DETERMINATION OF THE STRUCTURE OF META-DINITROBENZENE BY PATTERSON FOURIER SUMMATION *

By K. BANERJEE, D.Sc., F.N.I. Reader in Physics

AND

M. GANGULY, M.Sc. Bengal Govt. Research Scholar, Dacca University

(Received for publication, May 30, 1940)

ABSTRACT. The structure of meta-dinitrobenzene has been studied by the Patterson Fourier Summation Method. Relative values of the integrated intensities of reflections from the hko planes have been measured from Weissenberg goniometer photographs by the help of a Zeiss microphotometer. By using needle shaped crystals much clongated along the e-axis, a single traversal of the scanning spot of light was found necessary and a considerable economy of labour was thus effected. The absolute intensities were obtained by comparison with reflections from rocksalt. In a powder photograph of a mixture of known proportion of metadinitrobenzene and rock-salt. From the projections on the (001) plane of the different interatomic vectors in the unit cell obtained by Patterson Analysis a preliminary determination of the atomic arrangements has been made.

INTRODUCTION

Meta-dinitrobenzene crystallises in the orthorhombic bipyramidal class.¹ The space-group has been determined independently by Hertel and Schneider² and by Hendricks.³ They found that this crystal belongs to the space-group $D_2^{1/6}Pbnm$ with a unit cell containing 4 molecules having dimensions $a_0 = 13.3$ Å, $b_0 = 14.2$ Å, $c_0 = 3.82$ Å. Thus it was concluded that the molecule had a plane of symmetry parallel to the oor plane and as the dimension of the c axis is very short the plane of symmetry must be along the benzene ring. This is very unusual for the benzene rings in aromatic compounds. Because none of the aromatic compounds that have been so far studied except this one show a plane of symmetry along the plane of the benzene ring. Further N—O bonds must either lie parallel to the benzene plane or lie symmetrically on the two sides of the N atom in a plane perpendicular to the molecular plane. The former alterna-

* Communication by the Indian Physical Society.

232 K. Banerjee and M. Ganguly

tive is ruled out as it was shown by Hendricks² that it is impossible thereby to explain the intensities of the ool planes. As regards the N-O bonds in para-dinitrobenzene, there is however, a controversy⁴ as regards whether the bonds are symmetrical about N, but here the two bonds come out to be symmetrical as a consequence of the space-group. Thus it is very useful to see whether these bonds are similar or not to the N-O bonds in the para-compound. In order to decide this point as well as to determine the structure of a benzene ring having a plane of symmetry along the plane of the ring, a complete analysis of the structure of this compound has been taken up. A projection on the ool face should show all the different atoms separated out except that the two oxygen atoms attached to a single nitrogen atom will be superposed on each other. So this projection will give us practically the complete structure.

An attempt at determining the x and y co-ordinates of the atoms by a trial and error method proved unsuccessful due to the number of unknown parameters as well as the uncertainties about the atomic structure factors of oxygen and nitrogen. So a Patterson analysis of this projection has been presented in this paper.

ENPERIMENTAL

Meta-dinitrobenzene was crystallised from absolute alcohol. Long, very narrow needle-shaped crystals were obtained, c-axes of which are parallel to the lengths of the crystals. This shape has an advantage in measuring the intensities, as we may consider the intensity of a diffraction spot to be uniform over its length. Such a crystal was mounted on the Weissenberg goniometer with the c-axis along the axis of rotation and at the initial position the x-ray beam was made parallel to the a-axis. These adjustments were made with the help of a Czapski two-circle goniometer. Copper Ka radiation was used. The spots were indexed by the help of charts prepared according to Wooster and Wooster's ⁵ method. Intensities of the spots were measured with the help of a Zeiss microphotometer, by allowing the scanning light to traverse across the centre of the spots. The photometer records were converted to intensities by the help of a standard wedge obtained in the manner of Robinson.⁶ Intensity curves were thus obtained from the photometer curves by point to point plotting and the relative values of integrated intensity were determined by finding the areas under the intensity curves.

