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ABSTRACT. The complete solution f^r the propagation of electromagnetic waves 
along a circular wave guide has been wdirked out. The final solution can be grouped 
into two parts. One part which can easily b^ computed in practice has the form of the 
usual normal mode type solutions, but tl»ey are neither orthogonal nor a complete set 
The other part represented by contour integrals cannot be so easily computed. In the 
esse of metallic wave guides the contribution by the latter type of fields is indeed negligible, 
but they do have practical significance and contribute a major part in case of wave guides 

of small conductivity.

I N T R O D U C T I O N

In  a previous paper by the author (1951) it 'vas shown that the usual 
methods of dealing with electromagnetic wave propagation in wave guides, 
leading to solutions just of the normal mode type are not adequate to describe 
the complete field of a given source. The additional solutions, though 
necessary to form a complete solution of the problem, may not be sigm icant 
in case of metallic wave guides, but they do form a major part in the case 
of guide walls of finite conductivity, as for example, in the practical case of

' '“ j r t r l t L  tK ... aaaUioua. solutions ot the co^plo.e

solution of the problem is found in a f
gives the connection between the nonnsl mode solutions and llm ^ d i ^ j  
of a contour integral while discussing the eigenfunction problem fm fimtt

regions And so a solution in the form of a contour integral of
regions, in this orocess, those normal mode
function m iy give the ^="7 % ^  ’uoder consideration,
solutions, which are permissible tor the infinite region
will automatically appear as the residues of the contour integral.

T H E O R Y

As a general case of the source “ withinTbe

dipole of moment make” an angle « vith  the
cylinder of radius a. Let the an angle ^ with the
Z  axis and let its projection on the .! o pia

X -axis {O— o).
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F o llo w in g  S tra tto n  (1941), th e  e x p re ssio n s  fo r  th e  e le c tr ic  a n d  m agn etic  

field  in te n sitie s  o f th e  d ip o le  in an  in fin ite , h o m o g en eo u s, iso tro p ic  m ed ium  

are : _ _
£  =  P e

-  v x  (F e ) <i)
iftu)

where e is the dielectric constant, fi is the permeability and k is the propaga

tion constant, is the angular frequency of the radiation and R =  + 
where r, is the radial distance from the dipole to the point of observation. 
The vector P is given by

P — Po (ip sin « cos — sin « sin cos a)

where is the angle between ri and the projection of P  on the Z — o plane. 
The corresponding field potentials of the source are :

-- sin » cos <9i) e (2)
(1)

0 = (cos '
X 4 Jj’e

and (2)
0 = Po k

s 47re /xu>
in w sin Pi  ̂ ikft

... (3)

where the superscripts t and 2 refer to the transverse magnetic and transverse 
electric cases respectively.

The spherical forms in equations (2; and (3) should be converted into 
cylindrical ones, so as to match the fields at the cylindrical surface (r=a) 
with the result :

 ̂ f  'll cos a («r) + sin a cos («,) I  dh ... (4)
* "  )

and QO
=  ----- sin a sin^j f  H («r) e

O 7T e M O) J
1 00

dh
U ... (s)

In these integrals the j? are Hankel functions of the first kind and 

ti.= V'fei“~ h “ with the path of integration below the branch point al h — ki 
in the first quadrant, h is the familiar propagation factor.

The total field potential which is a combination of and plus the
S M

non-singular fields may be written as :

for o u

(m)

9»nc — 00

for to : r ^ a

’ J  "  / FS">0i)(Hy ’ («r) )!«'*• X dh
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» n«^8 Hw^(va)
for r ^  a ... (6)

In these expressions, the superscript ini) in ?̂eneral can he either i or 2 ;

u =  >/ — and '!>= n/ Z is assumed to be positive and the path of
integration passes below the branch points at h — and /i = in figure i 
both u and v having imaginary i)arts along the path. Further,

X
K i g . I

Path of integration in the U — X - h i Y  plane

I -Icos « -1 -a -  V in  * sin jSf/«(ur) 
8»r«i I I  \u To /  )

_ I j sin « cos ^ pn^uto)

i \

and

F[Sy(h)^JE!L
Ŝ r̂ i tytAjco

tn___ sin a cos iS /„ {uu) -  sin * sin ft J'n [ur») /u
«®ro

... (7)*

with the Bessel fnnetious J .  and replaced by H. and H '. respec 
•tively. The prime denotes dilferentiation with respect to the argoment.
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And further, the co-efficients GT^(h) in the set of equations (6) are given by :

J n i u a *  I i +
A J h )

and

( ; ( 2 >( h )  =
H^2Hua) j

J n i u a )  I
H- [J„(na) — HiJHua)]

A nih)
ki^nh
io>â fjL̂ lU — T -  2 )

rC2i ( h )
FV'(h\

J^iua) k ^ I
(c";

with
A„(h) = S fe,’ 

( Ml
J „ ( u a ) —  — 2— V| / i , J„ ( «a)  — /UoHy

— n*h^a~*iu~'‘‘ — V-a '[u~‘ - v
The functions J m(3c) and in equations (8̂  and (9) arc defined by

j(g) — ] i t ( x )

fy)

(10)

Equations (8), (9) and (10) result from the continuity of the tangential 
components Es and He at T*»a, while the continuity of E ,  and f f , at r = a  is 
given by the last expression in equation (6). The fields derived from the 
first two expressions in equation (6) match at r = ro while the first terms 
within the brackets in these represent the source field. For r >■  a, the fields 
represent outgoing waves only.

