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ABSTRACT. .\ new method has been developed for measuring thermal neutron
absorption eross-section. The method is a variant of the beam attenuation technique. It
is an absolute method requiring no standard neutron absorber for calibration.  In this method
the spherical symmetry of the experimental arrangement has been exploited to balance out
the effect of scattering,  Detailod examination has heen made of the circumstances under
which this balancing takes place. Effocts of non-radinl neutrons, scattering and absorption
in the moderator, variation of dotector efficiency for scattored neutrons, multiple seattering
and absorption processes, thermalisation of scuttered epithormal neutvons and non-attain-
ment of thermal equilibrium in the moderator have been studied.  Pogsible extonsion of this
method to other energies of neutrons as well as to other types of radintions, have beon dis-

cussed.

LINTRODUCTION

Technological as well as theoretical importance of the interactions of thermal
neutrons with matter has resulted in the accumulation of voluminous dsta on
thermal neutron cross-sections. Nevertheless a study of the methods involved
immediately reveals the fact that whereas the precise measurement of o, the total
interaction cross-section for thermal neutrons, is of comparatively little experi-
mental difficulty, determination of absorption or scattering cross-sections sepa-
rately, is rendered difficult by numerous sources of error. The principal methods
which have been employed hitherto for the measurement of 0,, the thermal neu-
tron absorption cross-section, are the following ;

(a) The beam attenuation technique. This method is applicable only to
very good absorbers in which the effect of scattering is negligible (Havens and
Rainwater, 1946; Wu etal 1947 etc.)
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(b) Aectivation methed. This method is applioable to absorbers in which
aeutron absorption leads to the formation of beta~active nuclei. This
methed is a relative one requiring a standard absorber to calibrate
the neutron beam used for activation. (Houtermans, 1041: Maurer and
Ramm, 1942; Seren et al, 1947 etc.)

(¢) Methods based on local reduction of neutron density in a solation or
mixture, due to the presence of the absorber in it. This is also a rela-
tive method, requiring a standard absorber for calibration (Lapointe
and Rasetti, 1940; Coltman and Goldkaber, 1946).

(d) Reactor methods, based on the diminution of power level in a nuclear
reactor due to the presence of the absarber. In both, ‘the danger coeffi-
cient’ and the ‘oscillation method’, the two principal methods which
fall under this category, the depression of neutron flux is required to
be calibrated by a standard absorber, which is usually boron. (Ander-
son et al, 1947; Weinburg and Schweinler, 1948: Harris ¢l al, 1950;
Pomerance and Hoover, 1948: Pomerance, 1951: Raievski and Yvon,
1950 etc.)

(¢) Methods based on the free decay of neutron flux in a moderator solu-
tion containing the absorber. This is an ahsolute method applicable
only to absorbers obeying 1/» law of neutron absorption. So far this
method has been applied to boron containing compounds only  (Seott
et al, 1954; Dardel and Sjostrand, 1954).

It will be observed that most of the above methods are relative ones and
their accuracy thus depends entirely on the accuracy with which the thermal
neutron absorption cross-section of standard boron absorher is known. The ex-
perimental value of this important nucleonic constant has changed from time
to time with the improvement of the mcasuring technique and in Table 1 we have
collected some of the values used for thermal neutron capture cross-section of
boron to show this trend. We must note in this connection that the word ‘ther-
mal’ in connection with neutrons refers to the Maxwellian distribution of neutron
velocities corresponding to a temperature of 300°K. If the neutron velocity
distribution is different, then corrections for this deviation must be included in
discussing the cross-section value. We have corrected pre-war values quoted
in Table I in this manner. Details of this correction will be discussed in a subse-

quent section.
Although the latest determination of the capture cross-gsection of boron has

removed greatly the difficulty in fixing the capture value of standard absorber,
it is obviously desirable to develop an absolute method for determining the

thermal neutron absorption cross-section applicable to absorbers of not too large
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cross-section, The present method was developed with the idea of meeting
this requirement.

