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ABSTRACT. We have here caleulated tho anomalous magnetic moments of the nue.
cloons with the help of a fourth order meson oguation given by Bhabha and Thirring. The
olectromagnotic curront. density of thix moson field has been ovaluated for our purpose. The
rosults are in much better agreement with the experiments than what we getl in conventional
meson theories,

1. INTRODUCTION

Several attempts have been made to get a correct value of the anomalous
magnotic moments of the nucleons making use of conventional meson theories
(Case, 1949 ; Slotnick and Heitler, 1949 ; Borowitz and Kohn 1949 ; Goto, 1954)) ;
Except for partial qualitative success, the disagreements of the results obtained
by them with the experiments are too conspicuous. HKven the ratio of the ano-
malous neutron and proton moments is almost eight times the experimental value,
although this ratio is independent of the rather uncertain coupling constants.
The treatment of Sachs (1952) with the help of a definite model is more or less
made to agree with experiments; but the arbitrariness of this model is an essen-
tial defect of this approach. Such failures suggest that an altogether different
meson theory may help us in this direction. We have here chosen a fourth order
meson equation given by Bhabha (1950) and Thirring (1950) for the consideration
of the same problem. It is seen here that for our calculations no infinite renor-

malisation is necessary and that the values thus obtained agree with the experi-
ments to a much greater oxtent.

2 FIELD EQUATIONS AND MESON CURRENT DENSITIES
The fourth order meson field equation is

(OP—x%); = 0 v ()
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The invariant lagrangian density L(x) which, with the general field equation -

AL a- oL #® oL
T, 0g T Gmdm, . 0% = - @
0z, 0z ,0z,
gives us the field equation (1) which ca.n be written as
1 0%, %% 04, Og; -"'
L =—|—_2% i — }2D.0:* .
(= %255 o - e )

Here we have adopted the summation .nventlon for repeated indices, and
-> . -2
z = (x, ct) and z,3, = & —c?f2.

For our purpose it is necessary to*fiﬁdeduce a current density for the above
field. The lagrangian here contains second order derivatives of the field
operators. But proceeding according §o Wentzel (1949), the gauge invariance
of the first kind enables us to write thih current density s, as

— 4] 9L oL 0P
'6{ o, oz, az¢ $it g o,
ax,. az“ax, 0::“01,,
—the complex conjugate expression} (4)
where ¢ is a constant related to the charge. A direct evaluation of aa #with the
‘l
subsequent application of the field equations(2) gives us
ds, _ . (OL oL 0¢; 0L 3¢, _
oz, ¢ {a¢ $it =58, Tzt 5. 020 0%, °'°'}
0x,‘ 0z,0z,

But the above quantity is the coefficient of @ under an infinitesimal- gauge trans-
formation ¢, —¢, exp (ix), ¢;* —»#,* exp(—ia) and thus must vanish, This was
at the basis of the choice of the current density (4). Thus for (3) we obtain

oo m (08 i), (am% L=

K2 0z,
+ 50 (28 3 0 T )) ®)

However, when there is an external electromagnetic field with the four vector
potential 4,, then the lagrangian density (3) must be changed to L

o= (el g 4 el anfor
+(a"“ A )¢‘(£I+ Fo An) & "*""9’@%’}2, w9
aad equation (1) is to be changed similarly. ek
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Thus by (4) the current density ¢, becomes

o9 40 O 5, _ O ige_ g O
o= {3 ¢‘ #* )= 55("5s ¢ A =

ax,,

+a B0 S 4 { #rdit g (u2¢i*¢1+ o))

et 7 7 1
T T+ P
Here we have made the substltutlon e._e/kc and have arranged the “terms in
the ascending powers of e,

The continuity equation follows from the gauge invariance of the first kind
of the lagrangian density (6). The theory is also invariant for gauge transforma-
tions of the second kind (Wentzel, 1949, p. 68), this gauge invariance being neces-

sary since F, = a.A“ determines the electromagnetic field.
ox, Oz,

In our calculations we shall keep only the terms involving the first power of e.

