THE EMISSION SPECTRUM OF BROMINE

22

BY P. B. V. HARANATH AND P. TIRUVENGANNA RAO

DEPARTMENT OF PHYSICS, ANDERA UNIVERSITY, WALTAIR

(Received for publication, April 7, 1955)

Plates V A-B

ABSTRACT. The emission spectrum of bromine as excited by a high frequency high power oscillator is photographed in the visible region, λ 6400 to λ 4400 and is found to consist of as many as 300 bands as against only 80 bands reported previously by Uchida and Ota in the region λ 6700 to λ 5000. Tentative vibrational analysis of the bands on the basis of two systems suggested by Uchida and Ota are considerably extended to include all the bands down to λ 4400. This has led to a redetermination of the following vibrational constants

	ω'_{e}	$x'_e \omega'_e$	ω″,		vc	
System I	190.0	1.0	376.0	1.25	19290.0	
System 11	152.0	0.35	376.0	1.25	18782.0	

The vibrational assignments are well supported by an extensive study of the bromine isotope effect.

INTRODUCTION

The emission spectra of chlorine and bromine in the visible region are well known. Uchida and Ota (to be referred to as UO) (1928) first reported three systems in the emission spectrum of chlorine. Later Elliot and Cameron (1938) reinvestigated these bands and offered a different analysis from the one proposed earlier by UO, on the basis of two systems ascribed to the transition ²II -²II. From the even multiplicity of the systems involved they considered that the emitting molecule may be the ionised molecule Cl⁺₂. In view of the uncertainty in the analysis proposed earlier and the number of systems involved in the spectrum of C_2^+ , Howell (1953) suggests that the main difficulty in the analysis of the emission bands of Cl⁺₂ is due to the fact that the ²II separaration of the ground state is of the same order of magnitude as the ground state vibrational frequency. Hence he concludes that a study of the spectrum of Br⁺₂ would be more helpful in determining the nature of electronic levels and the relative order of values of $\omega_{e'}$ and $\omega_{e''}$. In the light of this suggestion it is considered worthwhile to undertake a detailed study of the emission band spectrum of bromine.

UO (1928) were the first to suggest the vibrational analyses of the emission bands of bromine in the region $\lambda 6700 - \lambda 5000$ as belonging to two systems. The following vibrational quantum formulae were derived from the analyses.

System I $\nu = 17325.80 + 191.45n' - 1.05n'^2 - 360.65n'' + 0.65n''^2$ System II $\nu = 16105.00 + 152.40n' - 0.40n'^2 - 361.70n'' + 1.62n''^2$

P. B. V. Haranath and P. T. Rao

It is noteworthy that the intensity distribution in both the systems is of the open Franck-Condon parabola type which is normally to be expected for such divergent values of $\omega_{e'}$ and $\omega_{e''}$. However, they admit that the quantum numbering of the bands is quite arbitrary as the assignments were not supported by bromine isotope effect. The bands in these two systems, as in the case of chlorine, bear no relationship with absorption bands of the neutral bromine molecule. The present paper describes the results of the authors obtained on the emission spectrum of bormine which is found to consist of as many as 300 bands in the region $\lambda 6700$ down to $\lambda 4400$.

EXPERIMENTAL

UO excited the spectrum through an induction coil discharge generating bromine by heating silver bromide. In the present work the spectrum of bromine was excited in an electrodeless discharge from a high frequency high power oscillator. For photographing the bands a pure sample of cupric bromide was spread uniformly in the middle of the tube. The discharge tube was made of pyrex glass of length 30 cm and diameter 1.6 cm and was drawn into an adopter at one end for evacuation by a Cenco Hyvac pump. The other end was fitted with a glass window by means of shellac. The heat of the electrodes was found sufficient to maintain a steady column of bromine vapour. The discharge which appears rose-red in colour could be maintained for several hours free from any traces of either the usual impurity bands or those of CuBr. The design of the discharge tube was slightly altered when the spectrum was excited using pure fuming liquid bromine. In this case the tube having the same diameter was closed at one end and was provided with two side limbs to one of which was connected a small bulb containing pure liquid bromine. The pressure of bromine inside the discharge tube was regulated by adjusting a pinch-cock attached to the pressure tubing connecting the bromine container to the discharge tube. The other limb was connected to a Cenco Hyvae pump through a liquid air trap. It was found that at some optimum pressure the development of the spectrum was more satisfactory than in the case of cupric bromide.

