
tion in liquids must be different from that in a gas. This is evinced for instance
biv the fact that the thermal conductivity of a liquid decreases with rise of tem-
perature while the thermal conductivity of a gas increases with rise of tempera-
fure. Ina gas there is transport of the individual atoms from one layer to
another with a consequent transfer of energy. Between collisons the atoms are
supposed to move freely over a distance large compared with the molecular size
and it is essential for the theory that disparity between mean frce path and.mole-
cular diameter should exist. In the case of liguids there is in the ordinamy
sense no free path at all, the motion being always in an intense field of inter-
molecular forces,

Leon Brillovin' has given a theory of liquid viscosity in which the funda-
mental idea is that the impact of molecules gives rise to elastic waves, the effect
of which is that neighbouring molecules are successively disturbed from their
positions. The theory is an attempt to transfer the general theory developed by
linstein and Debye for specific heats of solids and liquids to the field of liquid
viscosity., The final formula which gives the temperature coefficient of visco-
sity in terms of the thermal conductivity and the velocity of sound fails by a
factor of neariy §,000. In 1923 Bridgman® put forward a theory of thermal
vonduction in liquids m which the energy difference between adjucent molecules
in the direction of temperature gradient is to be conceived as handed down a row
of molecules with the velocity of sound. He arrived at an expression for the
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thermal conductivity K 1 terms of the velocity of sound V and the mean mole.-
cular distance. Although this simple picture gives approximately the absolute
valuc of the thermal conductivity at the ordinary temperatures, it does not cy.
plain quantitatively the variation of thermal condu~tivity with temperature. [y
does not account at all well for the phenomena of thermal conduction under
pressure.  In 1014 Debye? suggested a complicated cquation for the conductivity
of a solid which can readily he reduced to one exactly like Bridgman's Ly substi-
tuting the liquid values for the solid ones, with the exception thar the constant
2 in Bridgman’s expression is replaced by 1/2.  Thus Dcbye’s values are only one
quarter of Bridgman's. Kardos* has modified Bridgman's thcory by ailowing
for the diameter of the molecules. Kardos introduces in his expression a factor
which js the mean distance between edges of molecules and suggests that as a first
approximation & be assutned constant and equal (o 0.95 x 10”"% em.  Kardos gives

. «_ C 3 . . .
expression to calculate 8, @z, d=. P where Cy is the inner repelling force of
(0.8

molecules, A is the volume  compressibility, o the mean molecular distance. An
examination of the above relation shows that the equation is dimensionally in-
correet and does not seem to have any physical significance.  Weber? in 1880
suggested an empirical relation connecting  the thermal conductivity of lignids

with their other properties, namely, I\‘ = constant and later modified to .
-I—‘-‘ 2 )" = constant.
PC \ p

Here p is the den‘sity of the liquid, C its specific heat, and m its molecular weight.
| \3
The factor { X ) is seen to be proportional to the mean molecular distance.
\p

Weher's own data indicate a surprising constancy of the modified expression hut
later, discussion by Aubel has disclosed considerably greater wvariations than
supposed by Weber. Smith’'s¥ empirical cquation for thermal conductivity
involves a number of constants and is sufficiently complicated to merit any
discussion. . . : '

It will be seen then that nouc of the older attempts have led to results which
can withstand comparison with experimental results, in particular with the recent
high pressure results of Bridgman which enable thermal conductivities at constant
volume to be computed: As a result the study has hitherto consisted largely of a
collection of more or less well-established empirical relations mostly of limited
scope. In.general, lack of agreement with cxperiment is the chief reproach that
can be levelled against older theories. ’I'he theory of liquids should he
approached not as has hitherto been done from the point of view of the kinetic
theory of gases, which was constructed to deal with matter where the spaces
between the molecules are large compared with the size of the molecules but from
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the point of view of the solid state, the density of which is not markedly diflerent
from that of the liquid state of the same substance. In asolid the atoms vibrate
about mean :.positions which are fixed. Tn a liquid at temperatures near the
melting- point, it is now generally recognized that the atdnis vibrate about mean
positions which though not hxed move slowly compared with the velocity of tln.