3. GENERAL THEORY

We can take the Tomonaga equation as

io 29— By (o)

do(z)
Here H(r) = H,+Hewt - Hewt
Hy2) = if 0@ rrb@dula) . ®
it = judy = —iel l—-— vupdy . (9

Het =s,4,

= -—-(e/kG)All( ¢1 .g‘;z ‘~¢2 g%)

+efkic A,,(l/2x2)( b, agﬁ —-¢2a_a|:;]:,29} __'g_gl Dz¢2+§2252¢1) e (10)
& u s

In the above 7y, 75, 7, are the isotopic spin matrices, 7, is unit matrix in isotopic
spin space, { is the nucleon wave function denoting the proton and neutron states
for 73 == 7 1 respectively. @,, u =1, 2, 3, 4 are real fields, pseudoscalar in space-
time with the corresponding complex fields describing the charge mesons given

88 @ = /3 (¢; igg) and ¢* = \/% (f1+1i¢;) which has been applied in
deducing (10). fus0=1,2,3,4 are the_ corresponding coupling constants for
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the above fields. As mentioned earlier in deducing (10) we have neglected the
higher powers of e. The anticommutation relations and the vacuum expectation
values for the nucleon fields are written as

[Wel2), Yp(2')], = —ifp(x—2) .. (11)

<P('l7a(x)?/fp(x'))3 = ?'s,,,,,(x-x') e (l1a)

where 8 ppa(@) = —<y S i« )% A p() (11b)
a “ oz, o iBalF

Ap(®) = —2i/(2m)dkik; Hed) exp (ik,z,). . (lle)

The integral in (11c) is to be understabd with the usual convention of adding
a small negative imaginary part to the #ass of the nucleon.

The commutation relations and th& vacuum expectation values of the meson
field can be written as (Thirring, 1950).

[pu(x), du(x')] = thc 6, D(x—2') . (12)
<P(Pu(x)p (")) >, = }hc 8, Dp(x—2') e (12a)
where Dyl(z) = (_?7‘25;4 @ f de(li-8) exp (ika,). . (12b)

The convention of the (12b) integral is the similar to that of (1lc). The «?® was
introduced in the above integral to keep the dimensions of the propagation func-
tion remain unchanged; it could as well have been absorbed in the hamiltonian,

as has been done by Thirring. -

4. CALCULATIONS

Because of the presence of the virtual meson fields, the electromagnetic pro-
perties of the nucleons will be modified. In the second order for the meson field,
this change is given by (Case, 1949)

[ 4 *®

H' yy(x,) = }(—ifho)? | diay [ diwy PUH(zo) @) Hilao))
-®

-®

which are split up into the terms
® «©

H,(zo) = —iefi o A (%) I diz, j dizy P(¢,(2,)Po(%5))

_ﬁhzcﬁ ~-® [ J

X P (V’(“’o)l;g“aYn'p(-"’l)"ﬂs'ﬁ(“’l)'p(”z)'ra?’s'ﬁ(zs» e (13)
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Hy(zo) = — ;;{' {" A (%) J‘ diz J d'zy P ("Z(x.l)‘fw'}'swxx)53(33)7«:‘}’63”%))

P ((¢1(1’o) @5;%)* —@a(%,) gfi) ¢y(x1)¢°(x,)‘ _

+ ;f’l! 5 Aulz)(1/26%) .[ d'zy J diz, P (J(xl)"'s"}’s‘/’(zx)ﬁ(xz)'fu')'s‘/’(xz)

xP (@) FiPe g 2Tt g, 4 B el e (0

Equations (13) and part of (14) are identical with those of (Case, 1949) (equations
(20) and (21)).

For our problem we now take the one-nucleon, zero-meson vacuum expectation
va.lues As has been shown in the appendix, then we can write in terms of a

smgle momentum variable

Hy(zo) = =450 22 [ b Ty, yapapizo)

X kky((ky—P,)2+x2)~Y(ky—P’ )2 4K 2) (k2 4K2) 2, .. (18)
and

Hy(zp) = Q%fxf 2 Au,) 2%:4 j Ak ¥ (xo)73t ¥,¥ (o)

(k=P )Pu—k)
IR G (F n e (e o L

e\élh{: a(;i:;(“_’g)_ K2 S o)y, )

__(k, — P,)(P, --Ic)(P _k)
X T = P i, = Py (1)

The description of the symbols appears m the appendlx along with the calcula-
tions. Using the representations

1/(abc) = 2 jdx j dg(ay—b(z-y)-—c(l——ﬂ)"

0 0
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for the product denominators in (15) and (16), we get

1 z
H =%*4 4 (1—2)¥(2) Ty, 7.0 ¥ @)k Kr
1 8h. a(zo) 'l. d k (J;d:vj. dy (k;—2k,,(P’,‘y-o{—P,(x“—;1))-{fx'(l——x))‘

=S 40 6 [an ];dx [ ?sl(l-z)v?(wo)rsiym(z)

0
« (ky—P",)(P,—F)
(k,”2k1.(Pu(x—' )+P'u(1_z))+xn(l—2y)+x2(l_y))‘
e 4

y
"fz’,{;% 2 d‘k dg<l—xxw—y)¢(xo)nm¢<x)

k=P b= P,y —P)
X T 2H, Py TP 1) (125 R TG

We find that the k-integration above is automatically convergent. Proceeding
as in Feynman, (1949), we get.

