4

STRUC［URE OF THE ELECTRONIC BANDS OF THE OD MOLECULE．PART IV（SPIN DOUBLING）

By M．G．SASTRY
（Racrived for publuculaon，alugust 10，10qu）

Abstract

The theoretical formula derived hy IIill and Van Vleck for the energy difference（ignoring the magnetic effert of molectulat retationl lietirest the compencmis of a doulict π－state，representing any intermediate stage of coupling，has heen veritied by eppli－ cation to the observed data of the spin－doublet widths of the on molectule．Contrary the the observations of Jolnston，the agreement between the experimentai and calcilated values is shown to be fairly satisfactory，considering the approsimation made in the theoretical deri－ vation．Incidentally，type value of the spin－conpling constant for the upper clectronic state， ${ }^{2} \mathbf{\Sigma}^{+}$of the OI）molecule，is believed to have beon determinell as equal to 0.2 ，which camot otherwise lee estimated unless the satellite btanches are also identified．

The：spin－doublet widths for the OII and（OD molecules are compared and，as observed by Johnston and by Shan and（；ibls，the latter ane found to be larger，allnugh the al）mole－ cule is heavier．The varintion of the difference between these width with K indicates a maxin at $\mathrm{K}-6$ ．＇This is shown to be in complete agrement with the theoretical value denived from Ilill and Van Vleck＇s formula．

INTROIIUCTINN

Using the method of the old quantum theory，Kemble＇first derived energy formulae for diatomic molecules which are appheable over pontons of the transi－ tion range between Hund＇s Case（a）and Case（b）．Hill and Van Vleck ${ }^{2}$ later treated the probiem by the new g⿴囗十minm mechaniss and obtaned for doublet clectronic statcs，repreenting any stage of couphing，the following closed formula for the rotational energy，

$$
\mathrm{W}=\mathrm{B}_{n}\left[\left(\mathrm{~J}+\frac{1}{2}\right)^{2}-\Lambda^{2} \pm \frac{1}{2}\left\{4\left(\mathrm{~J}+\frac{1}{2}\right)^{2}+\lambda(\lambda-4) \Lambda^{2}\right\}^{\frac{1}{2}} \quad \ldots \quad(\mathrm{I})\right.
$$

where $\lambda=A / B_{11}$ and $\lambda=I_{I}$ for the π－state；the upper and lower signs refer to the two component states ${ }^{2} \pi_{\frac{1}{2}}$ and ${ }^{2} \pi_{1 \frac{1}{2}}$ respectively．The above curuation gives the combined effects of the rotational and spin energy in a given state．The energy difference between the two doublet components due to spin effects alone
could not be separated ont ; but Hill and Van Vleck obtained from (1), by simplification, the donblet energy difterence approximately as

$$
\begin{equation*}
\ddot{o}=B_{v} \left\lvert\,\left\{\left\{_{4}\left(J+\frac{1}{2}\right)^{2}+\lambda(\lambda-4) \Lambda^{2}\right\}^{\frac{1}{2}}-(2 J+1)\right]\right. \tag{2}
\end{equation*}
$$

The equation was tested by them, by reference to the spin doublets of the (1,0) hand of (1 H at λ_{2811}, fixcept for a small discrepancy, the observed and calculated valucs were found to agree well and better than was shown earlier by Kemble. The discrepancy was ascribed to the neglect of the contribution towards the doublet interval aising from the magnetic field developed by molecular rotation.

In a recent paper Danson and Johnston" applied the formula to the various OH bands and concluded that it failed to repoduce actuatcly the spin-doubling spacing obtained from experimental data. The failme of the equation when applied to the spin doublets of the (OD molecule was also bricfly reported by Johnston' but the detanded data have not so far been published.

The recent work of the author on the stiucture of the OD bands has enabled a detailed study of the validity of Van Vleck's equation, which forms the subject of this paper.

'To obtain the expermental values of the electronse spin width the asual methodi is adonted. We have"
and

$$
\begin{aligned}
& Q_{1}(K)=I^{\prime},^{\prime}(K)-I_{1}^{\prime \prime},(K) \\
& Q_{2}(K)=I_{2}^{\prime}(K)-F_{2}^{\prime \prime}{ }^{\prime \prime}(K) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathrm{l}_{2}^{\prime \prime},(\mathrm{K})-\mathrm{F}_{1}^{\prime \prime},(\mathrm{K}) & =\left\lfloor\varrho_{1}(\mathrm{~K})-Q_{2}(\mathrm{~K})\right]-\left\lfloor\mathrm{F}_{1}^{\prime}(\mathrm{K})-\mathrm{F}_{2}{ }^{\prime}(\mathrm{K}) \mid\right. \\
& -\left\lfloor Q_{1}(\mathrm{~K})-Q_{2}(\mathrm{~K}) \mid-\gamma \cdot \mathrm{K}\right.
\end{aligned}
$$

