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ABSTRACT—Based on Iiyring's rate theory and the ‘hole’ theorv of liquids the
following equation, correlating the imrin§c viscosity, [#] and molecular weight of
polymers has been derived: 100p[n]=K;M2/8~In M+Kj, where py is the density of
of the polymer at infinite dilution and K| ana Ky are coustants. All existing data have
been found to be in agrcement with this equation. The modified Staudinger equation,
[n]=KMs, which is in common use, is shown to be a special case of this equation and
cases are cited where the latter equation is found to be invalid, whereas the new equation
is found adequate.

Critical tests based on differential [n] in two solvents for the same polymer have been
devised and it is conclusively demonstrated that the modified Staudinger equation leads
to inconsistent results and is untenable, whereas the new equation is in conformity with
experimental facts.

INTRODUCTION

Great intcrest has heen shown during the past few years in the relation-
ship between the intrinsic viscosity and molecular weight of high polymers.
The modified Staudinger equation, [7]=KM®*, the modification being
variously ascribed to Mark, Kuhn or Houwink, is extensively used. Of
late, attempts (Brinkman, 1947 ; Debye cf al, 1948 ; Kirkwood et al, 1048 ;
Flory, 1049) to derive this cquation from theoretical considerations have
been made, but so far with not quite satisfactory results. However, recent
theoretical development in the field of liquid viscosity based on Eyring’s
rate theory can be extended to the high polymer field to obtain in a simple
manner a satisfactory equation correlating [#] and M of high polymers.

Derivation of the New Iiquation—Based on Eyring's rate theory
(Glasstone et al, 1947) and the void structure of liquids, Telang (1949) has
recently deduced the following cquation [equ. (1)] for the absolute value
of the viscosity of any liquid. This equation has the unique feature of
not containing any arbitrary constant and has been found to give correct
values of molecular weight of many liquids where standard data for all

the terms are available.
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'whcre h is Planck’s constant, N is Avogadro number, b is van der Waals
constant, V is molar volume and v is surface tension.

If we put by,M and veM for b and V respectively, the equation, after
taking logarithm becomes

_ 1001y NS oy oarbn o BN By
Iny RT .M InM +1n Y T Y (2)
In (@MY=, y (vepM)2 %+, e (3)

In order to use equation (2) we have to evaluate log viscosity of the polymer
from data on solution viscosity. Considering a dilute high polymer
solution as a mixture of two liquids, the solvent of viscosity 7, and a
hypothetical high polymer liquid of viscosity #p and assuming that the
mixture lJaw on volume fraction basis holds good for log viscosity of dilute
solutions of high polymers, we have

Inn=(1—¢)lnn+o1nn, e ()
where ¢ is the volumec fraction of the polymer. If ¢ is concentration in
gms. per 100 cc and p, is the partial specific density of the polymer at

infinite dilution, the above equation on procecding to infinite dilution
gives

Iny,= [; In ﬂ/’lc] +Inns=100 p(.[-i- In 1)/1),,] +Inge=100p,[n] +1nne ... (5)
L .

P30 ¢ »0
Substituting this value of log viscosity in equation 3), we obtain
100 polnl =1l y (vepM)?1® =InM + k,—1n s .. (6)
Since the surface tension and specific volume of ordinary homologous liquids
are found to attain a limiting value at quite a low molecular weight region,
we can reasonably expect the same polymer irrespective of molecular weight
to have nearly the same value of y and v, and so we can put the foregoing
equation in the following simple forms,
100 po[n] +1aM=K,[M]?/3+K, e (3)
[n]=o0.01 vepK M2/ ~0.023 v4p logM + K’ . (8
If [9] is expressed in cc per gran and is designated by Z, in conformity
with the very recent German practice our equations (7) and (8) become

poZ, =K ,M*3—1nM+ K, . (9)
Zy=KvepM?13=2.303 vep log M+ K’ w. (10)

Equations (7) and its other forms, viz. (8), (9) and (10) are our final
equations.

