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ON THE DISTRIBUTION OF STRESS ROUND THE EDGE
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BENDING MOMENT *
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ABSTRACT. A solution to the problem of stress concentration due to the presence
of an unstressed hole of a fairly genecral shape in a deep plate beaw under a nniform
bending moment is obtained.  ‘The solution is verified for the cases of circular and clliptic
holes which arc already known, and is applicd to obtain some new results.

INTRODUCTION

The problems of stress distribution in an infinite plate containing an
unstressed hole, under various types of load have heen widely studied by
finding the stress function X in suitable curvilinear coordinates, satisfying
the biharmonic equation V'x=o0. A method of solution to the problems of
stress distribution in an infinite plate containing a hole of a fairly gencral
shape has been developed by Green (1945). In the present paper Green's
ircthod has been applied to obtain the stress distribution round the edge o
a liole in a deep plate beam under uniform bending moment.

This method can be applied when the hole is given by a curve 5=o,
defined by the conformal transformation

Z=F(0) v (1)
where Z=x+iy, {=§{+iy
and F'Q)=age " +bye™

it being assumed that n = © when|[Z /= w. Tt is seen that the first
term in F’ ({) » « and the second term —> o0 asy > ®,
It is known that the general solution of V*x=o is given by the rcal
part of
F(Z)+Zg(7) o (2)

where Z=x —iy and where f'(Z) and g{Z) are regular functions of Z.
From (2) the stresses in curvilinear coordinates £, 1, arc found to be

given by the real parts of (Green, 1945,)
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where dashes attached to g¢(7) and f(7) denole differentiation with respect
to 7 and dashes attached to F({) denote differentiation with respect to {

Introducing two functions of {, V() and W) which are finite at
infinity and arc of the form (Green, 1945,)

() |
Vi) =—2g'(0) - *—('E* {I”(/) + F(Og" (Z)}
F (\) (4)
P
W) = =~ (Q) {f//(z)+p(§)gl/(z) }
F'Q
so that at y=o, the hole boundary, the real part of V(O)=-—9y, and the

imaginary part of wiy)=§y,, whete &y.., . denote stresses at the edge of the
hole, we get the stresses in terms of [F({) and W(,) (Gieen, 1948} as the
real parts of

{1 G+ W )}P” FQ
()

g=-vQ

I(\

%=-Vm—uun+w¢>F9’+4Vunww@}£@;ﬂ0
F'(}) F({)

fr=—iw 8 — gLy JEQ=EQ
F'Q F

. (5)

where dashes attached to V({) and IV({) denote differention with respect to o.

From (5) we get the circumferential stress over the edge of the hole boundary
given by the real part of

c..?Ee =—V{)-2W () ... (6)

The solution of an individual problem depends on finding the suitable
V() and W'Q).

THE SOLUTION

Let a bending moment M be applied to a plate beam of depth 2b and
thickness 2¢c.  When there is no hole in the plate we may take
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X=R[J(Z) + Zg(sl)=Ay*
where a=M

so that

f(2)=.’i"'/.3, o7y =— 34i 5

Then we shall have the stresses in the pl

—34i F({) -3

m= =34 F({)+ 22—,

4

g(;)) {1 () — F() }
)

EV G- )

G=31 TS ek}

2 FQ)

ate given by the real paets of
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(7)

(8)

(9)

(r0)

On the boundary n=o, these stresses have values given by the real

parts of

£8,= —3ir () - 311
_ ot 3,41'

o= —3AiF{{) +

g;o ‘2'1 . I‘ (K) {1
2 F ()

i

; 2:’) {ro-ro}

r,,((:)) {I Q)= F) }

~ Fu) }

(1)

Superposing on the stress system (10) another which gives 1y, = =y, and

o~

(e = —-ér)(, on the boundary = o aud which tends to zero at infinity, we shall

wet the strcss system in the plate beam containing the stress free hole
n=o undet the uniform bendmig moment M.

To obtain the required superposed stress system we first take

y F
V()= — 3AiF () + 3L, - {I Q= F }

—

Frig)

Its 1eal part =uy,= —y, on the boundary -~ o.