order of magmtude ,\/ ~=  with which the atoms vibrate. l‘he most direct

cvidence for this is afforded by the specific heat of substances which have within
experimental error (79%) the same values (in the neighbourhood of 3R) for a given
substance in the solid and liquid states near the meiting point. Further evidence?
is given by the rates of diffusion of gold in ercury or of thorium B in non-
radio-active liquid lead. If one compares the numbers with the formula for the
diffusion ‘cdeﬂicient 1) in gases D= Lic where ! is the mean fice path and c the
mean molecular velocity, one finds on setting « cqual to a quantity of the olnl'der of

-
magnitude \/ K1 that [ must be taken to be about 1/100 of the inter-atomic
N m -

distance. A theofy of viscosity of liquids has recently been given 'by Andrade®
hased on the sanie hypothesis.  Based on the same hypothesis a theory of surfage
tension in liguids” at the meiting point has been proposed by Sibaiya and
Rama Rao. ' ' .
Let us treat the atoms of the liquid as though they were vibrating about slowly
displaced equilibrium positions. We shall also suppose that cach atom vibrates
with a frequency v which is the smime for each atom although it is probable that
in a real liquid the frequencies will not all be exactly the same. The arrange-
ment of molecules in the liquid state is not fundamentally dissimilar to the
arrangement in the solid state—the difference in the two states being brought
about by the large amplitude of vibration of the atoms in the liguid state. Hence
a liquid at its meltlng point is regarded as an.assemblage of a number of harmonic
oscillators, each vibrating with a frequency v about a slowly displaced equilibrium
Dosition and with an amplitude which is comparable with the mean moleeular
distance. In dealing with the problem of heat conduction in liquids we are
concerned with the transport of thermal cnergy by the molecules.  We shall treat
the whole system as though therc were merely a superimposed disturbance which
is transmitted by the molecules, thus neglecting the eflect of the superimposcd
disturbance on the original system. On the basis of the assumptions an estimate
of thermal conductivity from’ other physical data such as can be found in tabics
can be made. A plellmmary report'? regarding this has already appeared in the
“Physical Review.” Such an estimate is a desirable feature of any theory of
thermal conduction in hqmda because the more complicated theories, based on
considerations of partmon f“'ﬂ(‘h()llb, bave {failed not only to plovndé such an
cstimate, but'have in general mvolvul undetermined parameters in stich a way
that'any experimental verification is difficilt, except in the matter of generalities.
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v

Let there be a thermal energy gradient Zg along the z-axis. Let us

”
’

consider layers of molecules parallel to the direction of the thermal energy gradi-
ent and the molecules to he vibrating in random directions. We, shall suppose
that on an average 1/3 of the molecules are vibrating along each of three direc-
tions perpendicular to one another, ‘I'he difference of energy between two layers

is ‘;],/':-rr where o is the mean molecular distance. According to our assumption,
since the amplitude of vibration is large at the melting point, molecules of one
layer come into contact with the molecules of the neighbouring layers at every
extreme  vibration.  When there is a contact (of very bricf duration), we shail
assume that the excess of thermal energy is communicated. A molecule of a
piven layer conveying thermal energy crosses a plance normal to the direction of
drift twice in cvery complete vibration. A molecule of the adjacent layer also
crosses  this plane twice in cvery complete vibration. If v is the frequency of
vibration of the molccule, then the transier of thermal energy per unit area per
unit time is given by LY Jﬁ M }1 o, where --I§ refers 1o the number of molecules
3 d7, T

4

in unit arca. This, by definition, is equal to the product of the cocflicient of ,
thermal conduction and the temperature gradient ; hence we have

4
, v D
ie., K=4 dl .