TABLE 1

Thermal neutron capture cross-section of natural boron

Author, Thermal neutron cross-section
in barns (at the standard neu-
tron velocity of 2.2 X105 em/
sec., wherever possible)

Pre-war value quoted by Varies from 500-700 barns when

Lapointe and Rasetti (1940) uncorrected; average value of
600 barns were umsed by the
authors; corresponding cor-
rectod value is 684 barns

Ross and Story (1949) 7104-21

Neutron cross-section Ad- 751.3 (3990 barns for B10 iso.
visory Group AECU (1952) tope which is 18.89%, abundant)

Argonne Lab. Standard

Hammermesh et al (1953) 7564 5
Brookhaven Lab. Standard

Carter et al (1958) 749 + 4
Harwell standard. Egel-

staff (1953) 7824+ b
Scott et al (1954) 744420
Dardel and Sjostrand 76443

(1954)

IT METHOD

The method we have employed is a variant of the beam attenuation tech-
nique*. The fundamental relation between the transmission factor y and the
parameters involved in the passage of a neutron beam through an absorber can
always be expressed in the form '

¥ = I|I, = exp.[—K Np 8/ M), v (1)

where I and I are the neutron intensities recorded in the detector before and after
the introduction of the absorber respectively, N is Avogadro’s number, while p,
M and 8§ are the density, molecular weight and thickness of the absorber along

* (Reported to AEC India 1948 ; Bose Inst. Annual Report, 1949).
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neutron path respectively, The interpretation of the constant K depends essen-
tially on the geometry of the arrangement used. For a ‘good’ geometry trans.
mission experiment in which all the scattered neutrons are excluded from the de-
tector, the value of K is obviously equal to o, the total cross-section, provided the
thickness of the absorber is such as to render the effect of multiple scattering
negligible. As the geometry of the experiment is made ‘poorer” more of the scat-
tered neutrons strike the detector and the value of K gets smaller than o,. Tn
the extreme case when the absorber is a spherical shell of small thickness surround-
ing the source and there is no limiting diaphragm between the source and the
detector, as many neutrons are scattered into the detector (for instance neutron
marked ‘e’ in figure 1) as are scattered out of the direct beam (neutron marked

Fig. 1

a in figure 1); in this case the value of K is equal to o,, the absorption cross-
section, provided certain simple conditions, which we are going to congider pre-
sently, are satisfied.

To analyse the situation in detail, let us consider the experimental arrange-
ment schematically represented in figure 1. O is a source of thermal situated at
the centre of a spherical absorber shell 4, while D is a detector of thermal neu-
trons. Let the neutron intensities at distances r and r-f dr from the source he
n and n--dn respectively.

Obviously -dn = dn,+dn, .. (la)

where dn, is the number of neutrons absorbed in the infinjtesimal shell d4 as
shown in figure, while dn, represents the drop in neutron intensity through
scattering in d4. The expression for dn, is Nn o.p dS/M, where dS is the average
pathlength of neutrons through d4. Now, the neutron intensity n at r is composed
of both primary as well as scattered neutrons; the path followed by the latter
is not radied, in general, even if the primary beam happens to be radial. Hence
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d& in the expression for dn, is not, in general, equal to dr. However, if the source
emits radial neutrons and if the absorber thickness is so small that the number
of scattered neutrons is small enough to allow us to neglect the obliquity of their
path in considering their contribution to n, we can write dS = dr in the above
expression for dn,. Hence with these assumptions

dn, = Nn o, pdr/M. «eo (Ib)

While considering the expression for dn, we note that the neutrons which
are scattered in the forward direction (i.e. angle of scattering is not greater than
7/2), e.g. the neutron marked « in figure 1, are available for absorption by nuclei
outgide the elementary shell and hence they do not cause any drop in the neutron
intensity for transmission through d4. Neutrons which are scattered by more
than 7/2, e.g. the nentron marked £ in the figure, will cross d4 at points such as
€' and will be available for ahsorption, provided we can neglect the drop in neutron
intensity through absorption between the points of scattering and the points
of re-entrance. As before, we have neglected the effect of obliquity of the path
of scattered neutrons with respect to their unscattered path. Under these assump-
tions, we can thercefore set dr, to zero and hence (1a) becomes

dn _ —No.p
T e
leading to
n = n, exp.[—o, NpS|M] «. (le)