where γ is a smail constant representing the spin doubling in the uper state 2-r Simalaly

$$
\begin{aligned}
\mathrm{I}_{2}{ }_{2}{ }_{"}\left(\mathrm{~K},-\mathrm{I}_{1}{ }^{\prime \prime}{ }_{1}(\mathrm{~K})\right. & =\left|\mathrm{K}_{1}(\mathrm{~K}) \quad \mathrm{K}_{2}(\mathrm{~K})\right|-\gamma(\mathrm{K}+1) \\
& =\left\lfloor\mathrm{I}_{1}(\mathrm{~K})-\mathrm{I}_{2}^{\prime}(\mathrm{K}) \mid \cdot \gamma(\mathrm{K}-1) .\right.
\end{aligned}
$$

In Van Vleck's theoretical equation the difference between the terms Fic"(K) and $F^{\prime}{ }^{\prime \prime}(\mathbb{K})$ was i_{r} nored so that when the mean of these terms is taken, the experimental value should agree with the theoretical value if the equation is correct. We therefore write

$$
\begin{gather*}
\delta=\left\{\left[\left\{\mathrm{F}_{2}{ }^{\prime \prime}{ }_{d}(\mathrm{~K})-\mathrm{F}_{1}{ }_{2}{ }_{d}(\mathrm{~K})\right\}+\left\{\mathrm{F}_{2}{ }^{\prime \prime}{ }_{c}(\mathrm{~K})-\mathrm{F}_{1}{ }^{\prime \prime}{ }_{c}(\mathrm{~K})\right\}\right] .\right. \\
=\mathfrak{U}\left[\left\{Q_{1}(\mathrm{~K})-\mathrm{Q}_{2}(\mathrm{~K})\right\}+!\left\{\left(\mathrm{P}_{1}(\mathrm{~K})-\mathrm{I}^{\prime}(\mathrm{K})+\left(\mathrm{R}_{1}(\mathrm{~K})-\left(\mathrm{R}_{2}(\mathrm{~K})\right)\right\}\right]-\gamma \mathrm{K}\right.\right. \tag{3}
\end{gather*}
$$

Table I
Spin-doublel widths in the OD molccule for $z^{\prime \prime}=1$

1	R doublets			0 doublets			1' doublets			Meau	
	$(1,1)$	$(2,1)$	$(3,1)$	(1,1)	$(2,1)$	$(3,5)$	(1,1)	$(2,1)$	$(3,1)$	R and P	Q
1	(125 5)		130.9	131.2	1327	132.0	126.9	1284	132.8	1289	132.0
2	115.8	116.4	117.5	116.2	116.6	118.8	1157	116.2	1169	116.4	1172
3	102.8	1030	105.6	103.7	103.9	10.4 .1	101.0	105.3	10.4.0	1)4.1	103.9
4	92.9	. 94.4	94.5	(92.7	91.8	935	93.1	93.15	93.9	93.8	92.7
5	84.9	85.4	85.5	$83 \cdot 3$	8.1	844	84.2	84.1	$8_{4} .8$	84.	83.9
6	780	76.6	77.3	76.7	77.3	76.7	78.1	74	77°	77.2	769
7	09.6	71.2	70.8	70.6	70.0	${ }^{09} 5$	704	70.3	70.9	$7{ }^{10} 5$	70.2
8	64.9	$65 \cdot 3$	6.5 .1	h4. 3	64.2	626	${ }^{1} 5.3$	65.8	65.4	65.4	63.7
9	614	61.2	60.8	(00.5	00.3	59.5	62.3	61.1	60.6	61.2	60.1
10	56.6	579	56.9	$55 \cdot 3$	55.6	55.6	$5{ }^{(0)} 5$	56.4	56.8	56.9	$55 \cdot 5$
11	526	(47.2)	54.1	519	51.6	52.2	$5 \therefore .7$	53.3	53.6	53.3	51.9
12	61.9	-	49-1	49.0	$4^{8} 9$	$4^{6.4}$	53.0	50.11	50.2	50.6	48.1
1.3	4゙・3	-	$4^{8.3}$	46.0	$4{ }^{6} 4$	44.0	17.7	477	47.8	$4^{8.0}$	45-5
14	(41.0)	-	43.6	42.0	43.4	-	44.0	45.5	4.5.2	44.6	43.0
15	(45.5)	-	--	405	409	--	44.3	43.1	-	$44 \cdot 3$	40.7
16	40.2	-	-	39.7	$3^{8} 9$	-.	42.3	40.9	-	41.1	39.3
17	40.4	-	-	37.8	37.6	-	39.7	39.3	-	39.8	37.7
18	37.5	-	--	35.1	364	-	38.2	38.4	-	38.6	35.8
19	35.9	-	-	$34 \cdot 3$	35.1	-.	361	36.9	-	36.3	34.7
20	33.1	-	--	336	32.9	-	34.1	35.7	-	$34 \cdot 3$	$33 \cdot 3$
21	33.6	--	-	31.9	32.0	-	34.9	34.8	--	34.4	32.0
22	32.6	-	-	30.6	31.0	-	33.8	33.7	-	33.4	30.8
23	(34.3)	-	\cdots	29.6	30.9	-	32.7	32.6	-	32.7	30.3
24	30.0	-	-	32.0	29.8	-	(26.8)	31.2	-	(30.6)	30.9
25	(35.2)	-	-	28.2	27.6	-	31.9	31.3	-	31.6	27.9
26	31.6	-	-	27.3	-	-	31.0	30.2	-	30.9	27.3
27	28.4	-	-	26.0	-	-	30.4	-	-	29.4	26.0
28	28.3	-	-	25.8	\cdots	-	30.4	-	-	29.3	25.8
29	30.1	-	-	24.8	1	-	30.0	-	-	30.1	24.8
30	- 31.4			25.2	-	-	29.1	-	-	30.2	25.2
31	130.2			27.8	-	-	28.4	-	-	29.3	27.8