To make V({} tend to zero when y = «@, we add the teams

o)

34i Yage”

34(ape™s = apc ™'Y 42— 1EQ)

(12)

(134

which sum up to give an imaginary quantlty at n=o0, so that on n=o0 the
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real part of I7({) is the same as that of I’,({) and is therefore equal to

~um.. In choosing the terins in (13) care is taken mnot to include any term
which produces no stress cither at infinity or over the hole boundary.
If we take

e _ 348 FTQ) o o
W)= S {I‘(s) F(s)} (14)

ts imaginary part =§n, = —.?17., over the hole boundary.
To make () tend to zero as n tends to infinity, we add the terms

Ai Y ase™t  geft _—

3l )™ aell p -k} (15)
Frey  FQ

which sum up to give a real quantity on n=o, so that on 5=0¢ the imaginary

part of W ({) is equal to that of W,({) and is therefore equal to .:r),
We get from (12), (13), (14) and (15)

V(§) =3A{a,e't —iF ({age ‘}

4 3i ;IL() _aee” anC FlO)~FQ©
2 | B F(§) FQ | { ° J

) FR) aget et =
Wipy=34L] -~ fo 8oc™ U F() - F
(r) % o e TR g{ ©-F@ }

(16)

-

V() and W) have finite values at infinity and their sum contains no poles.

The complete stress system is obtained from (5) and (16) together with
the stresses (r1) which arc transmitted from infinity.

Calculating the stresses from (5) with the above values of V({) and W({)
it is scen that thc stresses tend to zero as n—> o only when =2 <<j%.
Thereforc (16) can be used for m=0 or n=1. The circumferential stress
over the cdge of the hole, as calculated with the help of (6), is given by the
real part of

&.= Aro-F . (17)

T’ (§‘
The terms in e@-74% jn V({) and W({) produce infinite stresses at
n > §, so for the cases where n = 2 we subtract these terms V() and W)
and add such new terms as to keep the stresses over the hole boundary
unchanged. We get
=it
Val)= 1) = 34 Orpmm tacs 4 34 ba 8o
F© F’(S) . (18

Wa()= W) — 34 ba i 8™ _ 34 ba imee ™"
2 n F'({) 2 n F
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Va(@) and W,({) and the stresscs produced by them tend to zero when
n— © for n>o0. But the new terins in them produce no stress either
at infinity or over the hole boundary for n << 3. So the use of these functions
Val(l) and Wa(l) will be valid only for n > 2. In this case the circumferen-
tial stress round the edge of thic hole is the real part of

e’E =647 T aoc {I‘({ F(Q 11)" —ln;} (10)

APPLICATIONS

When n=1 and bs=o0, we have a circular hole of radius ia, when 3= o.
The circumferential stress round the edge of this hole, as calculated with
the help of (17) is given by .
L€, =12Aia, sin § cos 2£. .. {20)
which is in agreement with the results obtained by other authors.

When n=1 and

Cc c o _
e eu+1ﬁ b“ = —_.le at1f1

Ay = —, s
21 21

we have an clliptic hole of semi-axes ¢ cosh o and ¢ sinh & with its major
axis inclined at an angle 8 to the x-axis. The circumferential stress 1ound
the edge of this hole is obtained from (17) as

é‘ép = 34c% sin(é—B)~e~* sin (£ +B){C2.. cos 2(£=B) — cos 2/3} (21)

cosh 22— cos 2&

When B=0, it becomes

v sinh « sin & ‘
6. = 6A1c¢ ! & ‘{("’" cos 2§~ 1} (22,

cosh 27— cos 2¢

and when =2, it becomes
2

s h > cos £ )
=6Ac—031 7 & { e cos 28~ 1 } (23)
€. cosh 2& — cos 2§ ¢

These results also agree with those obtained by other authors.

When n=2 and a,= —2b.. =0 represcnts approximately an cquilateral
triangular hole with rounded corners. The circumferential stress over the
cdge of this hole is calculated trom (1g) as

éze 3A1’ au (2 S,n 4& 8 S]n 3&‘*‘4 b]Il 26 Sln {) (24)
4 cos 3¢—5
When n=3 and a,= —3ba, n=o0 represents approximately a square hole

with rounded corners. The circumferential stress of this hole is given by

ege - Aiay (3 sin 5£—18 sin 3§ +17 sin &) . (25)
3cos 46—5
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