Photographs of the spectra were taken both on Fuess and three-prism glass spectrographs, using Ilford Special Rapid panchromatic Littrow plates. Exposures varying from one to two hours were found necessary to obtain the bands on the Fuess instrument while longer exposures of six hours were necessary on the Littrow instrument. The development of the spectrum which extends from $\lambda 6400 - \lambda 4400$ was found to be better in the region below $\lambda 5000$ in the Fuess spectrograms. Hence measurements of band heads in the region $\lambda 6400$ to $\lambda 5000$ were made on Littrow plates and below 5000 on Fuess plates. A number of plates were measured and the mean wavelengths were deduced using international iron arc tandards. Measurements on different plates seldom differ by more than two wave number units. Table I records the band head data and assignments.

206

Aut	hors		. .	Assig	nment
Wave- length	Wave- number	– Ucnida, Ota, Wave- number	111	System 1 v',r"	System II v',v''
6604.1	1	15137.9			3,11
6579.0		15195.7			
6540.7		15284.6			4,11
6519.7		15333.9			2,10
6499.6		15381.7		1,11	0,9
6476.6		15435.9			5,11
6455.1		15487.3			3,10
6435.9		15533.5			1,9
6421.2		15569.1		2,11	
6413.7		15587.3		4,12	6.11
6403.0		15613.3			
6392.8		15638.2			4,10
6372.1		15689.0			2,9
6366.8	157021		i		
6357.5	15725	15725.1	2	1,10	
6343.4	15760		1	3,11	
6338.1	15773		I	5,12	
6333.0	15786	15786.4	2	-	5,10
6314.8	15831	15829.9	0		
6310.5	15842	15841.9	2		3,9
6299.5	15870		1		
6290.0	15894	15893.6	2	0,9	
6282.2	15914	15914 1	3	2,10	
6273.6	15935	15935.1	4	4,11	6,10
6268.1	15949	15949.1	2	6,12	
6259.1	15972i	15970.0	1		
6251.3	15992	15991.7	2		4,9
6244.7	16009i		1		
6225.5	16058i		1		
6217.3	16080	16080.4	4	1,9	7,10

TABLE I

Aut	hors			Assign	ament
Wave- length	Wave- number	- Uchida, Ota Wave- number	INt	System 1 v',v"	System II v',v"
6106.6	16107	16107.3	3	3,10	
6105.0	16112i		1		
6200.5	16123	16123.0	2	5,11	
6194.5	16139	16139.1	3		5,9
6188.0	16156i		1		
6182.5	16170	16172.0	0		
6152.1	16250		l	0,8	
6145.0	16269	16269.4	3	2,9	
6140.8	16280i		3		
6137.7	16288	16287.7	3	4,10	6,9
6133.3	16300	16300.4	4	6,11	
6127.0	16317i	16316.1	2		
6122.0	16330i		1		
6115.8	16347	16344.4	3		4,8
6110.1	16362i		2		
6089.1	16418i		3		
6083.2	16434	16434.4	8	1,8	7,9
6077.3	16450i		3		
6074.7	16457	16457.4	8	3,9	
6068.1	16475	16474.8	8	5,10	
6060.0	16497		4		5,8
6055.3	16510i		1		
6033.4	16570i		4		
6028.0	16585	16585.2	8		8,9
6021.7	16602i	16601.7	3		
6013.0	16626	16625.7	4	2,8	
6008.0	16641	16640.9	1		6,8
6004.7	16649	16649.2	4	4,9	
5999.1	16665		2		
5980.2	16716i	***	4		