It is realised that our assumption of mixture law for log viscosity for
polymer solutions [eqn (3)] is not beyond question, and no doubt, other types
of mixture law (Partington, 1951) more in conformity with observations for
mixtures, can be utilised and other equations similar in form to our equation
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(7) can be deduced. We have, however, done this firstly in order to give our
final equation a form containing [5] on which extensive data are available
and secondly, because it is known (Partington, 19 51; Houwink, 1950)
that a similar relationship holds good for mixtures of small molecules,
It may also be pointed out that equation (3) demands that specific viscosity
should be linear in ¢ at low dilutions and we know that this is theorctically
justified by the equations of Sakurda (1934), Simha (1940), Kubn (1933)
and others (Guth, ct al 1938) in dilute solutions and this has also been found
to be experimentally true. '

EXPERIMENTAL TEST O’ TIIE PROPOSED KOUATION

We mneed mnow examine how; far the new cquation along with its
logical consequences is in agrecmént with cxperimental facts, to what
extent it is useful for computatioﬁ of molecular weight from viscosity data
and in what respect it differs from the existing cquation ; and further to
devise some way of a critical assessment between the two.

Linear Relationship. A direct conscquence of cquation (7) is that a
plot of 100 po[y]+ InM against M?*/* should be linear. We have tested
this relationship for a large number of polymets from available data and in
all cases we have observed the plot to be linecar. Some typical graphs are
shown in figurcs 1 to 6 and the lcast square Ky, and K, values are collected
in Table I. All references to the source of data used for these figures are
given at the end of T'able I.

In selecting our data we have taken molecular weight values up to about
a million because we have felt that osmotic molecular weight for higher
values of M are not very reliable owing to umnavoidable experimental
difficulties. It may also be pointed out that the value of p, need not be
very accurate and hencc if partial data are not available apparent data and
even the density of the solid polymer would serve well for our equation,
but the values of /s, and A, necessarily depend on the chosen value of p,
and accepting a given value of p, at a ccrtain temperature allowance has to be
made if the same solvent-polymer system is studied at a somewhat different
temperature by assuming that p, changes with temperature in the usual
manner for liquids.

Curve A of figure 1 shows the required plot for polyisobutylene in
diisobutylene with the very precisc data of Ilory (1943) covering a molecular
weight range of about 10’ to 10%, a more than hundred-fold increase iu
molecular weight. The plot is sensibly linear over the whole range. In the
same graph is also shown a similar plot for the same polymer in cyclohexane
(Krigbaum & Flory 1953) (curve B) and the plot is also found to be a good

straight line, \
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Tasre 1
K, and K, values of polymers

Polymer

P'olyethylene
Polyisobutylene

»

Polysty rene

P’olymethyl
methacrylate

Polymethyl
acrylate

Cellul se
acetate

Benzyl
Cellulose

‘I'riphenylmethyl
methyl ethyl
cellulose

e | ———

|
g Solvent

Decalin
Di-isobutylene
Cyclohexane

Benzetic

Toluene

Acetone

Benzcne
Chloroform
enzetie

Benzen:

Acctone

Chloroform

Dimethyl
formamide

”ne

35°

Py Range of M Kyx10%Y Kgq Ref,
0.875 395—233,700 7.782 | 4.045 a
0.93¢ | 8.7X193—1.3X10b | 2.402 | 11.744 b,c
0.920 38X 103 7 X104 |3 583 5773 b
1.037— | 4.X108=1.4%10% {2,862 | 7.397 ld,ef,gh
1.055
r.o45— | 830—r1.axr10® | 2460 | 7.819 |gh,ijk,!
1.055
1.180 25X 109-3.2X108 | 1.67y | =5.460 m
1.180 25X103=3.2X10% | 2.634 [—4-504 m
1.18 25%X103—6.1X10° | 3.316 3344 m
118v | 56X10'—4.1%X10° | 2.852 | 4.998 1
1.055 46X 103=3.0X10% | 2,669 6 888 o
1.335 | 25X10%=1.3X10% | ca.32 | ca.10 P
1.344 31X103—-3.6X10% |ca.2q4 - | ca.—19 q
1345 12X103-1.2X10% | ca g0 | ca.—48 r
1185 1X100=2.4X104 | ca1s.5{ca.— 1| 8
1195 3xX104= 6Xr10t [ca.rr | ca..0 t

Ueberreiter, et al (1952) ; b. Flory (1943) ;

. Krigbaum and Flory (1953) ; d. Kiigbaum, et al (1952) ;
¢. Kern and Rugenstein (1953) ; f.
et al (1950) ; h.
i. Goldberg et al (1947) ;j.

