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ANALYSIS OF THE RELAXATION PERIOD
OF A MULTIVIBRATOR

By D. C. SARKAR aNb RAIS AHMED
DEPARTMENT OF PHYSICS, Must.jm UNIVERSITY, ALIGARH

(Reccived for publication, July 25, 1952, 1c6gived after revision October 20, 1959)

ABSTRACT. An improved mathematical &nalysis of the relaxation periods of a free
running symmetrical multivibrator has been made showing expressions for different
electrode potentials and time periods. The theoretical values obtained have been compared
with experimental data, part of which is also presented here.

INTRODUCTION

As a result of the many common as well as specialized applications of
the multivibrator circuits and their derivatives, a large number of papers
have appeared on the subject in recent years. T'he analyses made generally
pertain either to the relaxation periods (e.g. Kiebert and Inglish, 1945) or
to the switching periods between two states of passive relaxation (e.g.
Williams et al, 1950 ; Rais Ahmed, 1950). However, it is noticed that
although the voltages obtained in the relaxation period are used as boundary
conditions in the switching period, it is not always possible to carry over the
assumptions implicit in one analysis into the other. For example, with
reference to the waveforms shown in figure 2, the maximum negative grid
voltage appearing at the gril has to be computed without ignoring the positive
drive of the other grid, and the voltage division between the shunting and
coupling capacitances. A common relaxation analysis assuming no positive
grid swing and negligible shunting capacitance will lead not only to
crronecus values of the relaxation period but also to unreliable boundary
conditions for the switching period, especially for high frequency

multivibrators.

In the present analy
have been removed so that the results can be
minute observations of the switching period.

sis botli these shortcomings of the older discussions
safely applied to the more

THE ANALYSIS

¢, = positive swing of the grid voltage,

E., = static cut-off grid voltage for supply potential Eb,

E, = the plate supply potential.

E, = voltage drop across the loa
of the same tube is zero with coupling condenser removed,

d resistance Rz when the grid voltage
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E, = voltage drop across Rr when the grid. voltage of the same
tube is e,
C, and C, are shunting capacitances from plate to cathode and grid to
cathode respectively of each tube,
eym = maximum negative grid voltage,
7» = plate resistance of the tube, and
k = non-linearity factor of the tube characteristic.
With the notations indicated in figures 1 and 2, E, and the current
through the load resistance Ry, natmely is will be *

. _Ev—-K ., ;. Ey—K
=2_=; E,= R (1)
e n+Rt’ (fp+ RL) g '

I'he voltage E, is greater than E, because of the fact that a greater
current is, flows through R;, when the grid of the tube is positive. The
current in the tube is then

. FGc+Eb‘K
= .
79+ Rr.

and E1=( Ee”—f}—t%K Ry, 12)
where u stands for gn,7p, both the latter factors having a value different
from the normal value of the tube transconductance and plate resistance
when taken in the region of positive grid drive. Since the difference in the
value of uis usually not more than 15 % of the normal mean value, this
difference may be ignored (when e is large p decreases sharply). The
grid voltage e. can be found from the equivalent circuit of figure 3 which
represents the conditions just at the instant when the grid voltage jumps
from —E, to e., the positive value.

At the instant 7, (figure 2), the tube V2 begins to conduct and V1 is
suddenly cut off. Just beforc 7;,, V1 was conducting and its plate voltage
was Ep—E,, so that the condenser was charged to Es—E, at the plate side
of the tube V1, and to —E, at the grid side of V2, because V2 just reaches
cut-off at that instant, so that the condenser was charged to (Ey— Eo+ Eo)
volts.

From a consideration of the total driving voltage and the potential
drop in the parallel combination of 7, and R, of figure 3, we get

oz B~ (Ba=Eot+En)]r,
RL+ f’,

where 7,=grid cathode resistance of V, when it is conducting

R 7R, a(Eo"’Eoo)"'
and r—l-l—’+R' or e “!RL+H, v (3)
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F1G. 2. The voltage waveform of a symmetrical multivibrator
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¥I1G. 3. Equivalent circuit for the calculation
of the positive grid drive

535



536 D. C. Sarkar and Rais Ahmed

If E, is substituted in (3) from (1), we obtain

[B—L~‘E"’K’ ~Fa | 7o

- [Rr(Ey~K)—(Ry+ 1 1En ],
or €0 (Ro+ 73) (Ri+ 1) e (9)