Aut	hors			Assignment		
Wave- length	Wave- number	– Uchida, Ota Wave- number	Int	System 1 v',v"	System 11 c',c"	
5976.1	16729	16729.5	7		9,9	
5972.4	16739i		4			
5959.4	16776i		4			
5954.5	16789		8		7,8	
5950.0	16802i		4			
5945.7	16814	16814.2	4	3,8		
5940.8	16828	16828.3	4	5,9		
5935.4	16843		3			
5909.6	16917i		5			
5905.0	169 3 0	16930 1	8		8,8	
5901.2	169411		5			
5891.1	16970		5			
5885.6	16986		4	2,7		
5879.7	17000	17000.3	6	6,9	6,7	
5876.5	17012)		3			
5855.4	170731		2			
5852.3	17083	17083.1	õ		9 S	
5848.7	170931		3			
5830.2	17147		8		7.7	
5826.5	17158i		õ			
5821.2	17174	17178.2	6	3,7		
5818.3	17182		8	7,9		
5814.0	17195		2			
5804.6	17223	17223.2	4		10,8	
5801. 3	17233i		4			
5776.1	17308		2			
5770.4	17325		2			
5762.7	17348i		3			
5758.4	17361	17361.4	7	6,8	6,6	
5754.7	17 3 72i		2			

Au	thors		Terd	Assig	gnment	
Wave- length	Wave- number	- Uchida, Ota Wave- number	Int	System I v',v"	System II v',v"	
5731.8	17442	17442.3	4		9,7	
5728.6	17451i		2			
5711.3	17504i		2			
5708.7	17512		3		7,6	
5703.6	17528		4	9,9		
5699.6	17540	17539.3		7,8		
5697.0	17548i		3			
5690.6	17568i		2			
5684.7	17586	17586.2	4		10,7	
5679.0	17604i		• 2			
5666.4	17643		1			
5662.7	17654i	17650.5	2			
5660.0	17663		4		8,6	
5657.7	17670i		2			
5644.9	17710	17710.8	4	8,8		
5642.2	17718	17718.6	5	6,7		
5639.9	17726i		3			
5620.2	17788		1			
5615.3	17804		2		9,6	
5602.0	17846		3			
5594.2	17871		4		7,5	
5589.4	17886		3	9,8		
5586.0	17897	17896.6	5	7,7		
5583.2	17906		2	5,6		
5575.2	17932		0			
5571.4	17944		1		10,6	
5548.1	18019		1		8,5	
5543.3	18035		1			
5532.5	18070	18070.3	1	8,7		
5529.1	18081	18080.7	1	6,6		

Aut	Authors			Assignment		
Wave- length	Wave- number	- Uenda, Ota, Wave- number	Int	System 1 v',v"	System II v',v"	
5525.6	18093		1		11,6	
5504.1	18163		I		9,5	
5483.6	18231		1		12,6	
5480.0	18243	18243.1	2	9,7		
5476.3	18255	18254.7	2	7,6		
5460.0	18310		I		10,5	
5434.4	18396		2	12,8		
5428.6	18416	18415.8	2	10,7		
5425.9	18425i		2			
5424.2	18431		2	8,6		
5420.4	18444		2	6,5		
5417.4	18454		0		11,5	
5388.3	18554		ł			
5377.2	18592	17592.5	I		12,5	
5373.3	18604	18604.3	1	9,6		
5368.1	18623		1	7,5		
5355.9	18666		1		10,4	
5341.0	18718		0			
5335.6	18737		1		13,5	
5330.6	18754		1	12,7		
5325.1	18774	18774.1	1	10,6		
5318.7	18796	18788.6	1	8,5		
5314.0	18813		1		11,4	
5309.4	18829		1			
5304.2	18848		1			
5296.3	18876		2		14,5	
5290.7	18896		2			
5285.2	18915	18914.4	4	13,7		
5277.3	18944	18944.5	4	11,6		
5273.3	18958		3		12,4	