If the cfficiency of the detector is independent of the direction of incidence
of the neutron actuating it, so that scattered neutrons are detected with the same
efficiency as the unscattered ones, the measured transmission will be equal to
n/n, and hence we will get finally

I
S exp.—[o NpS| M) e (2)

I, n,
which is the same as Eqn. (1) with K replaced by o,.

Collecting the assumptions made in deriving the above formula, we note that
the following conditions must hold good, if the effect of scattering is to be
balanced out by spherical geometry of the apparatus.

(1) The neutron flux is radial so that § in equation (2) is the radial thick-
ness of the absorber.

(2) The thickness of the absorber is so small that the effect of the obliquity
of the path of scatterod neutrons compared to that of the unscattered ones is
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negligible; we note that this condition in less stringent than that of neglecting
multiple processes altogether.

(3) There is no absorber or scatterer between the source and the absorber
whose cross-section is under investigation.

(4) Efficiency of the detector is independent of the angle of incidence of
the neutron striking it.

(6) We have also tacitly assumed in the above that the absorber does not
generate fresh thermal neutrons through slowing down by scattering of epither-
mal neutrons.

Deviations from the above assumptions oecur in practice and in the subse-
quent sections we will examine them in detail.

HI. NON-RADIAL FLUX OF NEUTRONNS

To produce a spherically symmetrical thermal neutron beam in the laboratory
using natural sources, the obvious and straight forward way is to surround a
Ra-Be source with a spherical moderator of sufficient thickness to  thermalise
the fast neutrons issuing out of the source. It is well-known, however, that the
neutrons emerging from the moderator surface are not radial and therefore the
assumption (1) stated in the previous section is violated. T calculating the modi-
fied transmission factor, we will have to take into account the variation of the
neutron path length S with its inclination with the radius, together with the
angular distribution of the neutrons emerging from the moderator. A reference
to figure 2 at once shows that the expression for & is given by

A

Fig. 2

8= 8 = [R2pu2-+T(T+2R)):—uR, e (3)

where 4 = cos 8, R is the inner radius of the absorber which is assumed to be
placed directly on the moderator and 7' is the radial thickness of the absorber.
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The problem of determining the angular distribution of neutrons at the
moderator surface is more complicated. If the dimensions of the moderator
surface is large compared to the mean free path for scattering of thermal neutrons
in it, we can apply the results which have been derived for semi-infinite plane
moderators. Using certain simple assumptions Fermi deduced a simple angular
distribution law for the neutron intensity (Fermi, 1936; Bethe, 1937). If we nor-
malise to unit neutron density, the density distribution function is given by

d(u) = (1+/3p)/(1+4/312), e (4)
where @(u)dp is the neutron density between directions defined by g and p-du.
The problem of ncutron distribution from the surface of a semi-infinite modera-
tor, which neither absorbs nor multiplies the neutrons, is completely analogous
to the Milne problem in the astrophysics. The problem has been solved by Weiner
and Hopf (Weiner and Hopf, 1931; Hopf, 1934). A modified derivation which is
suitable for numerical calculations has been given by Plackzek and Seidel (Plack-
zek and Seidel, 1947; Plackzek, 1947). The new distribution function is
given by

12

!

= 1 L[ = tan™ (u tanz) 5

P =1y P [115 1w cotw ’] ©)
0

Tables of numerical values of ¢(x) have also been given by Plackzek, which shows
that Fermi’s function is accurate within a fraction of one per cent. More exact
but complicated solutions of the problem at hand has been derived, but the error
caused by using (5) in our calculations being of the order of a tenth of a per cent,
we havo refrained from using them. Experimentally the. distribution func-
tion has been verified by Hoffman and Livingston and more recently by Jonker
and Blok (Hoffman and Livingston, 1938; Jonker and Blok, 1949).