1

ied, 2 r ~
N L o

X(=7Yu\AP,y—P,z)(AP,y—P\z)+7,.K )Y (x),

where
K, = y(z—y)(AP,)*—g(z) . (17)
P(x) = ki +x¥(1l—z) .. (18)
and AP, = P,—P',. . (19)
Similarly

By=— i 4 e J dxo[ dy(1—)¥ @o)rsy, (o)

(Ky)~%2(xAP,—yP,)(1—2)AP,—yP,)—0,,Ky)

04,
e{rl;'t}';c am(o'?) xﬂoi d:vj dy(1—2)(z—y)¥ @)y

(Ko *y/AP,(1—2)+Puy)+Vu(AP,(1—2)—P.y))
. ~(By)-yy(Pyy+AP\(1—2))(Puy+AP,(1—2))(Py+ AP —2) (%) ... (20)
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where K, = (1—z)(z—y)(AP,)*+8(y).
In duducing (20) we have used
[ bhkdt 000 @bt O]
(ki —2k,Q,—AB)8  48i L(@;+A)° (Qu+A)?

0Au(@e) _
0x,,
Equations (17) and (20) are simplified by repeated use of (A3) and the anti-
commutation rules of the y-matrices. We also use the result

() 2P )Y (g) = Y@ )T uAP ,— 24y u+ AP )Y (2)

and the continuity equation

with
Ouy=(—2/2)(YuYe—Yv7u)
We also use the result

f a2, "ff;;(”‘o) Ha@yee) = —iAP, | iz, 4,2 Pz ¥z . (21)

(21) is employed to simplify the second term in (20). It gives as a particular case
that terms of the type

Ay(w,) (constant) ¥(z)AP,[(AP,)*)Y(2)

are effectively zero, as has been mentioned in Case (1949).

Now we write,

o

Hy="euin) o [ dy [ dy(l—a)¥ @) TUK) a0AP,

=Y ulK) (kP2 + () +7u(P(@)) Pk’ + $())]

The last term above inside the square bracket has been added for renormalisation.
It is to be noted that this renormalising term is finite, as has been mentioned in
the introduction. The physical significance of this renormalisation may be realised
when we see that the matrix element above vanishes when AP is zero, and that
the correction due to renormalisation is independent of the momenta P and P’,
We may also add that the concept of renormalisation has nothing to do with
the divergencies as such, although necessarily the arguments are more consistent
when the renormalising terms are finite, as is the case here {Kallen, 1953). Thus
H, simplifies to
&

. 1
H, = E;.‘;#ggg) K3 j' dz ] dy(1—z)¥(z)T[(K )~ 2% 1, AP,

— (K@) 2y uy(@—y)NAP, ¥k 222+ $(2))
(2¢(=)+y(x—y)AP,) )Y (z,). - - e (22)
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For the simplification of H, we remember (21) and proceed in a similar way as
before. Thus we get
1

Hg = isei-%"% Au(xo) K2 5 | dxo[ dy(l—-z)'p(xé)-ra[(K!)ozKoyza-”AP"

—(Bop®) 71— 2)— ) AP, Ay Ik —((9))P—

— (=)~ y) AP Py)— 2t () ... (23)

¥
+terms that involve (AP )? throughou$, and thus by the subsequent section will
not, contribute anything to the magnetfc moment.

5. MAGNETIiMOMENTS

The terms involving o,,AP, above will contribute to the anomalous magnetic
moments of the nucleons. For this plipose we neglect (AP,)? and write A ,(z,)

'p(xo)AP JT¢(z,) in the form 4- id o Ay ‘;Rwo)l“t/(a'o) the T above being an operator

Zov

depending on the y’s and the 7’s. This gives

H, = L3F @) ()T 7,4 (x).

