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ABSTRACT. The function theoretic method of Muschelisvili for solving two dimen.
sional problems in elastic‘ily is employed to obtain sHlutions to the problems of a rigid
curvilinear polvgonal core in an infinite plate under (i) an all-round tension at infinity,
(ii) a uniform tension at infinity at an inclination to the x-axis and (iii) a uniform shear
in the plane of the plate.

INTRODUCTION

Muschelisvili (1933) has developed a method of solving plane problems
in elasticity by discarding the stress function and introducing two functions
of complex variable z in terms of which all the relevant physical quantities
are expresscd. He has indicated how, in certain cases, these two functions
of z can be determined easily with the help of the theory of functions of a
complex variable, In the present paper this method has been applicd to
obtain solutions to the problems of a rigid curvilinear polygonal core in an
infinite plate acted upon by (i) a uniform all-round tension at infinity, (ii)
a uniform tension at infinity in a direction making an angle « with the
x-axis and (i) a uniform shear in the plane of the plate.

It has been shown by Muschelisvili that in the state of generalised plane
stress the stress combinations

—_ -

X\ +:vy= 1 X real part of ¢,'(z) e (1)
=2x[g,(z) +9,'(2) ]
and
yy—xa-Fa2ivy=2x[ 2,/(z) +9,/(z)] e (2)

where ¢,1z) and ¥,(z) are two analytic functions of z(=x+1iy) and a bar
over a function represents the complex conjugate of the function.
In terms of the above two functions the displacements are obtained

from the relation
aplu+iv)=Ko,(z) -zq;,’(.;)— Jl(;) . oo (3)
where N+ gp
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Tofind the parts of ¢,(z) and ¥,(z) which give the stresses xx=T,, yy=T,,

.1;=S at infinity, we get from (1) and (2)

T,+T,;=4x real part of ¢,’(z) J (
) 4)
T,= T +2iS=2x%[2p,"(z) +¥,"(2)]
(5)

These give o () =HT +Ty)z j
¥,(2)=3(T,=T, +2iS;2
I'he imaginary part of the coefficient of z in¢,(z) is omitted as it gives

only a rigid body displacement,
Hence in an infinite plate with a core which exerts no force on the rest

of the plate, we can write
plz)=DBz+9,"(2) ]

Yolz)y= (B 4 1C )z +¢,"(=)

where 0,"(z) and ¥,°(z; are analytic outside the houndary of the core.

(6)

THE SOLUTION

Let an infinite plate containing a rigid core, whosc boundary is a
curvilinear polygon, be subjected to the preseribed stresses at infinity and
let the displacement of the core be a translation u and a rotation through a
small angle «. By superposing on the plate an equal and opposite translation
we do not alter cither the magnitude or the directions of the stresses at
infinity, The displacement of auy point on the boundary of the core is,
therefore, given by u= —¢y, v=ex, so that u+iv=iez at a point on the
boundary of the core. As the resultant traction exerted by the core on the
remainder of the plate is zero, the values of B, B’, (! in (6) depend only on
ths stresses at infinity.

We have on the boundary of the core (3)

Ko, l2) = 2p,"(2) =¥, (2) = 2uiez v A7)
Taking complex conjugate of both sides we get
Ko (2) = 20,/12) =, (z) = = 2piez. v (8)

on the boundary of the core.

Let the region outside the boundary of the core in the z-planc he
represented on the region outside the umit circle on the {-planc by the
conformal transformation z=w({). Then we get on the unit circle y

K#(o) - "’f‘") #(0)=4(e) = 2niculo)

wl\o
9)
Kolo) - “’—‘(—' W' () =la) = = 2pisw (7]

w (0) -

where pQ=e{oQ} , ¥lp) =¥ {u()}



Rigid Curvilinear Polygonal Core in an Infinite Plate, etc. 135
1f
wl(y) =b{{+a{™")
where n is a positive integer and o <5 na < 1, the boundary of the core is a
curvilinear polygon.
Substituting for z in (6), we get

¢.8) =Bb{+¢°{)

Y(O) =(B’ +iC" )b+ ¢°(§)
where ¢"(p) and ¥°(p) are analyti: outside thce unit circle y, and can be
written as

(10)

p=m

S ¢

(11)
pig =2t B

¢ -

From equations (9) we have on the boundary of the core, where

gr=1,

R S ORI0
I\‘f’(r) (r"(x—amr"") 4’ P ‘P P
= apich(r +ao™") = KBbo + (B'=iC’)b/o . (12)

o"tlta
+Bb - i a.
ral1—ane® 1)

k(1) =TT EE e ) -yt
o -—an
(13)

1+ac™*?