T'he average energy (both kinctic and potential) of a vibrating molecule is 3k#,,
where £ is Boltzmann constant ; hence we have

K

— 4 kv
a ) p—

For v we substitute the Lindemann expression, viz.,

v=2.8X% 12 :\/ ——a-'—-z
MV,3

where 6, is the melting point on the absolute scale of temperture, V, the mole-

cular volume and M the molecular weight. Lindemann’s theory is based upon

Einstein's formula for the frequency of vibration of an individual atom in.a

regular array which implicitly asstmes a single frequency v.  Lindemann assumes
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s - . - . 2 *
4 simple harmonic vibration characterized by m d ,‘ = —oy, and v= I ,\/ “
- dl= am m’
, R . Y . v ,
which gives a4 maximum kinetic cnergy 4oA\? = i , whete A is the
akﬂ, -1

amplitude of the vibration.  Lindemann assumes that melting takes place when
the vibration amplitude attains a value 1/28¢ where o is the mean molecular
distance and S the distance between  the periplieries of the atoms in their equili-
hrinm positions. Then

2 hv
vi= squrs
7t8% 2 hv
ks

hv . . .
Lindemann  takes e small, so that as a first approximation
U

) 2
e L eI 1
w28%2)y

_ 1 /2Ré,
- \/ Mo2

where M is the molecular  weight, and R is the gus constant. 'I'hisis further
written in terms of the molecular volume V, because o is proportional to V ,,
hence we have finally
6, \

veEel oy
MV,
The value of S being unknown, Lindemann found ¢ by comparison with the Dest
vidues for v found by other methods for certain bodies. ‘I'his naturally involves
the assumption that 8 is the samc for all substances or in other words thal
Giruncisen’s rule is true, which states that for all simple solids  increase in volume
fiom absolute zero to melting point is about the same fraction of the volumne, wviz.,
7.5 per cent. Above all Iindemann's formula involves S which is a measure of
the free volume so that v involves this quantity.

For o we substitute »3}%‘ " where N is Avogadro number. It then
4m

fullows that the thermal conductivity K at the melting point is given by
0, 2
- K==2,096X ]05 - "% .
MV
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The constant z.og6 X 10" juvolves the factor 8 which has been assumed to be the
saane Yor all types of molecules.  T'his is hardly justifiecd when we consider  difies

The constant may have to be modified when more
In ‘I'able 1 are given the calculated
and the observed values of thermal conductivity,
tion of thermal conductivity with temperature has been  studied, the extrapolated
As regards liquid metals they stand in
a class by themselves because  the contribution of the clectrons in the metal in the

ent shapes of molecules.
precise methods of caleulation are available.
In some cases, whete the varia

values at the melting point arce recorded.

process of thermal conduction has to he dealt with, which really forms the majo
contribution for thermal conduction in metals.  In the present  investigation only

dicleetric liguids  are considered.

Tavra 1

! Thermal conductivity at welting point

Substauce Melting point m K¢ . L .

| : Calenlated i Observed
- ' e e — o] e -
Carhon tetrachloride 243 : 1315 1124
1 '
Aniline 205 ; 1730 ' 1720
Chloroform 203 . 1891 1.38.
Dictlyy] ethet 150 i 1 500 1.480
I '
Benzene 278 ‘ 2.012 1057
Chloro-benzen 2158 i 1.425 ' 1,501
Ilaoro-henzenc 231 8 1.045 | 1.580
Broma benzene 2124 1.204 1 330
lodo-benzene 2410 1.014 1.2_;1]
Aoetic acid 28 1.g00 1.970
Liquid salphur 358 1.350 181U
, UXYgen 54 i 3.170 2.001
,  nitrogen h2 g 3.040 2075

The calculated values arce of the right order and places the conductivities of
substances* like liquid sulphur, oxygen and mnitrogen in the right sequence of
magnitude and gives their 1elative magnitudes. "

The question of the variation of thermal .couductivity with pressure and
temperature will be dealt with  scparately.  Also the relation between the liquid
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structure and the constant occurring in Lindemann's formula will be considered i
a scparate paper.

In conclusion, it gives me great pleasure to thank Prof. A. Venkat Rao
I'elang for his valuable guidance throughout the work.
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