FORCE CONSTANTS FOR SUBSTITUTED GERMANES* PART II. GeCl₈H and GeCl₄.

BY S. L. N. G. KRISHNAMACHARI

PHYSICS DEPARTMENT, ANDERA UNIVERSITY, WALTAIR.

(Received for publication, May 10, 1955; received after revision, July 2, 1955)

ABSTRACT. Force constants are calculated for GeCl_3H and GeCl_4 using the Wilson F-G matrix method. A comparison is made between the force constants which are common for the three molecules $\operatorname{GeH}_3\operatorname{Cl}$, GeCl_3H and GeCl_4 . The agreement between GeCl_3H and GeCl_4 is found to be better than that between GeCl_3H and $\operatorname{GeH}_3\operatorname{Cl}$.

In continuation of the work on GeH_3Cl and GeD_3Cl (author, 1955), the force constants for the molecules GeCl_3H and GeCl_4 are calculated and reported in the present paper. The Raman frequency data used in the calculations are taken from the recent investigations by Delwaulle (1952).

GeCl₃H : The molecule GeCl₃H belongs to the C_{3v} point group. The normal coordinates are similar to those for GeH₃Cl and the *G*-matrices are the same as those for CF₃H (Pace, 1950) excepting that in this case μ_{Gc} replaces μ_C and μ_{Cl} replaces μ_F . The *F*-matrices that are employed are

in which

d = Ge-H bond distance and

D = Ge-Cl bond distance.

The bond distances (Venkateswarlu, Mockler and Gordy, 1953) used in the calculations are,

d = 1.55 A.U.

D = 2.114 A.U.

Tetrahedral angles are assumed in these calculations.

* Communicated by Prof. K. R. Rao.

384

The nature of these force constants is shown in the first column of Table I. The values of the force constants are so adjusted as to reproduce the observed frequencies accurately. The final set so obtained is shown in the third column of Table I. The agreement between the observed and calculated frequencies is shown in Table II.

Nature of the force constant	Representation	Valuo (10 ⁵ dynes/cm)	
Ge-Cl bond stretching	fp	2.622	
Ge-H bond stretching	f_d	2.731	
Ge-Cl, Ge-Cl interaction	fdd	0.193	
H-Ge-Cl bending and H-Ge-Cl, H-Ge-Cl interaction	feta-fetaeta	0.188	
Cl-Ge-Cl bending and Cl-Ge-Cl, Cl-Ge-Cl interaction	$f_\eta - f_{\eta \eta}$	0.1 43	
Ge-Cl, Cl-Ge-Cl interaction with a common bond	$f_{D\eta}$	0.028	
Ge-Cl, Cl-Ge-Cl interaction with a common atom	$f_{D\eta'}$	0.008	
Cl-Ge-Cl, Cl-Ge-Cl interaction and H-Ge-Cl, H-Ge-Cl interaction	$f_{\eta\eta}+rac{d^2}{D^2}f_{etaeta}$	0.028	

TABLE I Force constants for $GeCl_{a}H$.

TABLE II					
Calculated	and	observed	frequencies	of	GeCl ₃ H.(cm ¹)

	Calculated	Observed
	2159	2159
$A_1 v_2$	409	409
v 9	181	181
V4	707	699
E v5	433	438
ν ₆	149	149

 $GeCl_{4}$:

.

The molecule GeCl_4 belongs to T_D point group. The force constants for this molecule were calculated previously by using approximate methods. (Hertz berg, 1945). In the present work a more general potential function containing all the interaction terms is made use of.