The integrands in the integrals of equation (6) have branch points at 
h ^ k i  and h — ks and pol$s Pj  at the zeros of An{h)~o.  Figure 1 shows the 
location of these poles. In drawing this figure the Riemann sheet has been 
so chosen that the real parts of it and v are positive below and negative 
above the hyperbolae passing through fe, and fea respectively. The imaginary 
parts of It and v, however, are positive everywhere. Along an arc at | h I— >00 
in the first quadrant the integrands vanish exponentially, and the path of 
integration will be deformed into the paths I3 and I3 around the branch 
points at fei and fea plus residues at the poles pj.  As the integrands of the 
set of equations in (6) are even functions of u the integrals along the contour 
I3 will vanish. But as they are not even functions of v the integral along 
/s will give a finite contribution to the total field.

After evaluating the residues at the poles pj  the rigorous solution for the 
complete field of an electric dipole located inside an infinite circular of 
radius a may be written in the abbreviated from :

0(m> (ii)

where the summation over 7 includes the sum over all n and for each n the sum 
over all the roots of A»(hj)"eo £or w'bich the imaginary part of F/ is positive*
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Further,

(hj)=I) (h j )e j r)

where,

'  ̂ Ldh Ji,-./.,

£<*>(fc,) =

and,
J ,  _o _2 .

* Zr'(2>/i" /tUiioa p ,,^’fhj)

lh\
« J  M l

1̂2)

The terms C,^’"’ and C in equation (ij) are fiiven by the first and 
third expressions respectively in equation (6) with the path of integration 
/, replaced by I,.

The first term in equation fii)  can be easily computed by evaluating 
the roots hj,  but not so, the second term represented by the Cs. For a 
metallic wave guide with cr̂  laige, the second term in equation '11) falls off

very rapidly— as fast as c ' —tor large Z, as a first approximation. But
if cTjj is small as is the case in a dielectric wave guide, the contribution 
by the Cs can be significant. As an example, if the conductivity of the 
legion inside the guide is zero, and that of the guide is small the C'.v in 
equation (ii)  for the case of a dipole oriented along the axis of the 
cylinder are given by the integral exjmessions :

n ) _ ~ Po
47r«j

Po*iV2 f 4ijûur)c'''̂  ̂dh
J  ;r IM a;  «' u a ) J •■' / f /  ”   ̂V a ) 7 /, ‘ ' r  a • X ' '  ’ A ''

"  Pok,*Uj I
t,a7o(«aV/ \

'd/t

and

where

(2) _ «2).
I ^ 2

a «,.,.2 . I k.//ixuJJuayH/”’>(va)) \

and the  ̂ refer to H ankel functions of the second kind.
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For Z large, the expressions in equation (13) will simplify to the 
approximate forms :

P o k i f i j  7u(rv' fe,^~fea

47rejfe2V j k^ — k i )  *^*'^ii*

and,
CV»>#s:* A fc.Va

«fcgv'Z*+r*)
(14^

4 ” î feaVi /„(a^/fe,»-fe2“) v^Z* + r“

which have the form of dipole type fields reduced in amplitude at the 
discontinuity (r=a).

Thus the complete field of an electric dipole located inside an infinite 
circular cylinder can be divided into two parts. The first part represented 
by the fields B] ,2̂ “  ̂ in equation (ii) has the form of the usual normal modes, 
though they are not orthogonal and do not form a complete set. These 
fields could be easily computed in any practical case under consideration. 
The second part represented by the fields in equation (ii)i however,
does not lend itself to easy computation. These latter type of fields are not 
significant and contribute but a negligible correction term in case of metallic 
wave guides, but they, however, become important and contribute a major 
part in case of dielectric wave guides. In the special case of a region of 
zero conductivity bounded by a guide of small conductivity discussed above, 
the fields represent space waves. The field Cx '̂  ̂ in particular,
represents energy from the out-going space wave which has re-entered 
the region inside the cylinder, because the propagation constant (ka'̂  of the 
outer medium (T > a) occurs in its exponential instead of the propagation 
constant (fe,) of the inner medium, fr < a ) .
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