16 “’k
H, = ef1fz IziF”,,(xo)\}(xo)"s"mV’(xo)

where

1 z
I = | de [ dyigtan-2—ome),
0

(]

1 x
1, = [ do [ dy@e) XA —2wu?).

o o .
-
This finally with H = (Fy,Fy) F,) giving the only nonzero kennzahlen of the
-
field tensor F,, and with the usual spin matrix vector o we get for a proton

2 - -
H, = (— I Dap, — &L L) —g*@ho . By @)

and for the neutron

. - =
== e G el e e

Inthe gbove f; = f, = fhas been taken. Confining our attention to the symetrical
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theory (f, = fa = fs = f, fy=0) We get the respective anomalous magnetic mo-

ments as

Dpp = -g;% (Is—31)
and

duy = — L @

The integrals I, and I, are elementary although lengthy. Evaluating them
we have

1 Ab -
L= o (“324F 1N+ Sy, (181324227 cos~i(4j2)

O

=322 am),

BECE
and
_1 21204922y o0 2—4A+A2
12—‘“'3‘ (1 * ln(l/A)'}' X‘E:A“Wcos (A/ ) 4(4_[\)
+1 1n(1/)—42).
where = (X )’. WithAt = 0.15, we get
(1]
I = L 080 neatl
1= ;‘:g‘ . yv
and
1
Ia = T(-‘s:. 1.20 neal‘ly.
Hence
App = (G?[4m*Ec) 0.80
and

Apy = —(G?/4n%hc) 2.00
where the quantities are expressed in nuclear magnetons and we have substituted

L.

Ko
Thus |App/Apy| = 0.40 nearly.
If we take Aup = 1.79, then G2/dn%ic =7 nearly, e (29)
and if we take Auy = —1.91, then G*/4nthc = 3 nearly. - v (26)
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DISCUSSIONS

The above results are in gualitative agreement with experiments as regards
the signs and the relative magnitudes of the magnetic moments. The quantitative
values, though not satisfactory, do not ‘contradict violently the experimental
results’ (Goto, 1954) as in earlier theories. Our result 2.50 for the coupling-cons-
tant-independent ratio |Apuy/Aup| is & significant improvement over those of
Case (1949), and Borowitz and Kohn (1?49), which is 8 nearly, as compared to
the cxperimental value 1.07. Even the relativistic cut-off method of Goto
(1954), yields the value 3.1 nearly, whi@h is slightly worse than ours.

Again, the calculated values offthe coupling constants in (24) and (25)
do not differ widely (previously they differed as much as 56 and 7), and although
the values thus obtained are comperativiely small, they are not small enough
to make the second order (:al(mlatinné very reliable, and the differences still
present may be attributed to this fact.

In our calculations here no infinite renormalisntion was necessary, which
is an encouraging feature of this theory.  But it may be noted that higher order
corrections to this theory will contain infinite renormalisations, since the meson
sclf-energy remains unchanged. Thus the processes which involve this graph
will have to be dealt with more or less in the usnal manner of subtracting
infinite quantities.
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APPEND1IX

Evaluation of H;:
After taking the vacuum expectation values, we can write H,=H¢ +-HY
where

o *®
H == ‘;‘I;;c Ay (%) Id4-7'1 Iddmz Dy (“’1_9’2)5‘7(-"2))’57»’#(‘52)

‘w w
NplryeSulz—an)ve T3 Spla—ao) . (Al)
and
vef 7 T 7 1—7
HY = — zg’;c A (o) J. d*z, :['d‘wz'!‘(x,)y,f,.b’y(xo~ e Ty 3

S p(xg—20) T, YY) Dy —,)

!
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To evaluate H¢ we note that the spur written down in (Al) vanishes, as has been
shown by Case (1949) with the same quantities as in (A1), but with a different Dp
function. Thus the arguments of Case for the vanishing of the H¢ with the con-
ventional Dy function continues to hold here as well.