Aut	thors			Assid	Assignment		
Wave- length	Wave- number	Uchida, Ota Wave- number	Int	System 1 v',v"	System II v',v"		
5271.1	18966		3	9,5			
5266.3	18983	18981.9	2				
5264.9	18988		2	7,4			
5261.2	19001		1				
5256.3	19019		2		15,5		
5249.5	19044		1				
5242.5	19070		1				
5234.1	19100		2		13,4		
5280.8	19112	19112.5	3	12,6			
5224.6	19135		2	10,5			
5211.9	19181		2		11,3		
5196.1	19240		2		14,4		
5191.2	19258		2				
5186.6	19275		3	13,6			
5178.9	19304	19304.1	2	11,5			
5173.3	19325		3		12,3		
5170.0	19337	19341.4	3	9,4			
5156.2	19386		1		15,4		
5155.2	19392i		1				
5153.6	19398		2	16,7			
5142.8	19439	19440.7	4	14,6			
5138.7	19455		2				
5134.1	19472	19471.8	4	12,5	13,3		
5126.2	19502		1	10,4			
5119.6	19527		1	8,3			
5113.4	19551		2		11,2		
5105.3	19582		4				
5099.9	19603	19599.7 -	4	15,6	14,3		
5096.0	19618		1				
5089.2	19644		2	13,5			

Aut	hors	II-hide Ote	T	Assig	Assignment		
Wave- length	Wave- number	- Uchida, Ota Wave- number		System I v',v"	System II v',v"		
5081.2	19675		2	11,4			
5075.5	19697		3		12,2		
5073.9	1970 3 i		3	9,3			
5066.1	19733		2				
5061.9	19750		3				
5059.7	19758		5	16,6	15,3		
5049.1	19800		4	14,5			
5038.9	19840		4	12,4	13,2		
5032.5	19865		4	10,3			
5024.9	19895		4	8,2			
5020.4	19913		3	17,6			
5018.2	19922		4		11,1		
5016.2	19930i		3				
5008.3	19961		5	15,5			
4996.5	20008		2	13,4			
4988.4	20041		2	11,3			
4972.8	20104		0				
4968.5	20121		2	16,5			
4966.4	20130		1		15,2		
4963.8	20140i		1				
4957.7	20165		0	14,4			
4945.7	20214		6	12,3	13,1		
4941.1	20233		3	10,2			
4933.4	20264i		4	,			
4930.8	20275		5	17,5	15,2		
4928.3	20285i		4				
4923.5	20305		1				
4910.7	20358		2		14,1		
4905.5	20380		3	13,3			
4898.2	20410	1	3	11,2			

TABLE I (contd.)

Aut	hors	Habila Ota	la, Ota Int ave- nber	Assignment		
Wave- length	Wave- number	- Uchida, Ota Wave- number		System I v',v"	System I v',v"	
4891.0	20440		3		1	
4885.1	20465		3			
4878.5	20492		2	16,4		
4875.7	20504		3		15,1	
4872.8	20516i		2			
4866.9	20541		4	14,3		
4858.0	20579		4	12,2		
4855.3	20590		8		13,0	
4852.5	20603i		3	-		
4848.7	20618		3			
4845.0	20 634 i		1			
4842.3	20646		2	17,4	16,1	
4839.3	20658i		1			
4830.5	20696i		2			
4828.8	20703		3	15,3		
4827.2	20710i		2			
4824.4	20722i		4			
4821.9	20733		4		14,0	
4818.8	207 46 i		4	13,2		
4810.5	20782	1	1	11,1		
4797.0	20841		2			
4792,5	20869		3	16,3		
4790.3	20879i		2			
4788.0	20880		3		. 15,0	
4782.6	20903		0	14,2		
4780.2	20914i		0			
4768.9	20963		1			
4766:7	20973i		0			
4756.0	21020		5	17 ,3	16,0	
4747.8	21056i		2			