To find out the numerical distribution function from the density distribution
function, let us consider an elementary area dS of the moderator surface (figure 2).
For simplicity let us assume that all neutrons travel with the same velocity v.
Neutrons which are emitted at an angle # in an interval of time dt will be contained
in a cylinder with a base dS and slant height v d¢. Hence the number of neutrons
within the angles defined by x and u-+du is ¢(u).u.vdt, duds, showing that the
numerical distribution function is proportional to ud(x).

Hence the expression (2) for transmission is modified to

1

b= | wo)exp.|~80Npoalat du | it . (6)

The above expression cannot be directly integrated and solved for o and one
has to take recourse to geometrical or algebraic methods. Using the geometrical
constants of the apparatus used, one can tabulate corresponding values of i
and f = Npo,/M. From this set of values either a graph of y ve f may be drawn
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to get f and hence o, from any measured value of i, or the usual interpolation
formula may be applied for the same purpose. Alternatively, the universal trans-
mission curves derived in the following paragraphs may be used.

Let us express all distances in terms of A, the absorption mean free path of
thermal meutrons in the absorber, where

A= 1_ M
f Npo, )
The equation (3) now becomes
S(p
s(p) = f\,u) =[Pt 2a) ) - ap
where «=RJA and = T[A. Therefore,
s(pe) = tfprrt--(1 —i—;!r)}‘~—;'//| — ba(r, p), (B)

where r == aft is the ratio of inner radius of the absorber shell to the thickness
of the absorber used and a(r,y) is the funetion
afr, p) = |pdr2- (1} 2r) b= rpe ()

The function a(r, p) is given for various values of » and s in Table 11 and figure. 3.

s N . . ot } g i o R L ;9)
! f . . ool Iy
A . . ‘ - . e

Fig. 3 alr,#) a3 function of r and #
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TABLE 1I

Function «(r, ) for various values of r and p

0 1.7320 2.2361 2.6457 3.0000 3.3166 3.6066 3.8730 4.1231 4.3589 4.5826

0.1 1.6349 2.0450 2.3627 2.6265 2.8541 3.0551 3.2357 3.4000 3.5508 3.6904

L7182 2.8227  2.9159  3.0000

13

0.2 1.5436 1.8716 2.1129 2.3048 2.4641 2.6000

w

0.3 1.4578 1.7152 1.8046 2.0311 2.1401 2.2299 2.3057 2.3707 2.4273 2.4772
0.4 1.3776 1.5749 1.7052 1.8000 1.8730 1.9313 1.9791 2.0192 2.0533 2.0828
0.5 1.3028 1.4495 1.5414 1.6056 1.6533 1.6904 1.7202 1.7446 1.7650 1.7823

L4000 1.4419 1.4721 1.4951 1.5131 1.5277 1.5397 1.5498

[

0.6 1.2330 1.3377

L2779 1.3036 0 1.3219 1.3353 1.3458 1.3541 1.3583 1.3666

-
<
3
—

L1682 1.2382

1079 1H95 101721 1.1863  1.1962  1.2033 1.2088 1.2131 1.2166 1 2195

-
=t
x

-0519  1.0705 1.0802 1.0861 1.0902 1.0981 1.0953 1.0970 1.0984 1.0095

<
.-
<
[

£.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
The expression (6) for transmission is now modified to
1 1
g o= j‘/t¢(/») exp. | —s(u)ldp / f np(p)dp
1 1
= | nbw) exp. |—tatr, ip | | ppiurdu e (10)
o o