Bawn,

Bueche (1949) ;
Bawn, et al (1950) ;

Frank and Breitenbach, (1951) ;
Alfrey, et al (1943) ;1. Marzolph and Schulz (1954} ;
Schulz, et al (1953) ; n. Baxendale, et al (1946) ;

Sen, Chatterjee and Palit (1952) ; p.
Badgley and Mark (1947) ; r. Phillip and Bjork (1951) ;

Bartovics and Mark (1943) ,

5. DBasu and Roy (1952) ; t. Roy Chowdhury (unpublished work from this laboratory).

In figure 2 are shown such plots for a few cellulose derivatives including
a plot of cellulose acetate based on the data of Badgley and Mark (1947).
It is of interest to note that though the conventional log[n] versus logM
plot has been found by these authors to be curved in this case, our plot gives a

very good straight line.

We have, of course, omitted the two points for the
two bighest molecular weight fractions as the authors themselves have. twice
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116, 1. Viscosity molecular weight plot for polyisobutylene. Curve: A in di-isobutylene
(open circles, ref: Flory, 19133 dark circles, ref : Krighaum and Flory (1953). Curve B in
cyclohexane, ref: ibid; C-logmM) Vs. y{Mv,,2(3) for straight chain alkanes in arbitary
units. : ’
expressed uncertainty about them. This linearity, when the conventional
log[y] — log M plot fails, is not due to any insensitivity of our plot as compared
to the conventional plot as would be discussed at length later on. In fact,
our plot would be shown to be more scusitive than the conventional plot
over a larger range of molecular weight. Similar plots have also been
made in figure 2 for cellulose acetate based on other data, and a few other
cellulose derivatives, c.g. triphenyl-methyl methyl ethyl cellulose in dimethyl
formnamide and benzyl cellulose in chloroform, ctc., and all the curves are
found to be linear in agreement with our cquation.

We want to draw special attention to figure 3 wherein we have plotted
the precise data of Ueberreiter, Orthmann and Sorge (1952) for polyethylene.
They have not only determined M and [7] values for four fractions but have
also obtained data for a highly pure hydrocarbon, C,H;,. They
themselves find that their log[#n]— logM plot is wide off the point for
the pure hydrocarbon. Their log 9] — logM plot showing this departure
has been also reproduced in figure 3. However, our plot passes through
all the five points which couclusively proves that our equati?n is velid over
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Y16, 2. Viscosity-molecular weight plot of cellulose derivatives. Curves A (Bartovics

and Mark, 1943), B (Badgley and Mark, 1947) and C (Phillip and Bjork, 1951) are for
cellulose acetate in acetone; D (Basu and Ray, 1952) for benzyl cellulose in chloroform
and K (Roy Chowdhury) for triphenylmethyl-methyl-ethyl cellulose in dimethyl formamide.
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" Fig. 3. Inttinsic viscosity-molecular weight relationship of polyethylene. Curve A

is logln] vs. logM plot. Curve Bis according to the new equation 100pgin}+1nM vs.
M3 (3, Bata taken from Ueberreiter, ¢t. al, (1953).
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Y16, 4. Viscosity-molccular weight plot of polystyrene in toluene. Shaded circles are
for Marzolph and Schulz (1954), lower half shaded circles for Bawn, et.al (1950), left half
shaded circles fur Alfrey et,al (1943), right kalf shaded circles for Bawn, Grimley and
Wajid (1955), Unshaded circles for I'rank, et.al (1951). Tnset curve B shows the lowest
data (Marzolph, ctal, 1951) in a magnified plot, ordinate 6 times and abscissa 4 times
magnified. Inset carve C is the conventional log [n1-Jog M plot of the same data,

a much wider range than that covered by the modified Staudinger equation.
T'o demonstrate this point more clearly we have compared in Table I1 the
calculated [4] values from owt least square equation with the experimental
omes. It would be seen that the agreement is excellent in all cases and is
certainly within thie limits of experimental error of [#]. Similar comparison
las also been made on the basis of modified Staudinger equation and it is
clearly seen that the agreement is in no way better for the four fractions and
is rather poor for the pure hydrocarbon.

