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ABSTR ACT. Con.sideriiig a liquid near its incltiriK point as an assemldagi- of a large nuiii- 

licr oflincar liarinnnir o.soillator.s each vibrating with a frequency r and assuming that com 

iminication of thermal energy takes place at each extreme vibration an expression for the ther-

. . .  /
mill eonduclivily of the liquid at tlie melting point is deduced, v;," , K =  2 0 i / i x  » / " "  , ,

\  M V,
where 9, is the melting point of the liquid on the absolute scale of temperature, M lh<'mole- 

ciilar weight, V , the molecular volume. .A brief levicw of the subject is altenipted and it i.s 

shown that the thermal conductivity K is intimately connected with the free volume of the 

liipiid at the melting point. Calculated valuc.s of thermal conductivity according to the above 

espression are in agreement with obserx'cd value.s

The thcniiai comluciivity of liquids is a subject which has been without any 
gi'iieral theoretical basis. It has been recognised tliat the inechauisin of conduc­
tion in liquids must be different from that in a gas. This is evinced for instance 
li\ the fact that the thermal conductivity of a liquid decreases with rise of tem­
perature while the thermal conductivity of a gas increases w'ith rise of teiiipcra- 
Ime. In a gas there is transport of the individual atoms from one layer to 
another with a consequent transfer of energy. Between collisons'the atoms are 
siqiposcd to move freely over a distance large compared with the molecular size 
and it is essential for the theory that disparity between mean free jiath and niole- 
ciilur diameter should exist. In the case of liquids there is in the ordinaiy 
scMise no free path at all, the motion being always in an intense field of inter- 
molecular forces,

Leon Brillovhi'has given a theory of liquid viscosity in which the funda­
mental idea is that the impact of molecules gives rise to elastic waves, tlie effect 
of which is that neighbouring molecules are successively disturbed from their 
positions. The theory is an attempt to transfer the general theory developed by 
lunstein and Debye for specific heats of solids and liquids to the field of liquid 
viscosity. The final formula which gives the temperature coefficient of visco­
sity in terms of the thermal conductivity and the velocity of sound fails by a 
factor of nearly 5,000. In 1923 Bridgman® put forward a theory of thermal 
' oiiduction in liquids m which the energy difference between adjacent molecules 
in the direction of temperature gradient is to be conceived as handed down a row 
"f molecules with the velocity of sound. He arrived at an expression f01 the
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thermal conductivity K ni terms of the velocity of sound V and the mean mole­
cular distance. Although this simple picture gives approximately the absoluit 
value of the thermal conductivity at the ordinary temperatures, it does not ex­
plain quantitatively the variation of thermal condivtivity with temperature, ft 
does not account at ,all well for the phenomena of thermal conduction under 
pressure, In ioi-| Debye ' suggested a complicated equation for the conductivity 
of a solid which can readily he reduced to one exactly like Bridgman’s by substi­
tuting the lupiid values for the solid ones, with the exception that the constant 
.’ in Bridgman’s expression is replaced by 1/2. Thus Debye’s values arc only one 
quarter of Bridgman’s, Kardos^ has modilied Bridgman’s theory by allowing 
for the diameter of the molecules. Kardos introduces in his expression a factor 6 
which is the mean distance between edges of molecules and suggests that as a first 
aprnoximation S be assumed constant and equal to 0.45 x jo cm. Kardos gives

expression to calculate S, viz
i r

where C'l is the inner repelling force of

niolectiles, f'i is the volume compressibility, the mean molecular distance. An 
examination of the above relation ■̂llô '̂s that the equation is dimensionally in­
correct and does not seem to have any physical significance. Weber'"̂  in jSSu 
suggested an empirical relation connecting the thermal condnetivily of licjnicK

Kwith their other properties, najnely, constant and later modified to

i
=  constant.

Here p is the density of tire liquid, C its sirecific heat, and m its molecular w'eight.

The factor is seen to be proportional to the mean molecular distance.

