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THE RELATIVISTIC THEORY OF SCATTERING IN
COULOMB FIELD BY ATOMS
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ABSTRACT Relativistic theory of nuclear scattering of electrons has been considered
from the wavestatistical point of view It has been shown that to a first order relativistie
approxtmation the ordinary hydrodynamical wave equation is shghtlv modified On
deriving the wellknown x-equations with the help of the modified equation we gel a new
term in the interaction cnergv which together with the other wellknown mterac'ion terms
gives the correct scatlering formula

INTRODUCTION

Relatwvistic theory of clectron scattering has first been given by Mott
(1929), using Dirac's lincar equation for the clectron. In addilion to the

[/ . .
wellknown wosec? = ferm he has obtained two correction {erms, the sccond
L]

of which is proportional to (Z¢?)%. Later on Sexl (1933) has considercd the
problem afresh starting with the quadratic form of Diiac’s equalion (vide
Dirac, 1947) and has obtained a formula for the scattering intensity diflcring
from Mott’s formula only in the last correction term  The controversy over
{he second correction term has been finally, settled by Urban (1942), who, on
checking up the calculations of Mott, finds that Mott’s method, after proper
appioximation, also gives exactly the same formula as that obtamed hy Sexl
(ioc. cit.). 1{ may also be mentioned that Sauter (1033) and recently Sengupta
and Chatterji (1950) have obtained the above Mott-Sex! formula without the
second correction term by application of Born’s method of approxmmation to
the linear cquation of Dirac.

Recently Kar (1945, 1047) has considered the problem of high velocity
scattering from the w ave-statistical point of view and las derived Motl's
formula using some new idcas egarding  spin-spm interaction, 1n the
present paper we shall show that {he introduction of these ideas is not at all
necessary and {he correct Mott-Sex] formula can be deduced wave-statistically
in a perfectly straightforward manner

It is wellkpown that m wavestatistics we take for the phase waves the
general hydrodynamical wave cquation in the form

g INY ()
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and from it we obtain the wellknown differential equations for the x,- and
Xo- waves. We shall presently show that equation (1) is only a first approxi-
mation of the actual cquation satisfied by the densily function in a compres-
sible medium. If we carry the approximation a stage further, we get an
equation slightly different from (1). On deriving x;- and xg- equations
from it we get a new term in the interaction cneigy which logether with the
other wellknown interaction energies gives the correct scattering formulze.

WAVE IBIQUATION

The wellknown Bernoulli’s equation and the equation of continuity for
a fluud in motion can be written in the form

8-7'+%w” +°0 = coust. [ e (2.1)
ot Po '
%’;-%dhr (pw) =0 \ v (2.2)

where ¢ is the vclocily potential and w the velocity of the ﬂ\lid.
I'rom (2.2) we get

gf +pdiv w+ (w grad p)=o
’O\Ep A’ .ot
or, B + pAg¢ + (w grad p) + div pw=o0

Substituling for vp and p from (2) we get

2 .
. —6{ —pAs-P— P Aw® + (w grad p) —div (w div prw) =0
ot po 2
2 .

or, %’fl’ —22Ap + (w0 grad p) —-%Aw” —div (w div pw) =0 e (3)

4 —p
because, AP _8P 2 Pro (3.1)

Po 9 po Po

Neglecting the last two terms in (3) we get

. 32 . -

—a—ig —220p+ (w grad) (p—po) =0 - (4)

It is evident from the above derivation that the change of p in the last term
of (4) is due to molion of the fluid. Tt is therefore negligible, except for very
large velocity, i.e , when 7 is comparable with ¢, the velocity of light. Hence
for this p we can write (in the relativistic region)

= bPo s w (4.1)
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or approximately,

82
AT |=Po e, p=pe=18% )
Substituting this valuc of p—py in the last term of (4) we get
a2 ° 0
aTg— =12 Ap+1B°(w grad p)=o .. (5)

It is evident that for small velocities, the last term can be neglected and then
(5) becomes identical with the equation (1)

1f we nmow take the general hydrodynamical wave cquation in the form
(5), the equation for the phase waves becomes

27) E 2
aa'l.z - 224D IA’i (wgrad D)=0 . (6)

Eliminating time we get for the y-waves

2,2 2 .
Ay 1 iz‘—;- X— Ii"_, wyrad X)=o )]

Now for xj-waves v=rv)=w and the relativistic frequency v, 1s given by
[Kar and Sengupta (1049)]

(= Bt iy = VP2 = By

=1
N T ESE, gt -V - )

where I is the total ecnergy, E o the well known spin-orbit interaction
energy being given by Thomas (1927)

N Ze?