It may be pointed out here that though I1nM term in the ordinate is
generally rather small in comparison with 100p,[n], and its variation is
comparatively very small in the usual high molecular weight range, it is
comparatively quite a large term in the low molecular weight range as in
the above case of polyethylenes. In fact, for the lowest point the In M-term
is more than three times the corresponding value of 100 po[n], whereas
for the highést point the former is only some twelve per cent “of the latter,
This demonstrates the reality of this term. Though the reality of the ‘ln M’
term is thus demonstrated, in very many cases particularly for systems
with comparatively high values of K, and over a narrow range and high
values of molecular weight, it can be easily shown from our equation.that
[7] would be practically linear with M2?/% within the limits of our experi.
mental accuracy of determining M. We have verjfied this by graphical
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TasLe 11

Compatrison of the experimental and theoretical values for the
intrinsic viscosity of polyethylene

New equation Modified Staudinger equation
100 p [71=7.782 x 1072 M2 /3 {7]=3.873 x 1074 M0738
—In M+4.045
M
[n1 [n]
Observed | Calculated | Difference Observed | Calculated | Difference
33,700 0.850 0.855 4 0.005 0.850 0.848 =0 002
18,960 0.574 0.571 —0.003 0574 0.557 ~0.017
4,200 0.180 0.182 +0.002 0.180 0.183 +0.003
2,620 0.130 0 125 —0.005 0.130 0.129 —0.001
Toa95 0.021 0.026 +0 cog 0.021 0.032 +0.011

plotting in many cases specially for cellulose derivatives whose K, values

are unusually high.

Data for polystyrene in toluene have been plotted in figure 4. Curve
A is for viscosity data in toluenc taken from different sources covering a
wide range of moleculir weight from below 10" to beyond 10°. It would be
seen that the data upto M == 10°® fall on practically the same straight line,
The conventional log[n]—logM plot of these data has been given by
Marzolph and Schulz (1954) and they have found that the lowest points
considerably deviate from a straight line, the slope falling off at a low

tange of molecular weight.

This falling off at the low range has been

shown in the inset curve C in the same figure along with our plot of the

same data on a larger scale,

Our plot is found tu be linear, whereas the

log[n]=log M plotis seen to have a continually decreasing slope in this
range. As, would be seen later this decrease of slope is a necessary conse-
quence of our equation in this case.

tn-  In figure 5 we have plotted the data for polystyrene in benzene from
various authors waccordilg to our equation along with the conventional
It would be seen that the log [n]—1log M plot scatters
very much more than our plot and in fact, the points from different authors
show varied slopes and can hardly be accommodated on the same line,
whereas the fit is much batter with our cquation at least upto a million
However, for polystyrenes prepared at net too high
-temperatures we recommend use of our equahon in toluene at 20°C, as the
Inttér solvent shows greater consistency, '

log[n]=log M plot.

molecular weight,
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FIG. 5. Viscosity-molecular weight plot of polystyrene in benzene; Curve A is
according to the new equation, curve B is the conventional log [7]-log M plot. Data from
Krigbaum ct.al. (1952), Kern and Rugen:tein (1953), Bueche (1949), Bawn, et.al (1950),
Bawn, et.al. (1950).
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’ 3 i ity-molecular weight plot of polvacrvlates according to the new
equnﬁxsd,s'cx.::: ?t)Bn;?l;c C“ are for golymethyl mwethacrylates in acetonc, benzene and
chloroform respectively. Data from Baxendale, et.al (1946). Curve H for polymethyl

acrylate (data from Sen, et. al., 1952).
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In figure 6 we have plotted some recent data on acrylates and the
plots in all cascs except for methyl methacrylate in chloroform are found to
be good straight lines in agreement with our equation. Our equation shows
a dcfinite rising tendency in chloroform for molecular weight of a few
millions and onward, where the intrinsic viscosity is inordinately high.
Such intrinsic viscosity values may not be useful for our equation as they
are known to be strongly affected by shear gradient and this along with the
uncertainty in molecular weight determination in this very high range may
contribute to this deviation from our equation.