Rearranging the isotopic spin matrices. H{ can be simplified to

] L]
HY = — ;{_c A 4(,) I dtr, I A, ¥ (2,) Y8 1:( Lo — 1) Y uS p( @y —24) V5

Y(@p) D pley —2,),
where
T = §(0 =) ([34-SD)+ 4 +T3)(fF 4 [5). - (A2)

Also we take

Y(x) = up exp(iP ), V(x) = w'y, exp(—il yx,)
such that P; = P’} = --k;. We now represent the invariant functions by
means of the integrals (1l¢) and (12b) and integrate with respect to x; and x,,
giving rise to §-functions with the help of which we finally express

2
i

HY=— L& duaw) 5 [ a9 )Ty,

" (iZI'(l’ID ’f”,), - KU)YM(":Y)\(P)\' /Cx)-"o)h&/’(“’o)

((ky ’“P:)é—“likf )(‘(ku'"I’u')“"‘?“‘%)(l"u‘z‘|“ K%)?
With repeated applications of the results
@Yl u+rolup == w,' (byu P y+xy) = 0 ... (A3)

and yi = 1, the above expression for H} can be seen to simplify to the cxpres-
sion (15) alrecady written down.
Evaluation of H, :

We first write I, = H',+11",, where

= - gf’;’{‘.; Aulry) g dir, I ’l"""zp('l;(‘l'l)Tv')'s‘/’("’l)'/;(""'2)7';176‘//("'2”
> o a
< ([ o) 52 gt 72 g(ag ()
y = ;fké'; Aply) 2'K2 [ dte, [ e, POy iy ysh (o)

o[1% ¢, o124,
<Pl P — gyt OV 1 gy NmPICNERTRER
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The calculation of H,' is similar to that of Case (1949), and proceeding as
before, the final result can be written as

’ 'l:e
Hy= 4 "0l a0) £ [ % Fogryiypiay
(k,—P)') (Py k) _
(kzﬂ+K(l) ((M“P - *2)2((’f — P72 k)2
To simplify H," we note that :

< P(By(@)) b)) D(”’? —o(are) Vb _ oy BETACAN "¢=- 1B.0)>,

Lou Mgy
Buub) (Dptrg—ay) W8P =20 _py o0 oy OCNED (o —y)

#on 0oy

= (h"c*/4)(8,,0,, -

20

_ OD_l._(fp_ll'l) (2D p(rg—ay) |- ()Dlv'('rn‘ &Ly) mH [)ﬁ'( 0—2y))
‘”0[1 (7 ro
This gives

1 C C '
H" = g;i(’,ﬂz u(@o) 22 Edd-" 1 [44124'(“’1)(71')’561"(“2‘xl)'rz')’s

» -

~T3Y5S p(Ta—21)T,Y5) P (%)
018D p(%o—27)

Do

X [Dl,,(x‘,——zl) OLI3D pltg—12,) —Dplx

F) 170,; Lo - ‘1:2)
— WDy =21) ap (e — ) OPH(E— ) 31),,(%4‘)] .. (Ad)
0oy Tou
We now use 7,7, = —7,7 == 47;. Also in (A4), the x, integration is implicit.
Carrying out partial integration with respect to x, and using the result 94 ,(z,)
Oy,

= 0, the second and third terms inside the square bracket can be seen to be res-
pectively equal to the first and fourth terms. For examlpe,

j dwoud (@)

Wi 21 (13 Dty —ay)

ou

= [dane - (Auleg 8Dz~ Dpto—2)

. “
= '{dx,w Aul(@) f@.&%igo_"fz_) D(zy—1,).

~n
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But again applying partial integration two times in the different variables for
the fourth term in (A4), we obtain this term as equal to

OD NLg— g
g diwy [ 13 (A/t(‘”o) "—1'%:“—:{2) )DF(J’O_“”I)

O 12D (xy—25) A (o) (fl_)y_(‘_”gj’z) ] D o(xg—2x
} I'”x" [A ey 7 aﬂ,(oﬂo - 42 '79.}/:,',.'“‘ W #(To—1)

where we have applied [3A4,(x,) = 0.

Thus we get.

H, = - %{'_‘fz l-z g dx, g'd*xg‘p(111)73')’5‘%«'(‘”2“"’1)75‘/’(*”2)
- 2he . .

12D plaxy—2
S [_ A y(x9) Dp(g—12) s ;2(‘ %)
ou
04 4(xy) Dulze i’fpli(’”o —%;) ]
| 0x,y, Oy Oxyy Ok,
We again apply the integrals (11¢) and (12b) and thus finally obtain, as in case of
HY and H'y,

H”2 . ief1f2 k2 )’ d«lkq}(xo)ﬂr:}fi,y',l//(x“)

2fc % 2mt

A (@) by —P" )Pk, )(Py—ky)2—i "fa“;(%) (" )P ity ) (P —Hy)
2 0N

() (U — PR (B P

Thus adding the values of H’, and H”, and simplifying, we get the value of H,
as mentioned in formula (16) earlier.
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