For measurements of the absolute intensities a powder photograph was taken with a stick prepared with known proportions of meta-dinitrobenzene and rocksalt. The lines (130) and (310) due to the former could be identified uniquely and were well separated from the nearest lines. The integrated intensities of these lines were compared with the (200) and (220) lines of rock-salt. From the known structure factors of rock-salt the structure factors for these two reflections could be calculated according to the relation

$$\frac{I_m}{I_r} = \frac{\left(\frac{1}{ubc}\right)^2 p_m \cdot F_m^2}{\left(\frac{1}{ub0}\right)^2} \cdot p_r \cdot F_r^2 \cdot \frac{m_m}{p_m} \cdot \frac{1 + \cos^2 2\theta_m}{\sin 2\theta_m} \cdot \frac{\sin \theta_m}{\sin 2\theta_m}}{\frac{1 + \cos^2 2\theta_s}{\sin 2\theta_r} \cdot \sin \theta_r}$$

where $\frac{l_m}{l_r}$ is the ratio of the integrated intensities of the meta-dinitrobenzene line and rock-salt line measured from the powder photograph. a, b, c are the cell dimensions of meta-dinitrobenzene and a_0 is the length of the unit cell of rock-salt. $\frac{m_m}{m_r}$ is the ratio of the masses of the two substances taken in the powder stick.

p = number of equivalent planes.

F =structure factor.

 $\rho = \text{density}.$

 θ = glancing angle and the subscripts m and r refer to metadinitrobenzene and rock-salt respectively.

The values of the structure factors of (130) and (310) planes thus obtained were utilised in determining the absolute values of the structure factors of all other planes from the relative measurements. The values of the structure factors obtained thus are given in Table I.

-

TABLE 1				
Structure factor	Plane	Structure factor		
46 3	370	29.0		
56.7	400	57.2		
37.0	420	44.2		
27.7	430	22.1		
43.5	450	30.5		
67 7	510	34-9		
56.0	520	58.3		
33.8	5 3 0	27.6		
42.0	540	25.0		
35.0	56 0	34.3		
45.7	570	33.9		
26.8	5 8 0	29.2		
40.1	600	70.4		
27.5	62 0	29.2		
72.9	710	60.2		
44.3	720	3 0.7		
25.9	800	19.3		
26 7	(10)00	26.2		
. бд.т				
	AB Structure factor 46 3 56.7 37.0 27.7 43.5 67 7 56.0 33.8 42.0 35.0 45.7 26.8 40.1 27.5 72.9 44.3 25.9 26 7 69.1	ABLE 1 Structure factor Plane 46 3 370 56.7 400 37.0 420 27.7 430 43.5 450 67 7 510 56.0 520 33.8 530 42.0 540 35.0 560 45.7 570 26.8 580 40.1 600 27.5 620 72.9 710 44.3 720 25.9 800 26 7 (10)00 69.1 —		

For the Patterson summation a quarter of the cell is taken so that a/2 and b/2 are the sides. The whole cell can be obtained from this by the appli-

cation of the planes of symmetry. Each side was divided into sub-divisions of a/24, and b/24 and the Patterson densities were calculated according to

$$A_{(x,y)} = \sum_{k=-a}^{h=a} F_{(hko)}^{*} \cdot e^{2\pi i \left(\frac{hx}{a} + \frac{ky}{b}\right)}$$

where A(x, y) is the Patterson sum at the point x, y. By plotting these Patterson sums lines are drawn through points of equal density and are shown in Figure 1.

The peaks of the diagram are then correlated with the different interatomic vectors and the magnitudes of these vectors with their inclinations with the x-axis obtained in this way are given in Table II, the symbols for the different atoms used in this table will be understood from a reference to Figure 2 where is given the arrangement of the meta-dinitrobenzene molecule in the unit cell as can explain these interatomic vectors:

Atomic pair	Interatomic distance	Angle with 'a' axis
$C_{1a}O_{1a}; C_{1a}O_{1a}$	2.2Å	79°
$C_{3} \circ O_{2}$, ; $C_{3} \circ O_{2} \circ$	2.2Å	25°
$\mathbf{C}_{1,a}\mathbf{N}_{1,a}$; $\mathbf{C}_{1,b}\mathbf{N}_{1,b}$; $\mathbf{C}_{1,c}\mathbf{N}_{1,c}$; $\mathbf{C}_{1,d}\mathbf{N}_{1,d}$	4.3Å	90°
$C_{\mathfrak{a}b}N_{\mathfrak{a}b}; C_{\mathfrak{a}},N_{\mathfrak{a}}$	4.3Å	3 0°
C, "O'' ; C'' dO'' a	4.8Å	. 84°
$\mathbf{C}_{6,6}\mathbf{O}_{1,6}$; $\mathbf{C}_{6,7}\mathbf{O}_{2,7}$	4.8 Å	24°
$C_{1a}C_{1b}; C_{2a}C_{0b}; C_{3a}C_{5b}; C_{4a}C_{4b};$		70 ⁸
$C_{5} C_{3} C_{3} C_{0} C_{2} C_{3} C_{1} C_{1$	8	
C2.C64; C3.C54; C4.C44; C5.C34;	7.54	
	}	
$C_{1,a}C_{4,c}; C_{4,a}C_{3,c}; C_{1,a}C_{7,c}; C_{4,c}C_{1,c};$		27*
$C_{5a}C_{0c}$; $C_{1b}C_{sd}$; $C_{cb}C_{sd}$; $C_{na}C_{5a}$;	7.5Å	
$C_{-b}C_{2d}$; $C_{+b}C_{1d}$; $C_{5b}C_{6d}$; $C_{0b}C_{5d}$	5	
$O_{1a}O_{2a}; O_{1b}O_{2d}$	4.3Å	22°
$N_{1a}C_{5c}$; $N_{1b}C_{3d}$; $C_{1a}C_{6c}$; $C_{1b}C_{2d}$	5.6Å	17*
C+aC+, ; C+bC+4; NyaN20; N26N20	8 9 Å	41 ⁰
$\mathbf{N}_{1b}\mathbf{C}_{yd}$; $\mathbf{N}_{1d}\mathbf{C}_{0b}$; $\mathbf{N}_{1d}\mathbf{C}_{0b}$; $\mathbf{N}_{1c}\mathbf{C}_{yd}$	5.48	2°
N 1 a C 0 b ; N 2 a C 6 .	6.3Å	48°
$\mathbf{N}_{1a}\mathbf{C}_{3b}$; $\mathbf{N}_{1d}\mathbf{C}_{3c}$	4 0Å	66°
$C_2.O_{1d}; O_{1d}C_{2b}$	4.5Å	75°

 TABLE II

 Interatomic Distance Vectors

 [Each of O1 and O2 represents the projections of two oxygen atoms]

Ð

236 K. Banerjee and M. Ganguly

. 1

The atomic parameters are deduced as an approximation from this structure and are given in Table III.

TABLE	Ш
-------	---

Alomic parameters

л,

Atom	x 'a	y/b
C,	o 146	0.224
C ₂	0.237	0 174
C .	0.237	0.0 76
С,	а. 14 б	ი. ი26 4
C,	0.055	o ი 7 6
C _u	0.055	0.174
N .	0.146	0.329
N ₂	0.303	0.023
Ο,	0 172	0.372
0,	n. 386	0.033

Fourier projections on the three crystallographic planes are being attempted on the basis of this result.

Our thanks are due to Prof. S. N. Bose for providing facilities for the work and one of the authors is grateful to the Education Department of the Government of Bengal, for providing him with a scholarship that has enabled him to carry out this work.

REFERENCES

- ¹ P. Groth., Chem. Krist., Vol. IV, 14.
- * Hertel and Schneider, Z. Physik. Chem., 7B, 188 (1930).
- ⁸ S. B. Hendricks, Journ. Amer. Chem. Soc., 43, 4280 (1931).
- ⁴ K. Banerjee, Phil. Mag., 18, 1004 (1934); R. W. James, G. King and H. Horrocks, Proc. Roy. Soc., 158A (1936).
- ⁶ W. A. Wooster and Nora Wooster, Zeits f. Krist., 84, 327 (1933).
- ^a B. W. G. Robinson, Journ. Sci. Instr., 10, 233 (1933).
- ⁷ A. L. Patterson, Phys. Rev., 46, 372 (1934).