Sensitivity and Computational Error,

It might be surmised that in our equation M is much less sensitive to
7] in comparison with the modifiied Staudinger equation. ‘This is, however,
1ot so, as can be seen from the calculations in ‘I'able II. This can, however,
be theoretically demonstrated as below, By differentiating equation (7)
with respect to [4] and M, we can obtain the following equations :

KM% =15 ‘

dl - 2f Kt - 1.9 oo
n[n]=dIn an(lx’,M“"_-l-K,— T > (11)
Blnn _ay (pereve KM P=1.5 2
Bin o e Y S e R .- Tn M - (2)

Hence, the calculated percentage accuracy of M is 3/2%1/v times the
percentage accuracy of [4]. As would be shown in a later section v is very
near to unity in the usual experimental range for most polymers and so tke
uncertainty of M is 1.5 times the uncertainty of [n]. This sensitivity
compares very well with the value 1/« which is the value of the above
sensitivity for the modified Staudinger equation.

Though we have demonstrated above that the error in M for a given error
in [7] would be nearly the same in both the equations, there is, however, a
very large source of error in the modified Staudinger equation. In the latter
equation M is highly sensitive to « and it can be easily shown by proper
differentiation of the modified Staudinger equation that for a given value
of 1], the calculated value of M would have an accuracy of InM times
that of «. Since @ can be relied upon to an accuracy of about ome per cent
(generally the uncertainty is higher) we can never expect to calculate M
at about 10° to an accuracy better than about 12 per cent.

The situation, however, is quite different with the new equation as M
has no such disproportionate semsitivity with respect to the conmstants. K,
and K,. Itis easily shown that our calculated value of M in the useful
region, viz, 1% to 10%, is generally of the order of, and very often better
than, the accuracy of K, and K;. Further, the computed value of M becomes
increasingly precise with increase in molecular weight, whereas the accuracy
decreases with increase in molecular weight in the case of the modified
Staudinger equation, Thisis the reason why a difference of even half a
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million in molecular weight in the million range would not appear very
much off the line ina log[n]—logM plot, whercas it would be sharply’
brought out in our plot. It is no doubt truc that equal difference docs not
alzo get equal weightage in our plot, but the M-values are certainly more
widely spaced in our plot than in the conventional log [7] - log M plot.

Deduction of Modified Staudinger I quation,

It is easy to sce that under certaig conditions particular ly at high values
M our equation reduces to the modtéed Staudinger equation. Thus, from

i

cquation (12) as written below

dlog {n] _o
dlogM °

it is casy to sca that for high values oﬁ M, v tends to unity and so our equation
reduces to the modified Staudmgeg equation with the exponent ¢=2/3.
That the exponent o« tends to be t/s has already becn noted by many
previous workers (Carter, ct al, 1946).
This is equivalent to neglecting the sccond and the third term on the
right hand side of cquation (8) as shown below,
[n]=K," M7~ il-f’-— log M+K’,

Lyl=K./M2 (3R M o (13)

We can,~hochcr, go one step further by calculatiug the order of the
values of K,’ which is equal to the Staudinger constant, since our expression
for I{,! does not contain any arbitrary constant, This we can do by putting
y=20 and p=0.9 in the expression for K/ [equation (2)] which are fairly
representative values for nonpolar compounds when we obtain K,"=9g x 107%
We have thus arrived at a theoretical interpretation of the interesting observa-
tion that the modificd Staudinger constant K is gencrally of the order

of 1074

Numerical Values of K, and K,

Since our equation does not contain any adjustable parameter we. ctan
roughly compute the values of K, and K, and check if the experimental values
arc of the expected order. l'aking the usual values as above, K, comes
out o be near about g X 10™* i.c. of the order of 107" for all high polymers.
Table1 shows how nicely this theoretical expectation is fulfilled by
expérimental data.