Authors		The bide of the	T 4	Assignment		
Wave- length	Wave- number	- Uchida, Ota Wave- number	Int	System I v',v"	System II v',v"	
4745.9	21065		3	15,2		
4743.2	21077i		2			
4734.8	21114		2	13,1		
4726.4	21152		3	11,0		
4722.2	21171		4	18,3		
4713.0	21212		0			
4708.8	21231		1	16,2		
4706.5	21241i		0			
4698.8	21276		1	14,1		
4695.7	21290i		0			
4691.3	213 10i		2			
4689.1	21320		4	19,3		
4686.2	21333i		2			
4673.9	21389		2	17,2		
4670.6	21404 i		1			
4664.6	21432i		2			
4662.3	21443		4	15,1		
4659.4	24156i		2			
4656.4	21470		4	20,3		
4653.9	21481i		3			
4652.4	21488		2	13,0		
4647.9	21509		2			
4640.5	21543		3	18,2		
4627.6	21603		3	16,1		
4625.1	21615		3	21,3		
4622.2	2162 9i		2			
4619.2	21643i		1			
4616.3	21656		1	14,0		
4608.9	21691		0	19,2		
4606.3	21703i		0			

TABLE I (contd.)

Aut	hors	The second	T 1 + -	Assignment	
Wave- length	Wave- number	- Uchida, Ota Wave- number	1110	System I v',v"	System II v',v"
4596.8	21748i	, <u></u>	1		
4594.3	21760		2	17,1	
4590.4	21778i		1		
4587.1	21791		0		
4584.6	21806i		1		
4581.8	21819		2	15,0	
4578.5	2183 5i		1		
4567.1	21890i		2		
4563.6	21906		3	18,1	
4560.4	21992i		1		
4556.8	21939		1		
4553.1	21957i		1		
4549.7	21973		2	16,0	
4546.0	21991		2	21,2	
4542.5	22008i	•	1	•	
4536.9	22035		1		
4532.4	22057		1		
4520.6	22115i		2		
4517.2	22131		3	17,0	
4515.8	22138		3	22,2	
4507.3	22180		3		
4504.1	22196i		1		
4500.8	22212		4	20,1	
4492.7	22252		2		
4489.0	22270 i		2		
4485.8	22286		3	18,0	
4482.1	22305 i		2	• •	
4469.8	22366		0	21,1	•
4463.1	22400		1	, .	r •
4458.8	22421 i		1	•	• •

TABLE I (contd.)

V A HIVID

HARANATH & RAO

PLATE V B

Aut	hors .	Habida Ota	Int	Assignment		
Wave- length	Wave- number	Wave- number		Systom I v',v"	System II v',v"	
4455.5	22438		2	19,0		
4451.9	22456i		1			
4449.1	22470		1			
4447.2	22480		1			
4444.7	22492	ş	1			
4433.5	22549		1			
4430.6	22564i		1			
4427.3	22581		2	20,0		
4419.5	22621		1			
4416.7	22635		1			
4414.2	22648		1			
4394.8	22748		1			

Note: The wavenumbers marked with the letter "i" are the isotopic components of the neibhouring bands.

PLATES

The spectrum extending from λ 6700 to λ 4400 consists of more than 300 bands as against only 80 bands reported by UO in the region λ 6700 to λ 5000. Plate VA is a reproduction of the Fuess spectrogram and is shown in two strips. Among these some are red degraded, some are diffuse and others appear line-like. There is a gradual fall in the intensity of the spectrum towards the shorter wavelengths. Bands on the less refrangible side appear unresolved, probably due to the lower dispersion. Below λ 5300 the bands appear sharp and well resolved. Below λ 4400 there appears a continuum overlaid by perhaps, two or three groups of discrete bands.

Plate VB is the reproduction of the spectrum in the region λ 6400 to λ 4800 recorded on the glass Littrow instrument and is shown in two strips.