= —apiet(} vart)= P (B icybe e Byl

T—ano”

Multiplying (12) and (13) by -21 . trdiri and integrating along y, we get
o=

- L[ e e (1) Z - kew

27i J 1-an7 clo=¢

(14)
= —2pish % = Bb Y, - -ic)l
S e t

5—1852P=3
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¢(§)=;br(§+ 2 ) _'
S
‘ |

K | alr+a? Sr+ch) | 29)
({)=3bT § ) o srT)
=1 ; (P RT-a T vsa
For n=2,
w-aw‘( (+ ,‘tz) N
S
WK)_“,Ts K, zalt+od’) _ 1+ 207 i (20)
I KU —2n) {"~2a i
For n=3,
¢(()=éb'1‘(§+ ,"1) a
S‘ , 5 . (30)
¢(t)=§le-’~+ zo(r +al') _ OP(1+3a®) l
” 1L KU -3a) +3a |
Far n >4,
. I
Q)= bT(g+ 4
() =14 Sy §,,) ,l
. oo (31)
o _ K, nali+a"'") _ "(1+ ’)).
= ij- - S — L 1Ty
V() =4 (c + I\S(u +1 _na) g""—na ‘ !

Case 2. Uniform tension T at infinity in a direction making an angle
o with the x-axis.
Here B=1iT
B +i(C'=— %Te-tla

a(1 +K) sin 2%

and s=3T St =
=} 2p(a? + I) , for n=1

§=0 forn>2
We get when n=1

¢(t\=}5T§§+ 4+ 2ialt+Kisinzs _ 2e** ) a (7|
G L
- K 2ia(1 + K) 1<t 3y
Vo= ibT)’( o a? +1<;sm 21)% - '\—gzt‘;') 2674 (32)

. giq(x_tK’ sin2a _ 2¢*'% ) alr+al") !
a’+K a K{t?~a)
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hen n=2,

pR=10T1 L+ h - 2t | B
K¢ K j

_ SIx \(1+2a; n“‘(H-ag)
bT , _
‘P(Q i ”3—2a I\(Lu 20)

2a(1+al’) _ | sgar |
KiT=2a) 5
When n=3,
—2il)

¢ Tl 2'Ne*' e —ae : -
Q=4br{{+ ¢ - 2he T )
¢ S 1 ) $ 1\,Sd ‘l\rz_a'g)g

¢<§)=}b1‘“_\'+ Pt _ alKe® ! =ac™ ) U1 +30%)

| { (‘-3 T(KT-aYy ({*=3a)
3a(l +a\ ) -2f{a¥
+ p—
KU~ 3a) a s % —
When n > 4,
2Ke2!® 20¢”20 )——

=161 LA e i s (T AR

K_{l+na®) _  2Ke*(1+na®)"
e U =na {K*P—(n-2)a’} " = na}

Yl =1bT

2(n—2)ae”* %1+ na® | na't+al"*!) _ e-'.'lu'?.

{K2~(n- 2)a‘}{g"*'-na} K{({"* Y =naj s\ _

Case 3. Uniform shear S in the plane of the plate.

Here ‘
B=o, B'=0, ('=S§
Therefore
= ¢1+K)S =
i@+ K) for n=1
€=0 forn>2
We get for n=1,
o ibs ai'_'l
¢(S)"‘ g . (;24"1\’

a(1+K) (a’-l)(1+a§‘)+§1
(@®+K) =~ (a®+R)(*=a)

Y =ibS

(33)

(34)

(35)

(36)
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For n=2,
= _ 1bS
¢ Kt
) ‘\77)
o o 1+af® L
Vo) "’Sig K@=2a) |
For n=3.
( = -1 S,___]_.
#O= =S o
l (38)
e e (1+3a°)C
( = ) — S
W ‘bsi’ (K=a) €~ 3a) |
And for n >4,
(V= -4 __.._]__.._ Ig - a
# ibSK”—(n-Z)a’(E ¥ §'°2)
(39)

= ibsd ¢ = (1t na’){(n—2)al+K{"*}
'l‘(ﬁ) 1&5%5 {I(’—(n—z)a’}(@"“—na) %
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