Weber’s owui data indicate a surprising constancy of the modified expression but 
later discussion by Aubel has disclosed considerably greater variations than 
supposed by Weber. .Smith’s'' empirical equation for thermal conductivity 
involves a number of constants and is sufficiently complicated to merit any 
discussion. '

It will be seen then that none of the older attempts have led to results which 
can withstand comparison with expei imental results, in particular with the recent 
hifeh pressure results of Bridgman which enable thermal conductivities at constant 
volume to be comimted. As a result the study has hitherto consi.sted largely of a 
collection of more or less vvcll-estahlislied empirical relations mostly of limited 
scope. Iti.general, lack of agreement with experiment is the chief reproach that 
can b(? levelled against older tlicories. 'I'he theory of liquids should he 
api)roached not as has hitherto been done from the i)oint of view of the kinetic 
theory of gases, which was constnicted to deal with matter where the spiaces 
between the molecules are large compared with the. size of the molecules but from
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the point of view of the solid state, the density of which is not markedly different 
Irom that of the liquid state of the same substance. In a solid the atoms vibrate 
about njean -positions which are fixed. In a liquid at temperatures near the 
melting-point, it is now generally recognized that the atdms vibrate about mean 
positions which though not fixed move slowly coniijared with the velocity of the

order of magnitude with which the atoms vibrate. The most direct
’ HI

evidence for this is afforded by the specific heal of substances which have within 
(*x]»erimental error (7%) the same values (in the neighbourhood of 3R) for a given 
substance in the solid and liquid slates near the tiielting point. Further evidence'  ̂
is given by the rates of diffusion of gold in mercury or of thorium B in non- 
radio-active liquid lead. If one compares the numbers with t)ie formula for the 
(lilTusion coefficient 1) in gases D-\ir  where / is the mean fiee path and c the 
mean molecular velocity, one finds on setting i eqxial to a (piantity of the order of 

/K Tmagnitude \ /  that I must l)e taken to be about 1/100 of the intcr-atomic
V

distance. A theory of viscosity of liquids lias recently been given by Andrade^ 
lused on the sainic hypothesis. Based on the same hypothesis a theory of surface 
tension in liquids’’ at the meiting point has been proposed by Sibaiya and 
Rama Rao.

Let us treat the atoms of the liquid as tliougli they were vibrating about slowly 
displaced equilibrium positions. We shall also suppose that each atom vibrates 
with a frequency v which is the same for each atom altliongh it is probable that 
ill a real liquid the frequencies will not all be exactly the same. The arrange­
ment of molecules in the liquid stale is not fimdarnentally dissimilar to the 
anangement in the solid state—the difference in the two states being brought 
about by tlie large amplitude of vibration of the atoms in the liquid stale. Hence 
a licpiid at its melting point is regarded as an assemblage of a number of harmonic 
oscillators, each vibrating with a frequency v about a slowly displaced equilibrium 
position and with an amplitude which is comparable with the mean molecular 
distance. In dealing with the problem of heat conduction in liquids we are 
concerned with the transport of thermal energy by the molecules. We shall treal 
die whole system as though there were merely a superimposed disturbance which 

transmitted by the molecules, thus neglecting the effect of the superimposed 
disturbance on the original system. ( )n the basis of the assumptions an estimate 
ol thermal conductivity from other physical data such as can be found in tabics 
‘ be made- A preliminary report’ *̂ regarding this lias already api)cared in the 
"Rhysical Review/* Such an estimate is a desirable feature of any theory of 
dicnual conduction in liquids because the more complicated theories, based on 
coijsideratjotls of ixirtition functions, have failed not onlj'̂  to provide sucli an 
csirinate, hut have in general invoived iiudelerniined parameters in such a way 
that any experimental verification is difficult, except in the matter of generalities.

4 - 1 4 2 3 P - I I I
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Let there he a thermal energy gradient
(i/.