TABLE II

System I

Vibrational scheme due to Uchida and Ota

v"	0	1	2	3	4	5	6
0					15893.6		15195.7
1				16434.4	16080.4	15725.1	15381.7
2				16625.7	16269.4	15914.1	15569.1
3				16814.2	16457.4	16107.3	
4				16993.1	16649.2	16287.7	
5				17178.2	16828.3	16474.8	16123.0
6		18080.7	17718.6	17361.4	17000.3		16300.4
7		18254.7	17896.6	17539.3			
8			18070.3	17710.8			
9		18604.3	18243.1				
10		18774.4	18415.8				
11	19304.1	18944.5	18584.2				
12	19471.8	19112.5	18749.1				
13			18914.4				
14		19440.7					
15		19599.7					

TABLE III

System II

Vibrational scheme due to Uchida and Ota

v"	0	1	2	3	4
<u>v'</u>					
0			15381.7		
1			15533.5		
2			15689.0	15333.9	
3			15841.9	15478.3	15137.9
4			15991.7	15638.2	15284.6
5			16139.1	15786.4	15435.9
6		16640.9	16287.7	15935.1	15587.3
7		16789.4	16434.4	16080.4	
8		16930.1	16585.2		
9	17442.3	17083.1	16729.5		
10	17586.2	17233.2			

ANALYSIS

As has already been mentioned the bands obtained by UO in the region $\lambda 6700$ to $\lambda 5000$ were analysed into two systems which are shown in Tables II and III. With the prominent band heads among the 80 bands they formed a small number of genuine progressions. The vibrational formulae derived from the analyses are given in the introduction. The lower state is common for both the systems. The intensity distribution in the two systems is of an open Franck-Condon parabola type which is in keeping with such divergent values of ω'_e and ω''_e . However, the vibrational assignments were not supported by the study of bromine isotope effect and are quite arbitrary.

Fig. 1 System I

With the present data of more than 300 bands in the extensive region λ 6700 to λ 4400 it is found possible to extend the above two analyses considerably.

Not only some of the previous progressions are considerably extended, but, many more new progressions could be developed in both the systems. The newly formed vibrational schemes are shown in Tables IV and V. This extension has necessitated a renumbering of the bands and also a redetermination of the vibrational constants. The constants are extapolated by drawing the usual $\Delta G(v) - v$ curves which are found to be linear. These curves are shown in figures 1 and 2.

The following vibrational formulae represent the two systems. System I $\nu = 19290 + 190.0(v' + \frac{1}{2}) - 1.0(v' + \frac{1}{2})^2 - 376.0(v'' + \frac{1}{2}) + 1.25(v'' + \frac{1}{2})^2$ System II $\nu = 18782 + 152.0(v' + \frac{1}{2}) - 0.35(v' + \frac{1}{2})^2 - 376.0(v'' + \frac{1}{2}) + 1.25(v'' + \frac{1}{2})^2$

0	I	63	ŝ	4	Ŋ	9	7	80	6	10	=	12
								16250	15894		15196	
								16434	16080	15725	15382	
							16986	16626	16269	15914	15569	
							17174	16814	16457	16107	15760	
							17361	17003	16649	16288	15935	1558
						17906	17540	17182	16828	16475	16123	1577
					18444	18081	17719	17361*			16300	1594
				18988	18623	18255	17897	17540*				
		19895	19527		18796	18431	18070	17710				
		×	19703	19337	18966	18604	18243	9884L	Property and the second	a power sets in		
		20233	19865	19502	19135	18774	18416					
21152	20782	20410	20041	19675	19304	18944						
21320		20579	20214	19840	19472	19112	18754					
21488	21114	20746	20380	20008	19644	19275	18915					
21656	21276	20903	20541	20165	19800	19439						
21819	21443	21065	20703	×	19661	19603						
21973	21603	21231	20860	20492	20121	19758						
22131	21760	21389	21020	20646	20275	19913						
22286	21906	21543	21171	×								
22438	×	21691	21320*									
22581	22212		21470									
		21991	21617									
		22138	×	21404								

The emission spectrum of bromine

*

.