This is a function of ¢ and . This functional relation is shown in Table III
and figure. 4, the latter being the universal transmission curves applicable to dif-
ferent geometrical dimensions of the apparatus used. These curves may be uti-
lised as follows: From the dimensions of the apparatus we first determine the
ratio r = R/T. Figure 4 is then used to determine the set of corresponding values
of ¥ and ¢, with the help of which the transmission curve (¢ vs. t) pertaining to
the apparatus is drawn. Alternatively Table III may be used for the same pur-
pose employing usual algebraic methods. In either ease, the value of ¢ corres-
ponding to any experimentally obtained value of ¢ is determined. From the value
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of t thus obtained and the value of T is ems. measured directly, the value of o,
is calculated by using the relation

M M
Tq _Npl\ ""WBT s (]l)

In Tables II and III and figures 3 and 4 we have covered the range 7 = |
to10 and? = 0 to 1.0; we can extend them to include values other than those
considered here, in the manner indicated in the ahove paragraphs,

Fig, 4(a). y(r,f) as function of r and ¢
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A rm.\

Fig. 4(b)
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TABLE 111

Transmission function y(r, t) for various values of » and ¢

r
N\

t N

2

3

0.0 1

0.1 0.

0.2 0.

0.5 p.

0.7 0.

0.

. 0000

8891

7914

L7040

6266

Hh78

. 4966

4422

. 3939

L3509

1 :0()()0
0.8814
0.7787
0.6877
0.6076
0.5371
0.4750
0.4202
0.3720

0.3294

0.
0.

0.

. 4625
. 4078
L3597

L3175

. 0000

4

. 0000

0.8746

0.7657

-~

L6710

0.5887

-
<

.H16Y)
0.4543
0.3996
0.3518

0. 3099

0.

0.

H

8721

7616

L6660
La831

LA

1484

L3938
L3462

L3046

6

L0000

1. 0000
0.8702
0,7585
0.6622
0.5788
0. 5066
(. 4439
(. 3894
0.3420

0. 3006

1. 0000
0.86K87
0. 7560
0.6590
0.5753
0.5030
0 HO4
0. 3860
0.3387

0 2976

8

. 0000
R6G7T ¢
L7539

L6564

L5001
L4371
L3833
. 3361

L2051

9

L0000

.R663

TH0

L6044

H703

97N
L1353
L8N

L334

0

0,

0.

0.

O,

0.

0.

1o

- 0000

8653

4058
4332
3792

3320

0 2032 0 2015

2804 0.2732 0

L2682 0.

L2617 0,258 L2561

L3127 0.2918 0.

2645

’

The error in the above table is within 0,29,
at hand.

which is enough for the purpose
For the sake of comparison we have given in Table IV, the values of
Y for radial distribution of neutrons,
previous notation.

They arc obviously equal to 1¥(0, 1) in our

TABLE 1V

Transmission 1, in absence of angular distribution of neutrons

0.0 0.1 0.2 0.3 0.4 0.5H 0.6 0.7 0.8 0 1o

Yo 1.0000  0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 04066 0 3679

IV.MULTIPLE PROCESSES

When the absorber thickness reaches a value not small compared to the
scattering mean free path A, of the neutrons, the error caused by the absorptron
of scattered neutrons cannot be neglected. Major contribution to this error
comes from singly scattered neutrons; the cffect of multiple scattered neutrons
will be felt only when the absorber thickness becomes larger than A,. In this
discussion we will confine our attention to first order corrections alone, as this is
sufficient to cover most of the cases which will occur in practice. Referring to

sec. II condition (2) for the validity of the transmission equation, we find that
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multiple processes affect our result through the alternation in the path-length
of scattered neutrons from the path they would have followed in absence of
scattering. Since on an average the length of the scattered path is greater than
the corresponding undeviated path, more of the neutrons will be absorbed, as
a result of which the apparent value of the absorption cross-section ¢’, will be
greater than its true value. A rough estimate of the error caused may be ob-
tained in the following manner. To find the order of increase in the neutron
path due to scattering we note that if we pair off the neutrons scattered in the
opposite directions, the total change in the path length remains of the same order
as we shift the point of scattering from the inner to the outer surface of the ab-
sorber. At thickness 7T'/2 of the absorber, the neutron pair scattered at angles
0° and 180° suffer a total increment of path length by 7. Hence as a rough
estimate we can suppose that the path-length increase through scattering is 7'/2
per neutron. Let ¥/" and ¢ be transmission in presence and in absence of scat-
tering respectively. Hence the number of primary neutrons absorbed is (1—v).

