ON THE RESOLVING POWER OF COMPOUND FABRY-PEROT ETALON

By MADHUKAR KASHINATH MACHWE
Delhei Unithrsity, Delhit,

AND
MAHENDRA SINGH SODHA
Diffence Scifnce: Laboratory, New Imbifi, 12.
(Received for publication, August 9 1954)
ABSTRACT. The authors have calculated the resolving power cif compound Fabry-perot etaln n on both Rayleigh and Abbe criteria, taking into account the contribution of the tails of the individual intensity patterns of the two lines to the maxima of resultant intensity pattern

INTROIUCTION

Meissner (1942), in his calculation of the resolving power of the compound Fabry-Perot etaion on the Rayleigh ciiterion has neglected the contribution of the tails of individual intensity pitterns of the two components to the central maxima of the resultant intensity pattern. Taking this into account the authors have calculated the resolving power of compound Fabry et ilon on Rayleigh as weli as Abbe criterion in this communication.

INTHNSITYCONSIDERATIONS

Consider two etalons of lengths D^{\prime} and $D^{\prime \prime}$ where $D^{\prime}=p D^{\prime \prime}$ and p is an integer. The intensities due to the two etalons separately at a point whose order in the longer etalon is $n_{0}+n$, and the smaller one $\left(n_{0} / p\right)+(n / p i$, where n_{0} / p is an integer and n is small, is given by

$$
\begin{aligned}
& I_{1}^{\prime}=\frac{I_{0}^{\prime}}{1+F^{\prime} \sin ^{2} \pi\left(n_{0}+n\right)}=\frac{I_{0}^{\prime}}{1+x^{2}} \\
& I_{2}^{\prime \prime}: \frac{l^{\prime \prime}}{1+F^{\prime \prime} \sin ^{2} \pi\left(n_{0}+n-\Delta n_{i} / p\right.}=\frac{I_{0}^{\prime \prime}}{1+b x^{2}}
\end{aligned}
$$

where $x=\pi F^{\prime \prime} n$ and $b=F^{\prime \prime} / 4 F^{\prime} p^{2}$.
The intensity distribution due to the two etalons in tandem (Meissnet 1942) is

$$
\begin{equation*}
I_{1}=I_{0} /\left(1+x^{2}\right)\left(1+b x^{2}\right) \tag{I}
\end{equation*}
$$

The intensity distribution of another line, separated by an order Δn is given by

Resolving Power of Compound Fabry-Perot Etalon

$$
\begin{equation*}
I_{2}=I_{0} /\left\{1+(x-a)^{2}\right\}\left\{I+b(x-a)^{2}\right\} \tag{2}
\end{equation*}
$$

Hence the resultant intensity pattern is given by

Neglecting shrinkage effect of close components the intensity maxima ($x \geqslant 0$ or a) and minimum $(x=a / 2)$ are iven by

$$
\begin{equation*}
\underline{I}_{I_{0}}^{\max }=\mathrm{I}+1 /\left\{\left(\mathrm{I}+a^{2}\right)\left(\mathrm{I}+b a^{2}\right)\right\} \tag{4}
\end{equation*}
$$

and

$$
\begin{gather*}
I_{\min } \tag{5}\\
I_{0}
\end{gather*}=2 /\left\{\left(1+a^{*} / 4\right)\left(\mathrm{I}+b a^{2} / 4\right\}\right.
$$

CALCULATION OF RESOLVING POWFR

For limiting resolution

$$
\begin{equation*}
I_{m i n}=c I_{m a x} \tag{6}
\end{equation*}
$$

where $c=0.8$ and 0.98 r for Rayleigh and Abbe criteria respectively.
The resolving power is given by

$$
\begin{equation*}
\frac{\lambda}{d \lambda}=\frac{n_{n}}{\Delta n}=\frac{\pi}{a} n_{0} F^{\prime \frac{1}{t}}=x_{n_{0}} F^{\prime \frac{1}{z}} \tag{7}
\end{equation*}
$$

In his solution of Eqn. (6) for $c=0.8$, Meissner has neglected the term I/ $\left(1+a^{2}\right)\left(1+b a^{2}\right)$ and he finally obtains

$$
\begin{align*}
& \alpha=\frac{\pi}{\sqrt{12}}\left\{1+b+\sqrt{1+S b+b^{2}}\right\} \tag{i}\\
& \text { (ABEACRITERION }
\end{align*}
$$

lig. 1 Variation of a with b
3-28525-11

The authors have solved Eqn. (6) for particular values of b (r.0, $0.9,0.8$, $0.7,0.6$ and 0.5) and $c=0.8$ and 0.93 r by the method of successive approximations. The high accuracy of the results obtained is evident from Tables I and II, which give the variation of a with b according to Rayleigh and Abbe criteria respectively. Table I also includes values of α calculated by Eqn. (6) due to Meissuer, for comparison. The tables are illustrated by figure I .

Table I
Variation of x with b ou the Rayleigh criterion.

b	a^{8}	$I_{\max }$	$J_{\min }$	$I_{\min } / l_{\max }$	a (authors)	a (Meissner)
1.0	2.0	$10 / 9$	$8 / 9$	1.8000	2.222	2.061
0.9	2.12	1.1066	0.8850	0.7998	2.159	2000
08	2.24	1.1055	0.8851	0.8009	2.100	1.954
0.7	236	1.1122	0.8902	0.8003	2.046	1.895
0.6	252	1.1131	$0.89 \% 4$	0.7999	1.980	1.833
0.5	2.70	1.1150	0.8925	0.8005	1.913	1.765

Table II
Variation of x with b on the Abbe criterion.

b	a^{y}	$I_{\min }$	$I_{\max }$	$I_{\min } / I_{\max }$	a
1.0	1.20	1.1834	1.2066	0.9807	2.860
0.9	1.26	1.1850	1.2073	0.9815	2.803
0.8	1.332	1.1848	12076	0.9811	2.724
0.7	1.41	1.1861	1.2088	0.9812	2.646
0.6	1.5	1.1874	1.2105	09807	2.566
0.5	1.6	1.1905	1.2537	0.9809	2484

ACKNOWLEDGMENT
The authors are grateful to Dr. D. S. Kothari for his interest in the investigation.

REFERENCE

Meissner, (1942). Jour. Opt. Soc, Amer., 82, 185.