17

221

P. B. V. Haranath and P. T. Rao

63

The emission spectrum of bromine

The lower state 376.0 is again common for both the systems. The intensity distribution in both the systems is still of open Franck-Condon parabola type and is consistent with the order of ω'_e and ω''_e values obtained above. An examination of the vibrational arrays shown in Tables IV and V reveals that there are bands common to both the systems. This is a feature which can also be seen from the vibrational arrays of UO shown in Tables II and III.

ISOTOPE EFFECT

Further confirmation of these analyses could be obtained from a study of the bromine isotope effect. It is well known that bromine has got two isotopes of mass numbers 79 and 81, out of which three components due to the three molecules are to be observed in its molecular spectrum. The three molecules are $(Br^{79}Br^{79})$, $(Br^{79}Br^{81})$, $(Br^{81}Br^{81})$. The relative abundance ratio of these molecules is as 1:2:1 respectively. In the band spectrum of Br_2 , for bands on the violet side of the system origins, i.e. with $\nu > \nu_e$ the separation of the isotopic component $(Br^{79}Br^{79})$ with respect to the component of the more abundant molecule $(Br^{79}Br^{81})$ is positive and the corresponding separation for the component of $(Br^{81}Br^{81})$ is negative. For the bands on the red side of the system origins, i.e., with $\nu < \nu_e$ the opposite is the case. The isotope separations with respect to the more abundant molecule, $\Delta \nu$, are calculated according to the formula

$$v^{i}-v=(\rho-1)[\omega'_{e}(v'+\frac{1}{2})-\omega''_{e}(v''+\frac{1}{2})]-(\rho^{2}-1)[x'_{e}\omega'_{e}(v'+\frac{1}{2})^{2}-x_{e}''\omega''_{e}(v''+\frac{1}{2})^{2}].$$

An examination of the vibrational schemes shown in Tables IV and V, reveals bands with large differences in the values of v' and v''. For such bands the isotope separations for the less abundant molecules calculated from the above formula are found to be large and may be expected to be resolved even under the low dispersion of the Fuess instrument. For example, the calculated separations of the two components for 15,0 band in system I are 16.2 and 13.8. The isotopic components for some of these bands are expected to coincide with the position of the main bands assigned to the same system. In Table I some of the main bands occur as isotopic heads of the neighbouring bands belonging to the same system.

For a large number of the bands the agreement between the observed and calculated separations as can be seen from Table VI is quite satisfactory. On Plates VA and VB the isotopic components are bracketted for some of the bands.