An instructive case of how K, in our equation always comes in the
theoretically expected range whereas K of modified Staudinger equation
shows a wide scatter can be studied from the data of Alfrey, Bartovics and
Mark (1943). Their K-values for three samples of polystyrene prepared at
60°, 120° and 180°C are 1.6x107%, 6.6%107° and g4x107" respectively,
thus showing a variation of about forty times. Our K, values, howgver,



76 Santi R. Palit

are 2.3%107%, 3.7X107% and 3.6 x 107% an extreme variation of merely 1.6
times in excellent corroboration of our theoretical expectation.

The calculation of K, requires a knowledge of the free volume per
gram, We can write K, in the following form

K;=Inh N+§n bop/'vtp"‘i In bcp/?m"‘ In I/?.p-'ln s ves (I4)

where 94 is the free volume in" cc per gram. Making the very drastic
approximation that bsy, =¢ 1,,2¢ 1, we have to a first approximation
K,=Inh N-%1n ¢pp—1n 7, ... {15)

"Taking that about one per cent is void inside liquids under usual conditions
we get K;=¢ 4. Thus we find that K, has to be a small number whose
value would be of the order of unity. This expectation is fairly confirmed
experimentally as is scen from Table I. It secms from general considera-
tion of our cquation and the experimental figures that K, is rclated to the
shape of the molecule and K, is related to compactness of packing inside
the solvent, the K, values increasing with the stiffness and consequent
approach to a rod shape of the chain molecule, and the K, values decreasing
with increasing branching of the chain. However, thisis ouly conjectural
and a thorough understanding of the significance of these constants has to
await further theoretical development in this line.

Stope of the log [n]-log M curve  According to our cquation the slope
of log [4]-log M curve is given by equation (12) as below.

K M2 - 1 ‘
=2 1 S5 Vg,
Slope= X KMo M+K, | &

It can be easily shown that for the usual values of K, and K, v tends to
unity as M approaches 10° and higher, and therefore the log [y]-logM
slope is near about 2/3 in this region. It is further to bz noted that our
expression for the slope is quite insensitive to a change of M in this usual
range of M and this explains the observed approximate lme‘mty of the
log[n]-log M curve over this range.

An examination of the variation of v with change of K, and K; and M
lcads to a clear understanding of the observed behaviour of log [7]-log M
curve. From figure 3 it is seen that the log [7]-log M line passes quite high
above the point for the lowest molecular weight polyethylene (CasH.e) which
shows that at nearabout this region the log [7]-log M curve has a decidedly
higher slope. The behaviour of polystyrene, however, is just the opposite
as can be easily seen from the figure given by Marzolph and Schulz (1954)
who have collected much available data, and fiad that the log [4]-log M curve
has a continuously decreasing slope with lowering of molecular weight
(figure 4, curve C),

The above behaviour is easily understood from figure 7 whergin we have
plotted v against log M for polystyrene and polyethylene, the data for K 1 and
K, being taken from Table I. A value of v=1 means that the log []-log M
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F1G. 8, Differetial intrinisic viscosity-molecular weight plot of polystyrene, A :
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D-—benzene : ethylbenzene, T—tolnene-M.E K. Data from Bawn, et. al (1950), Bawn et.a]
Goldberg, ¢t. al, (1947); and of polymethyl methacrylate F-facetolme : benzene ; G—
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curve has a slope of 2/3. On the graph for polyethylene we have indicated by
dots the experimental points studied by Ueberreiter and coworkers(1952) and
similarly we have marked off the regions of study for polystyrene by arrows.

It is casily seen from the trend in the value of v in the above graph
that for polystyrene the slope has to remain constant at nearabout 2/3 in the
usual experimental range, and has to fall off continuously in the low
molecular weight region. It is to be pointed out that though the slope
of the log [n]-log M line falls off in the low molecular weight region it is
sensibly a straight line in our plot as expected. We, therefore, consider it
unnecessary to invoke the concept of chain branching to explain the change
of slope as has been done by Marzolph and Schulz (1954).

Liqually evident is the reason why the lowest experimental point for
polyethylene is below the curve and the slope there has to be high. The
lowest expcrimental point happens to fall on a high value of v and so has
to be below the line. Further in the region investigated v has an average
value 1.13 and so the log [n]-log M slope should be 0.66 X 1.19=0.736 in
agreement with the observed slope of 0.738.