Tabia: II

TAble II (contd.)

In Table I the doublet intervals derived according to the above equation are shown in detail for the bands having the final state $v^{\prime \prime}=1$. For the remaining bands the observed average values only are given in 'Table II. ${ }^{7}$ It should be noted that the correction term $\gamma \mathrm{K}$ is ignored, as the value of γ has not been determined for the OD bands. The tables also give the calculated values of δ in
each case, in determining which from equation (2) the following mean values of the constants have been adopted (they are in cms. ${ }^{-1}$) :

$$
\begin{array}{ll}
\mathrm{B}_{0}^{\prime \prime}=9.80, & \mathrm{~B}_{3}^{\prime \prime}=9.08 \\
\mathrm{~B}_{1}^{\prime \prime}=9.57, & \mathrm{~A}=-139.4 . \\
\mathrm{B}_{2}{ }^{\prime \prime}=9.40 &
\end{array}
$$

The agreement between the observed and the calculated values is close for small rotational quantum unmbers, hut for large values of K there are markedly increasing divergencics. The difference (obs.- calc.), however, varies linearly with K. The representative curves drawn for $z^{\prime \prime}=0$ in fig. I bring out these features clearly ; the linear relation from curve (3) may be expressed as

$$
\delta(\text { obs. })-\delta(\text { calc. })=0.2 \mathrm{~K}
$$

The constant 0.2 obviously represents the small factor γ of equation (3). It is of the right order of magnitude that should be expected for the OD molecule, for which the spin-coupling constant A is -134.4 , nearly the same as that for OH . If this correction, depending on $\gamma \mathrm{K}$ is made in each of the observed values, according to equation (3), the agreement becomes very close even for large rotational quantum numbers. The outstanding differences after this correction are to be ascribed to the approximation made in deriving equation (2) and perhaj's partly to observa!iona! errors.

Fig. 1

I'I : . 2

Explanation of figures:-In these, curve (1) represents the observed, curve (2) the calculated values and curve (3) the differences plotted against K .

Structure of Electronic Bands of the OD Molecule

The author therefore considers, contrary to what Johnston had observed, that Van Vleck's theoretical equation represents the electronic spin doubling in the doublet π-state of the OD molecule fairly accurately. In the light of the above view, the data for the OH molecule given by Johnston and Dawson are re-examined, The curves in Fig. (2) are drawn for $v^{\prime \prime}=0$ for UH, similar to those in Fig. (I) for OD. The linear curve (3) in this figure gives the value of $\gamma_{\text {or }}=0.2$ which agrees very well with that determined otherwise by Almy ${ }^{8}$ as equal to 0.216. Dawson and Johnston ippear to have omitted the correction factor $\gamma \mathbf{K}$, in estimating the observed values of the spin-doublet spacing. If this correction is applied, the agrecment becomes very satisfactory even for the larger values of K as well.

Incidentally, it is desirable to point out that the above discussion provides perhaps a new method for obtaining the spin doubling constant γ of the upper state ${ }^{2} \Sigma^{+}$of the (OD molecule, which cannot otherwise be determined from observational data alone, unless the satellite branches are also identificd.