Eico=-_- 82 (LS) . (7.2)

amg?c?r

and V is the electrostatic potential cneray. Substituting m (7) and remem-

. ' 1 U
bering that w=— —- grad V=— LA , we act,
mo nmg 1

872mg) » T [0 1ne 7ooXy _
X, 4 Ol V=T +- 12N+ T =0 ... (8)
Ay [ E=T=Fi0 2l (=1 2lig O1 © (
For xg-waves, we have,
/')':1"3 . (@
(
where vy is the velocity of the Xg-waves projected in the g-space being given
by [Kar and Sengupta (I ¢,
E

- 1

{(E=E,-q+Eo— V)2 -1,

(9.0

Ve

REulembering that vg =};‘l, we get for the Xg-waves the saule equation as (8).
1



342 K. C. Kar, S. Sengupta and P. P. Chatterji

Thus cquation (8) may be written in the general form

2 17,2 D= 2
Ax+% EmV—E, gtV "% 0 E=V?(y_o (1

1672mo2c2 Br 2@,
On comparing (10) with the equation deduced in the earlier paper [Kar and
Sengupta (1949) ] we notice that in addition to the well known relativistic and
spin-orbit corrections lo energy, we have here a new correction term whose
value is given by
h® Ze? 9
V,= % 2 wer (10.
T 16m2mo2c2 T 92 T (ro.1)
It may herc be noled that this particulai interaction term has also been
obtained by Condon and Shortley (1935) by forming, to a first approxmmation,
the relutivistic guadratic wave equation from Dirac’s linear gquation for the
electron. ‘They have showed the importance of the term in\ spectroscopy.
We shall presently show that this term has also great importance in scattering
and that 1ts contribution to the scattering formula corresponds tq Mott-Sexl’s
first correction. \

CALCULATION OF THIEI SCATTERRING INTENSITY

By separating the nteraction encrgies involving V and 1 2 \ve can write
(ro) in the form

2 . 2
AX+5’*,’;‘2§12<1+ ]’.j.>-r(1 r LF )—1-:‘.0+1',+2-'E -}X=U (11)
1 214 DI o

Remembermg that 15 in the above does not contain I, we get from (11), the
rest energy of the electron,

=2 , . . 2 l
AX+ 4,2 %pz—emol —amyllag+2myl’, + I2 \X=o .o (1r'n)
1 [
M e e
where p= 0—;—’,[— , the relativistic momentum of the electron.
1—-62

Wec now consider the scattering of a beam of fast electrons incident on a
nucleus by usual Born's approximation method  Outside the potential field
the wave function for the incident beamn is

Xo=cl7’lﬁ (ngeY/ hr. v (12)

where By is the unit vector along the direction of incidence. X in (12) is
averaged for unit volume. Ilence it represcuts an intensity of ¢ electrons
crossing umit atea per unit time. Near the nucleus, the wave cquation is
given by (11.1). This equation can be written in the form

AX + 4___"9f’2x=px v (x3)
12
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where F= i amlV —2amgl’, — o + zmul.i(_(,% (13 1)
Now we try to find a solution of (13) of the form
x=x0+)‘l)‘l (13.2)

whete X, represents the incident wave and A 1 X} the scattered wave,
From (13) and (13.2) wc get at once the well known solution

amih ple -t
Xy = lf’(— — Fu)\yr!

Tad T v (14)
which has the asymptotic form (for laige 1)
, N 02’" Pr/n i Ih ,
AN = “4;_‘ A f(’ wip () /1 FXdr (14.10

where 0 is the upit vector along the dircction of seattermg  In the {ollowing
we shall replace X in the integral by Xg, the incident wave function, as is
usual mn the Born’s first approximation.