Effect of a Change of Solvent on [y]. 1f [n], and [#]. be the intrinsic
viscosities of a polymer in two different solvents, it can be casily shown
on the basis of our equation that they are related by the equation.

pilnli=pelnla=a’' M2 + b o (16)
where a’ and b’ are constants given by 100a’={K,),—(K,), and
100b’=(K,}, —(K,),. Since p, =< p,, the above equation becomes

Aln]=[1],=[n].=aM* +b

where a is equal to a’/p. Thus we obtain the intercsting result that the
difference in viscosity is a linear function of M?2®, ’I'hat this is truc is
shown in figure 8 for polymethyl methacrylate and bolystyrene in a number
of solvent pairs. The usually quoted relation which directly follows from
the modified Staudinger’s equation that log [')]1, is linear in log[#n]. is also
expected to be approximately true from our equation in the usual experi-
mental range as can be easily seen by a calculation of dlog[#],/d log[n],
from our equation (9) being equal to v,/v,. .

A Critical Test between the iwo Equations—A critical test can be
easily devised between the proposed cquation and the medified Staudinger
equation, success or failure of which can decide one way or the other. We
write below our foregoing cquation and also its counterpart based on the
modified Staudinger equation.

New equation : ~— Alnl=n].=[1]ls=aM¥+b e (19
Modified Staudinger equation :—
A[q]=[q]1—[,1]’=MilB{KIMquIS_--KZM-:.—2/8} v (18)

It can be easily seen that A[n] has to vanish absolutely at M=o,
dccording to equation (18) wheteas our equation expectsa very small but
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not necessarily zero value. The fact that both the equations cease to have a
meaning long before M approaches zero is immaterial for the present purpose,
and the extrapolated line has to pass through the origin in a A[n] versus
M2%(or for that matter any positive power of M) plot if equation (18) is valid.

That this is not so is clearly seen from curves A and B of figure 8, In fact,
some of these lines meet the M .axis at quite a high value of M, viz. M >
50,000. ‘This conclusively shows that there are inconsistencies in the
modified Staudinger equation and so i cannot claim to be a true description
of facts, At least, the algebraic form of the modified Staudinger equation is
formally inadequate, -*‘

It is possible to design another sulitle critical test based o2 equation (18),
Tt is evident that since » is very near toﬁb.66 for most polymers, the quantity

in bracket on the right hand side of Qquation (18) is simply K, —K, for low
values of M and so the equation bc\omes

A[q]=n]’/‘“\1—l\z) vee (19)
Thus, for such cases we should expect the slopec of the Aly] versus M3
line to be equal to K, —K,). Frequently we observe not only a discrepancy
with the above equation (19) but a positive slope is obtained where we
should expect a negative slope.

Thus we caunot ecscape the conclusion that either the modified
Staudinger  cquation is insufficient or that the K and 2 wvalues
are inconsistent. ‘There is, however, no such difficulty with our cquation as
can be scen from the form of our equation. We feel that if the modified
Staudinger equation is to be retained and has to serve any uscful purpose, the
above inconsistencies have to be removed, which seems to be an almost
impossible task within the limits of two adjustable parameters.

L.ow Molecular Weight Liquids. Another important point in favour
of the present equation is that this equation is not only true for polymers
but the hasic eqnation viz. cquation 3, has been shown by the present
author (Palit, 1952) to be very accurately followed by homologous liquids
of low molecular weight. This is illustrated for hydrocarbons in figure 1
(curve C) where log(nM) is found to be accurately linear with yvs,?/? M3(?
from C, to C,, alkanes with almost the theoretical slope in agreement
-with our cquation (2). Other deductions from equation (2) have also been
found (Palit, loc. cit) to be experimentally valid.

CONCLUSIONS

It is hence concluded that the proposed equation is in quantitative
agreement with known facts, covers a wider range of molecular weight, is
as sensitive as, if not more than, the current equation, answers satisfactorily
the differential viscosity test, and has a theoretical background. Even
considered as an empirical equation it scores over the modified Staudinger
equation on many counts, The latter equation has also bee? demonstrated
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be formally inadequate from differential viscosity studies in two solvents.
is hoped that the proposed equation would be used in preference to the

purely empirical modified Staudinger equation now in use in consideration

of

the above points.
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