. . . 0"
Number of primary neutrons scattered is then obviously = (1—¥) where o,
a

is the scattering cross-section of the absorber. Of these scattered neutrons
nearly 3(1—y) fraction will he absorbed due to increase in path length alone.
Hence neglecting second and higher order scattering

L=y’ =1y 7 (L2

showing that the fractional error p in estimating absorption is of the order of

=17 I ~ Tu —!
P=3q (I=y)=i," (1-9)

(r .

If the value of a‘ is approximately known, then the above relation may be used
a

to estimate the order of error involved.

A semi-empirical approach to the problem may be made as follows. The
increase in absorption due to scattering is a function of absorber thickness 7'
This increased absorption may be imagined as due to a virtual source at the
centre, the strength of the virtual source being a monotonically increasing func-
tion of T; we can write this source-strength as nyf(T'), as it is proportional to the
real source-strength n, for obvious reasons. Hence the measured transmission
is related to the corrected transmission by an equation of the form

nl—) = nfl+fD)1—p)
or, W = Y+ —f(T) e (13)
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Since ¢ 1, ¥’ is always greater than ¥, f(T) being essentially positive. Now
the expression for iy when all neutrons are radial is
Y = exp.|—To,Np/M)| o (14a)

When the neutrons follow an angular distribution law, we assume that when 7'
is varied keeping the moderator radius constant we can express the above equa-
tion in the form

¥ = exp. |— (1) Np/M| .« (14b)

’

Similarly expressing i’ in the form

Y = exp. | —B(1)0'eNp| M v (140)
where o,' is the apparent absorption crossgcction measured without heed to
the scattering. Comparing (14a). (14b) all@ (I4¢) and remembering that by
Plaekzek and Seidel distribution law most of the neutrons are emitted from
the moderator surface making small angles with the radius, it is evident that for
not too large value of 7', we can expand #(T') in the form

BT = T(Ay+ BT+ C T ......). (15a)

When the absorber thickness 7' is very small, elementary considerations
show that the strength-function f(7') is also very small showing that f(7)—0 ax
T—0. For moderate values of T' we can therefore write

f(T) = T(A,+ BT+, T ......) o (15b)

Now, on substituting (14b) and (14c¢) in (13) and taking {n of both sides we
have

M 1 , 1
a0t Ty gy ) (1= s)l
M 1 1
_ il . - icher ter
=0, + Np /f(T)[f(q) <1 y ) { higher emls]
1 m Np ¢ have
using (15a), (L5b) and expansion of v = GXP-[ T.04 y | We have

, H (At BT T )| S rr—
O, =0, + Np jio-i-}foT-!-('oT”-i--.- T M |-higher terms
=0 (1 4+ AT+ BT+ ......) (16)

When a series of measurements of o', is available for geveral values of 7,
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we can fit them into the above relation to find the true value of the absorption
cross-section o .

V. ABSORPTION AND SCATTERING IN MODERATOR

If the moderator used in slowing down the neutrons has an appreciable
absorption cross-section, a fraction of the scattered neutrons which encounter
the moderator in their scattered path will be absorbed. This effect should be
extremely small in all normal moderators, for which o, is only a small fraction
of oy. On the other hand, most of the neutrons incident on the moderator will
suffer multiple scattering within it. We can, in fact, assume that these neutrons,
irrespective of their previous history, will emerge out from the surface of the
moderator obeying the angular distribution law discussed in Sec. II.