Now the integral in (14 1) conmsists of four different integrals corres-
ponding to the four different interaction terms in F The first of the intcgrals

is, remembering that V=" - s

Ii=— 8x2mZe® fl‘»m pg—n, 0/ T

n2 7

Now taking polar angle 6, =c along the direction of the vector n,—n the

integralion (15) can be easily performed I we take into account the correc-

tion for critical approach (Kai, 1945), then evidently the lower limit of the

r-integration should be taken 1y mstead of zero, where 19 s the distance of
critical approach, Then we get

.dl (15)

8x2mse® n?
=- ey -3 . COS k1
h W2 Ep mg-nj? ¢ k1o
an/e® i
=- - ﬂil—/)‘?)'cosklo < (15.1)
mer? sm?
47w sin 2
6 being the angle of scattering and k=—--  -- “. The value of 19 as has

h

been derived wave-statistically by Kar (1045) is
L 0
,0=1_35_~/‘,‘“F(x—ﬂg)(cosecT-I) . (15.2)
myv” 2

It is evident from above that krg is generally small for high velocity of inci-
dence and cos kr, is only slightly different from one.
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The sccond integration can be written in the form | vide (10.1) and (13.1)],

Ze?

2mqC

Ig= -

2/e'ﬂ"’l"("')/”~%yc°ﬂl’/”~ (0gr) d7sin 0,d0,d¢y ... (16)

If we remember that 6, is taken zero along ng—n, then il can be easily
shown that

(nyr)=1(sin f)cos 6,4 cos L sin ) cos ¢;) .. (16.1)
2 2

Substituting this in (16) and performing the differentiation, we get

. 40
Iy= ——7!;‘/’ .—1-"4-:2 %sin—ffc“‘wos O drcos 0y sin6,df,d¢,
0 -

0 Ly ' )
+eos fc'kffﬂs % d1 sin6,dfy cospyde, l( .. (16.2)
The second term ecvidently vamishes through ¢,-integration. ‘The first inte-
gration can be easily peifoimed and we get,

I wZe? / (krg)? . (16
2= mroc? \1— e v (16.3)

The third integration can be performed in the same way as the first one
and we get,
_ 2milm = 2kg) (Ze®)®

0
lic2myo sin .

1
1;= (1—p2)2 o (17)

In the fourth integral there is a factor (LS)=L.S, - L,S,+1..S,. If
we write out the well’known operators for I.,, I., cte,, then with the help of
(16°1) the integration can be easily performed and 1t may be seen that,

I4=(1 . (IS)

4
. . . v
Thus we gct from (14.1), neglecting terms of the order of o4

I 7 n2 A ; 1,2 A 2
A =‘3_"ﬂ'_ ze? (1 —ﬁ’l‘?‘cosecl “ cos k1y,—3 9(1 _(kry)? )
2 c

, amgw? 6
- .
+7r(rr zku,.)Ze__v cosec [ (19)
he® 2

1f the relative scatteted intensily be given by I16)d€, then to a first approxi-

mation
\ |
762 \2 2
”9)=(- /'c---,) (1 '/32)". cosec ! ﬂco.s“kn, -2 cos krg cosec? o
2 | 2 ¢ 2

- 7e2 [/
4 2meos krolm 2k1.,.){_b_'u. cosec® b (19.1)
he? 2
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Neglecting the correction for the critical approach, we get

s

I1(6)= (-—Zﬁs-g )2(1 - 32)( cosect? — 75: cosec?? + am Loy cosec®= (20)
2moV 2 ¢ 2 hc? 2

which is identical with the formula obtained by Mott-Sexl.

In conclusion, it may be mentioned that in deriving the above {o1mula of
scattering we have found (Eqn. 18) that the spin-orbit inteiaction term in
F has no contribution to the scattering mtensity  Since the other two inter-
action terms in F have a relativistic orngin, it may be casily seen that both
the corrections in Mott-Sex] formula (20) are really relativistic.
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