along the r-axis. Let us

consider layers of molecules parallel to the direction of the thermal energy gradi­
ent and the molecules to be vibrating in random directions. We, shall suppose 
that on an average j/3  of the molecules are vibrating along each of three direc­
tions peri)endicular to one another. The difference of energy between two layers

is vvhere O'is the mean molecular distance. According to our assumption,

since the amiditudc of vibration is large at the melting point, molecules of one 
layer come into contact with the molecules of the neighbouring layers at every 
extreme vibration. When there is a contact (of very brief duration), we shall 
assume that the excess of thermal energy is comnuinicatcd. A molecule of a 
given layer conveying thermal energy crosses a plane normal to the direction of 
drift twice in every complete vibration. A molecule of the adjacent layer also 
crosses this plane twice in every complete vibration. If v is the frequency of 
vibration of the molecule, then the transfer of thermal energy jjer unit area per

unit time is given by ~ v A, — i', where refers to the number of molecules 
3 <r-‘  d /  (r^

in unit area. This, by definition, is equal to the product of the coeflicient of,  ̂
thermal conduction and the temperature gradient ; hence we have

d6 _  4 1 dK
^  T v  ”  *’ 2 17  "■>a /  3 (r-  ̂ d Z

i-e. K —-4- *'
3 dO

The average energy (both kinetic and potential) of a vibrating molecule is 
where k is Holtzinann constant ; hence we have

i- ^  4/'''

For V wc substitute the Lindeinann expiessioii, vie.,

V=2. SXfol8 / — ^
'  M V J

where 0, is the melting point on the absolute scale of temperture, V j the uiolc- 
cular volume and M the molecular weight. Lindemann’s theory is based upon 
Kinstein*s formula for the frequency of vibration of an individual atom in a 
regular array which implicitly assumes a single frc()uency v. I^indemaun assiunc'S
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s,imple hannoiiic vibralioii diaiacttfiizcd by )ii =  -o.v, ami '  \ /  ",

wliicli «ives a iiiaxiiiiuin kinetic cnci'Ry i.iA '''= — , whcie A is the

.uiii l̂itude of the vibiatioii. Iviudeniaiiii assumes that ineltiiig lakes place when 
the vibration amplitude attains a value i / :i>S(j w here cr is the mean molecular 
tlisUuicc and the distance between the peiipherics of the atoms in their equili* 
iM inm positions. Then

o 2  hv

165

hv
. Ms

jiidcmaim takes smalj, so that as a first approximation
l<v,

1 /  
ttK VTTyS

w h e r e  M is the molecular weight, and R is the gas constant. This is further 
written in terms of the molecular volume V,, because is i>roportlonal to V\, 
hence we have finally

/ Vi
V =  C

MV ■ft

I'lie value of S being unknown, Lindemaun found r by comi>ai'isoii with the hebl 
values for i' found by other methods for certain bodies. This naturally involves 
die assumption thal S is the same for all substances or in other words tbal 
('.lunciseii's rule is true, which states that for all simple solids increase in volume 
fioni absolute zero to melting point is about the same fraction of the volume, viz.,
7-5 per cent. Above all lyindemann’s formula involves S which is a measure of 
die free volume so that v involves this quantity.

For <r wc substitute ( where N is Avogadro number. It thenJ Y j
4>tN

lullows that the thermal conductivity K  at the melting point is given by

0 . V
K*»a.096x no

MV T  ■
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'I'Ik* constant j.ugbx j<>' involves lliu factoi S wliicli has l>ccn uhsumed tu be Uk 
sauie lor all types of molecules. "I'liis is liardly jusliliod when vve consider difl'ci 
ent shajjes of inoleciiles. The cojistanl may have to be modified when nioic 
piecise methods of calciilalioii are available. In 'J able I are given the calculated 
and the observed values of thermal conductivity. In some cases, wheie the vaiia 
tiun of thermal conductivity with temperature has beai studied, the extrai^olatcd 
values at the melting point are recorded. As regards liquid metals they stand in 
a class by themselves because tlie contribution of the electrons in the metal in the 
inoecss of thermal conduction lias to be dealt with, which really forms the majoi 
contribution for thermal conduction in metals. In the i>resent investigation only 
dielectric liquids are considered.

T miim 1
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The calculated values aic of the right order and places the conductivities of 
substances like liquid sulphur, oxygen and nitrogen in the right,sequence of 
magnitude and gives their iclative niagniludcs.

The question of tlie variation of thermal couduclivity with inessure and 
tciiuierature will be dealt witli separately. Also the relation between the liquid
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siU'ucture and the constant occurring in Lindeiiiann’s fuiinula will be considered iu 
a bcimratc paper.

Ill conclusion, it gives me great pleasure to thank Trof. A.VenkatRao 
1 ‘elang for his valuable guidance throughout the work,
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