On substitution of (4) in {2), we find

Ri(lis—K)—(Ryp + 1, I, . .
(RUBZKI Rt}
ARy %) Ry+m )7

]\’L[,u
b= = Rr.+ 1y o

_ Ri[wr’ {{Es ~K;Rr,— (Rr 4 'r,,)E(-..}_i(E;,—I\')_(_g.af_lg_r,}j_lzr_li‘{'_,_zju]m (s)
(Rr, + 1p)*(Rr. + 7°,)

or E,

It is obvious that when the shunting capacitance (', is small compared to the
coupling capacitance Ce, the voltage I, is also cquul to egm. At higher
frequencies, where (', is not negligible, the maximum negative grid voltage
is given by

egm= _L_"_._ I‘:l (())

Cot+ (y
T'he above cquation will give an idea of the maximum possible frequency

attainable by the multivibrator. So long as eym= C ('_"—.— 5, >  Ee the

multivibrator will oscillate. When (, is so large compared with C. that egm
is less than L, the multivibrator will stop oscillating.

Once the maximum mncgative giid voltage is known accurately, the
period of relaxation can be calculated from the equivalent circuit of figure 4.

Frc. 4. Equivalent cireuit for the calculation
of relaxation time.

The equations for the circuit are :
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Ry, 1
Rpp=-T8L__ 1 = I
PR G, 0 R Gq
at the junction A,
L'cq(-c._‘_‘;cljz —(;'lg_s‘.l _— e_lr_— C d_CJ + crl _
dt dt Ry "dt Ry,
or (—.I‘ d’el +(‘] & + e:;— =C15 "‘1‘0‘”
dt dt  Rg, dt
and at the junction B, :
¢ dlei=e,) _ deg iy oy
dt *at R,
. . de . de . de ¢
or Ce =V =0C, " 1, Yy by
e T a Trar TR,

Denoting d/dt by p, (7) and (8) become
Cepey + Cipe,+¢,Gy=Copey
Cepey=Cepey+ Copey+ egl,y
or ([‘»(‘c-f-f)(',-i-(J,)e;*fJ(,'ceg=0
Cepey = (pCo+ pCo+ Galeg=o0
From (g) and (10) we get (pCey+ Gy (pCer + Gp) = p*Coi =0
where Co=CerCyand Cor=C.+C,

or P?‘Cnl(-.cg - (:02) t+ I)(c"31(;2 + (‘cl(;l) + (;1(;2: O

I) - - (COI("2+ (.GZGJI i‘ [((Vq(l‘z + (-‘rz(;l): - 4((-‘1:1(«.02" CGQ)GI(!"{]IM

SO WA . )
200 C e —Ce)

537

(8)

(9)
(10)

(r1)

The above two valucs of p may be denoted by —x and —8. The grid voltage

during the relaxation period may now be written as :

c‘,=."e-°'+B(.’_m

(12)

where A4 and B arc the constants which are to be determined by the boundary

conditions that ;
(1) €g= €gm at i=0,

and (11) dT;—t” =oati=o.

Thus at t=o0
em';:/l + B

%*ztp =o=Aa+Bp

The above equations give A= :_B_ fé’"‘, B=§ﬁ_ﬂ;.
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After substituting the values 4 and B in (12), we obtain
ey= " [aeBt~Be~"t] we (13)
x—f

By putting e,= Eo in this expression, the time required by the grid voitage
to go from its most negative value to the tube current cut-off voltage Ee
can be found. In this way the reiaxation tine is found with positive grid
drive as well as shunting capacitances taken into account.
There are two special cases of interest.
Case 1. When (',=Cy=0 and Ce;=C,=C,,, Eqn. (11) becomes
PC(G,+ G)+G,Ga=0

ot p= ——.—:'(il(i’—; = o
(Gy+G3)Ce  (Rrp+ Ry)C,

or eg=Ae—t/(RLp+R,)C.

In this case from (6), eym=Fo; and at t=o0, eg=egp = E,,

so that ey=FE,e—t/(RLp+R,)C.

and relaxation time =( %’:—’;—p— + R,,)(‘c In %

This is the conventional formula.
Case II. When (,=o, Rip=o0 ; Eqn. {11) becomes

) ) = = -
pP(Ce+ C)Ry+1=0, O p (CTECIR,

eg=A€—’/(cf+C2)R«

Ce
when t=o0, ¢g=gem=A=— — E
y» YT gtm (r+c~_» 1
or . Co ~E.e -t/(C.+CqR,

o~ Cn + Cq

In this case the relaxation time =(C.+ C;)R, lnf‘;%(:':' E%

This is the formula given by Puckles (1951).

The practical method of calculating the relaxation time is given below.