A crude estimate of the correction factor, similar to Eqn. (12) above, may
be derived easily if 7' is small compared to R, so that most of the neutrons scat-
tered by more than 4 77/2 will strike the moderator. We neglect the increase in
path between the point of scattering in the absorber and the point of incidence
on the moderator; we assume however that the average change in path length
for neutrons scattered through angles less that -£7/2 is of the order of 7'/2. With
these assumptions we can easily show that the presence of the moderator modi-
fies the Hgn. (12) to

pe= T A+ T 1=y} =17 (1) . (17)

« n a

Like Eqn. (12), the above equation is one useful only for indicating order of the
error invoved and no other significance should be attached to it.

The nett effect of the presence of the moderator will be an increase in the
neutron absorption, the increase being proportional to the number of primary
neutrons scattered by the absorber. As discussed in the previous section, we
can associate this absorption to imaginary sources at the centre and hence the
form of the empirical correction formula as given by Egn. (16) retains its validity
and may be applied to derive the true value of o,.

VI. DETECTOR EFFICIENCY FOR SCATTERED NEUTRONS

Efficiency of a detector depends, in general, on the length of the path of the
radiation through the active volume of the detector. Since the scattered neu-
trons follow a path different from the unscattered ones, efficiency and hence the
number of neutrons recorded will vary with the magnitude of scattering by the
absorber. The calculation of the relative efficiency of a detector depends, in
general, on the type of the detector, the mode of its use as well as on its shape and
size. In this discussion we will discuss a foil type neutron detector, the beta-
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activity induced on the exposed surface being taken as a measure of the neutron
flux. We will also suppose that it is a circular disc of diameter d, with its axis
passing through the centre of the absorber and moderator spheres. When a
flux of neutrons is incident on the foil at an angle 6 to the normal, the number of
active nuclei produced between depths & and z-+dx is proportional to dz. sec ¢
exp. (—ux sec ), where u is the absorption coefficient per cm. of the material
of the detector for thermal neutrons. When the foil is presented for counting
the activity produced, the recorded intensity will be approximately given by

[ oxp. (—px sec 0) sec ¢ exp. (—pu'x) dx,

where u’ is the “absorption coefficient” for the beta rays emitted by the foil. In
all practical cases s’ > p. Hence the recorded activity and hence the effi-
ciency of the detector is proportional to sec #. The maximum value of 6 (0,, say)
when the centre of the spheres is at a distance ) is obtained by solving the
cquation (figure 5)

d = 2[D tan 0, —(R+T) cos ), (18)

«-->
nIR,

8

‘i 9
Y G

Fig. o

We note that of the a,/o, (1—¥) scattered neutrons, about half will be
rescattered by the moderator in a manner similar to the primary neutrons.
Hence they do not cause any change in the efficiency of the detector. The remai-
ning half will be scattered through a mean angle of the order of 30,,. Hence the

measured transmission will be

W' o= Y44 ;{: ( sec ’;ﬁ"’) —1 (1—y)

showing that the fractional error in estimating the absorption is of the order of
— 0
p=—17 L !ﬂ( sec o — l) . (19)

due to alteration in efficiency of the detector.
4
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VII. SCATTERING OF EPITHERMAL NEUTRONS

A fast neutron source surrounded by a moderator of finite dimensions always
emits epithermal neutrons in addition to the flux of thermal neutrons. In pre.
gence of the. absorber, some of these neutrons will be thermalised by scattering,
especially when these scattered neutrons encounter the moderator in their path.
These neutrons can not be distinguished from the primary thermal neutrons and
thus the dector will register an apparent increase in the value of i which will lower
the measured absorption cross-section. The number of thermalised epithermal
neutrons is a monotonic function of the absorber thickness 7" and tends to zero
as T is made vanishingly small. Hence we can apply the semi-empirical equation
(16) to correct for this effect as well.