. -

P. B. V. Haranath and P. T. Rao

TABLE VI

Isotope ef	fect
------------	------

		SYS	TEM I.		SYSTEM II.					,	
(Br79B v'	v"	(Br7 Cal.	9Br)79 Obs.	(Br ⁸⁾ Cal.	Br ⁸¹) Obs.	(Br79 v'	9Br ⁸¹) v"	(Br76 Cal.	9Br ⁷⁹) Obs.	(Br ⁸¹) Cal.	Br ⁸¹) Obs.
15,	0	16.2	16	18.8	13	13,	0	13.0	13	11.3	11
16,	0	17.0	18	14.8	16	14,	0	14.0	13	12.2	11
17,	0	18.0	*	15.8	16	11,	1	8.2	8	7.1	9
18,	0	18.7	19	16.8	16	15,	1	12.4	12	10.8	12
19,	0	19.6	18	16.8	17	16,	1	13.4	12	11.7	12
20,	0	20.3	*	17.8	17	15,	2	9.9	10	8.6	9
15,	1	13.5	13	11.5	11	16,	2	10.9	11	9.5	11
16,	1	14.3	14	12.5	*	6,	6	9.7	13	8.4	11
17,	1	15.3	18	13.5	12	7,	6	8.6	8	7.4	*
18,	1	16.0	16	14.5	16	8,	6	7.5	9	6.5	7
20,	1	17.6	*	15.5	16	6,	7	12.1	15	10.6	11
14,	2	10.1	13	8.8	*	7,	7	11.0	*	9.6	11
15,	2	11.0	12	9.3	y	9,	7	8.9	9	7.8	9
19,	2	14.4	12	12.3	•	4,	8	16.4	17	14.5	15
21,	2	15.9	17	13.3	13	6,	8	14.4	15	12.7	+
15,	3	8.4	7	7.0	7	7,	8	13.3	13	11.7	13
19,	3	11.8	13	10.0	10	8,	8	13.3	13	10.8	11
20,	8	12.5	11	11.0	14	9,	8	11.2	10	9.9	10
21,	8	13.3	14	11.5	12	10,	8	10.2	10	8.8	10
2,	7	15.7	16	13.8	17	4,	9	18.9	20	16.5	17
4,	7	13.2	18	11.6	11	5,	9	17.9	17	15.5	17
5,	7	12.0	12	10.5	8	6,	9	16.9	19	14.7	*
6,	7	10.8	9	9.4	7	8,	9	14.7	15	12.8	17
: 7,	7	10.0	11	8.5	9	9,	9	13.7	18	11.9	10
8,	7	8.6	•,	7.5	11	6,	10	19.1	21	16.8	14

224

		SYSTE	MI			SYSTEM II
 (Br78 v'	Br ⁸¹) v″	(Br ⁷⁹] Cal.	Br ⁷⁹) Obs.	(Br ⁸¹] Cal,	Br ⁸¹) O bs .	
 2,	8	18.0	*	15.9	1	
3,	8	16.8	*	14.7	1	
4,	8	15.5	17	13.7	۵	
6,	8	13.1	13	11.5	ų	
7,	8	12.3	12	10.6		
0,	9	23.0	24	20.1	ap.	
1,	9	21.8	22	18.9		
2,	9	20.5	19	17.9	19	
3,	9	19.3	23	16.7	18	
4,	9	18.0	23	15.7	16	
5,	9	16.8	14	14.6	15	
1,	10	24.0	22	21.0	*	
2,	10	22.7	20	20.0	21	
3,	10	21.5	27	18.8	16	
5,	10	19.0	18	16.7	22	
5,	11	21.4	16	18.7	16	
6,	11	20.2	20	17.6	17	
•						

Note: The places marked (*) are superposed by atomic lines.

CONCLUSIONS

In the foregoing pages, the vibrational analyses of the emission bands of bromine, as belonging to two different systems, are reported. As has already been pointed out, these emission bands do not bear any relationship with the absorption bands due to the neutral bromine molecule. Further, the vibrational frequency 376 cm⁻¹ which is common to both the above systems does not correspond to any one of the vibrational frequencies known till now to the neutral molecule. It is also interesting to note that this frequency comes nearer to the value 361 cm⁻¹ predicted by Mulliken (1934) as the most probable value of the ground state of the ionised molecule Br_3^* . The above considerations will lead one to con-

226 P. B. V. Haranath and P. T. Rao

jecture that the emitter of the above two systems may be the ionised molecule Br_2^{+} . However, confirmation of this view can only be obtained by a study of the rotational analysis of some of these bands which will also lead to a clear understanding of the nature of the levels involved. Work in this direction is in progress.

ACKNOWLEDGMENT

The authors wish to express their grateful thanks to Prof. K. R. Rao for his kind interest in the work.

REFERENCES

Elliot, A., and Cameron, W. H. B., 1937, Proc. Roy. Soc. A., 158, 681. , 1938, Ibid 164, 531. Howell, H. G., 1953, Proc. Phys. Soc. A., 66, 759. Mulliken, R. S., 1934, Phys. Rev., 46, 549. Uchida, Y., and Ota, Y., 1928, Jap. J. Phys., 5, 53. , Ibid 5, 59.