Suppose in a particular case C,=200 mmf, C,=50 mmf. C,=50 mmf, ;
Co=Co;=250 mmf.; R;=100KQ; Ry=1 MQ; 7»=8KQ; Rrp=yx10"
=1/G, ; egm=96v. (measured) ; E,,=9.57.

CorCer=Ci*=22.5%x10"%" ; C01G3+ CosG1=35.96 X 101" ;
and G,G,=1.43% 107"’

Equation (11) becomes 22.5 X 10™*'p* + 35.96 X 10™"*p + 1.43 X 107" =0

—35.06+35.78

or =
P 45x10°°



Analysis of the Relaxation Period of a Multivibrator 539

which gives = —4 x 10° and 8= —1.594 X 10°

.s B _ o -5
ince a P e > T -t P
S [ l<|[3‘.a_ﬁe >°‘-'l36 and —g=1

S0 = ey = 068~ X 10 ;
. : . 1 g6 _ o
Relaxation time = - . In =— =575 microseconds
4 %10 9.5

The time period will be twice the relaxation time and so is 1150
microseconds. An experimental value ‘in this case was found to be
1020 microseconds,

EXPERIMENTAIL RESULTS

A double beam Cossor oscillograph was used to measure the different
clectrode potentials and time periods. The measurement of time was
checked by means of a standard oscillator.

TaBLE 1
Ey=110v , Rr,=100K( ; R,=1 M Q ; tube 6C5 ; ,=0; ;=46 mmf.
C, in mmf{ Iy in volts I[ E, in volts ¢, in volts €,w in volts (cal)
1000 84 94 (o] go.0
500 86 94, 87 86.1
-1 !
250 85 94 8o 79:3
100 84 94 68 64.3
50 86 94 44 18.9
25 86 94 30 33.9

By applying formula (6) in the first observation the value of C, was
found to be 46 mmf. This value of €, was used in the calculation of egy
for different values of the coupling condenser.

Equation (6) was further verified by taking a fixed value of (. and
observing the variation of ey with C,.

TarrLe 11
l . A ! .
Cyinmmi. |  Epin volts g in volts Cym in volts ¢, cale
f

550 120 111 33 . 32,0
350 120 111 45 43 6
250 120 III 57 ' 534
150 120 111 70 68.5

50 120 $$ 91 96 I g6.0

7—1852P—11



540

D. C. Sarkar and Rais Ahmed

The constans for this set of observations were Ey=150 v., tube 6Cs ;

Ry=1 megohm.,

Rr=100 KQ and C,=200 mmf{.

The value of C; inherent

in the circuit was estimated from the last reading when no external shunting
capacitance was used, and e;,, was calculated on the basis of equation (6).

TABLE 111

Ey=150v., tube 6Cs5; Rr=100K; Ry=1 megohm., 7,=8KQ; C,=200 mmf,
C,=50 mmf. (assumed) ; 7 stands for time period in microseconds.

Cy in mmf. C,m in volts E.. in volts | T obs. T cal
- - ,T [ S,
550 33 95 ! 1750 1880
350 45 95 i 1500 162,
250 57 95 | 1450 1508
150 70 9.5 1200 1280
50 96 9.5 1020 1150
TaBLE IV

Ey=130 v.; tube 6SN7 ; R, =20K ; Ry=1 megohm ; 7,=8KQ;
C,=8o mmf ; C,=50 mmf (assumed); r/2 measured in microseconds
=relaxation period.

C. in mmf. E; in volts €ym in volts E., in volts 7/2 obs. 7/2 cal.

1000 92 85 8 2500 2510
500 92 8o 8 1350 1298

250 92 68 8 550 611

100 92 56 8 340 328

50 90 37 8 130 137

25 90 21 8 70 86

TABLE V

Ey=125v.; tube 6Cs5; R,=1 megohm ; 7’,=1000 ohm; rp,=10 KQ;
Ew=6v.; k=15 v.; Co=500 mmf.; u nearly ro.

RrinKa 1'1115 g'glt:: if %ocl:‘s]‘ i:f‘v(;ll):s' il;:il sg}ts €. obs. ¢. cal.
100 83 100 94 109 15 L5

3o 70 82 92 100 30 24

Y 50 55 78 77 50 4.5

5 30 36 58 54 5.0 51

2 18 18 38 28 3.0 40
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CONCLUSION

It can be concluded from these tables that the set of equations derived
here gives a reliable manner of :alculating the relaxation period and the
various electrode voltages of a multivibrator running at fairly high
frequencies. These equations, therefote, can be safely taken to yield the
boundary conditions for an accurate determination of the switching periods
in a multivibrator. )
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