VIILERROR DUE TO NON-ATTAINMENT OF THERMAL
EQUILIBRIUM

In the moderating material surrounding the source, neutrons lose their energy
through elastic and inelastic collisions till their energy is comparable to the
energy of thermal agitation of the atoms of the slowing-down medium. We
have assumed hitherto that the velocity of the neutrons eventually attains a
Maxwellian distribution characteristic of the temperature T, of the moderator.
This is, however, strictly true only in a moderator of infinite dimensions which
scatter the neutrons but do not absorb them. The actual veloeity distribution
from a finite, moderator, will therefore, show deviation from the Maxwellian dis-
tribution. Experiments have shown that we can approximate the distri-
bution closely by a Maxwellian distribution corresponding to a temperature 7",
different from 7'), over which is superimposed & pronounced tail of relatively fast
neutrons extending far into the epithermal region. The contribution of epither-
mal neutrons can be experimentally determined by the usual cadmium differ-
ence technique. On the other hand, the estimation of the temperature 7' charac-
terising the velocity distribution cannot be determined in a simple manner, When
strong sources are available one can employ the velocity selector techniques
to determine the actual distribution. When the moderator is in room-tempera-
ture experiments of Manley et al (1946) and of Rainwater and Havens (1946)
may be interpreted as showing that when a paraffin moderator of linear dimen-
sions about 104-5 cms. is used 7" is given 'by 390°4+10°K, if D—D neutrons are
used. For Ra-Be source, the dimensions of the moderator are to be increased
to take into account the higher initial energy of neutrons. Hence for spheres

of paraffin of diameters lying between 15 and 25 cms., we expect the above value
of T to remain valid.

It is usual to define thermal neutrons as neutrons with Maxwellian velocity
distribution corresponding to a temperature of 300°K. For low absorbers, there-
fore, the cross-section (07,)7", measured for neutrons at temperature 7" has to
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corrected by the following relation to get o,

. the true thermal neutron absorption
cross-section,

Oy = (7a)T" (ﬁ)‘ o (20)

Inserting the value of 7" stated above for paraffiin spheres we have
0, = (1.140240.0145) (o,)7" ... (20a)
We have used this correction factor in Table T.

For absorbers not obeying 1/v law partial compensation for non-attainment
of thermal equilibrium may be obtained by lowering the moderator temperature,
When strong sources are available a better plan is to use large amount of gra-
phite moderator, which has a low absorption cross-section, as is done in atomic
reactors for getting thermal neutron flux.

IX.SMALL DEVIATTIONS FROM SPHERICAL SYMMETRY

If the absorber and the moderator spheres are not concentrie, then the absor-
ber thickness on one side will be greater than the opposite side. Tf, however,
the centres are separated by a distance small compared to the absorber thickness,
and detector is made to record the neutron intensity at different directions with
respect to the spheres keeping its mean distance from the centres constant, then
the increase in the number of scattered neutrons from one side will almost com-
pensate the decrease in their number from the other side. The compensation
in the value of the mean recorded intensity will not be exact but it will obviously
be of second order of smallness. The degrec of attainment of spherical sym-
metry can be obtained by noting the relation between the intensity [ and the
distance D between the detector and the mean centre of the source and the ab-
sorber. Tf the geometry of the arrangement is exactly spherical, for a point detec-
tor ID? should be constant. For a detector of finite size //Q should be constant,
where Q is the solid angle subtended by the detector at the centre of the spheres,

Small local variations of the density of the absorber, and other small devia-
tions from the spherical symmetry are likewise smoothed out and their effects
rendered insignificant, if measurements are taken in different directions as
indicated above.

CONCLUSION

The above considerations show that the spherical symmetry method is realis-
able practically and it rests on firm theoretical foundations. Experimental
details of the arrangement developed in our laboratory will be communicated in
& separate paper.
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The method can obviously be extended to other neutron energies provided
a spherically symmetric source of such neutrons as well as a detector which
responds uniformly to neutrons of different energies are available. The method
can also be extended to study the absorption processes of other radiations, iso-
lated from their scattering effects provided suitable sources and detectors are
available. An important extension of the process is possible in the field of gamma
rays, where account must be taken for the degeneracy and hence the variation
of the detector efficiency through Compton effect. Experiment along this
line is under way in the laboratory.
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