COMPARISON ()F THESPIN-DOUBLITTINTMRVAIS IN OFI AND OD

It was reported by Johmston " and also by shaw and (iib)bs," from as yet unpublished data, that the spin-doublet spacing is larger for the OD) than for the OH molecule, though the former is the heavier of the two. Johnston also observed that the difference in the spin-doublet widths for the two isotopic molecules is zero at the origin and increases rapidly with $K \mathrm{up}$ to a maxinum and then approaches zero asymptotically. The present detailed data confirm the above observations as is evident from Table II. It is possible from these data further to verify the validity of Van Vleck's theoretical equation, as is slown below.

Iqquation (2) for the spin-doublet interval may be written as

$$
\begin{aligned}
\delta_{h} & =\mathrm{B}_{h}\left\{\left(y^{2}+\mathrm{M}\right)^{\frac{1}{2}}-y\right\} \\
\delta_{d} & =\mathrm{B}_{d}\left\{\left(y^{2}+\mathrm{N}\right)^{\frac{1}{2}}-y\right\}
\end{aligned}
$$

where $\delta_{1 \prime}$ and δ_{1} are the spin doublet widths for the ()H and the OD molecules, 1_{h} and 1_{d} are the respective constants and

$$
\begin{aligned}
y & =2 \mathrm{~K}+1 \\
\mathrm{M} & =\left(\mathrm{A} / \mathrm{B}_{k}^{\mathrm{W}}\right)\left[\left(\mathrm{A} / \mathrm{B}_{h}\right)-4\right] \\
\mathrm{N} & =\left(\mathrm{A} / \mathrm{B}_{d}\right)\left[\left(\mathrm{A} / \mathrm{B}_{d}\right)-4\right] .
\end{aligned}
$$

If the value of $\left(\dot{\delta}_{16}-\delta_{i s}\right)$ is ploted against K, the value of K for which the curve shows a maximum is given liy the condition,

$$
\quad \underset{5-\mathrm{I} 423 \mathrm{P}-\mathrm{I}}{d y}=\mathrm{B}_{h}\left[\frac{y}{\sqrt{y^{2}}+\mathrm{M}}-\mathrm{I}\right]-\mathrm{B}_{d}\left[\frac{y}{\sqrt{y^{2}+\mathrm{N}}}-\mathrm{I}\right]=0 .
$$

Taking the first three terms in the expansion of

$$
\left[1+\frac{M \text { or } N}{y^{2}}\right]^{-\frac{1}{2}}
$$

the value of y when the above condition is satisfied is given by

$$
y^{2}=\frac{{ }_{1}^{3}\left(\mathrm{~N}^{2} \mathrm{~B}_{d}-\mathrm{M}^{2} \mathrm{~B}_{h}\right)}{\mathrm{NB}_{d}-\mathrm{MB}_{h}} .
$$

Substituting the valucs of the constants given above for the OD molecule and the corresponding constants for the OH molecule, ${ }^{10}$ we obtain that the maxinum occurs at

$$
\mathrm{K}=5.7 \text { for } v^{\prime \prime}=0, \mathrm{~K}=6.0 \text { for } v^{\prime \prime}=1, \mathrm{~K}=6.2 \text { for } v^{\prime \prime}=2
$$

Fig. 3 shows a curve for $v^{\prime \prime}=1$ between $\delta_{d}-\delta_{h}$ and K similar to that shown by Johnston ${ }^{4}$ for $i^{\prime \prime}=0$. It indicates a maximum at $K=6$, in beautiful agreement with the theoretical value.

IIG. 3
The author is indebted to Dr. K. R. Rao for his interest in the work and to the Audlhra University for the aurd of a Fellowship.

RFINRINC「心

1 Kemble, Phy. Kru., © $0, ~_{3}{ }_{7} 7$ (1927).
2 Hill and Van Vleck, Phy. Rev., 32, 250 (1928).
3 Dawson and Johnston, Ihy. Rev., 43, yen (1933).
4 Johnston, Phy. Kce., 45, 80 (1934).
к Sastry and Ran, (Part I), Ind. Jour. Phy., 15, 27 (1941) ; Sastry, (Part Il), Ind. Jour. ['hy. In press) ; Sastry, (Part III), Iud. Jour. Pliy. (In press).

6 Jevons, Report on Rand Spectra, 17 x .
7 The data fuoted in these tables are taken from the author's papers referred to above for all the bands except for ($(1,0),(2,0)$ and $\left.1_{3}, 1\right)$ which ale from Ishag, proc. Nat. Inst. Sci. Ind., 8. 389 (1939) nud Proc Koy. Soc., A 159, 110 P1937).

8 Alny, P'hy. Rcu., 36, 1495 (1930).

- Shaw and Cibbls, Phy. Rev., 45, 124 (1934).

IU Johaston, Dawson and Walker, Phy. Rev., 48, 17^{8} (1933).

