LATENT HEAT OF SUBLIMATION OF FIFTEEN SALTS FROM SPECTROSCOPIC AND THERMOCHEMICAL DATA

By MAHENDRA SINGH SODHA * AND YATENDRA PAL VARSHNI Department of Physics, Allahabad University, Allahabad

(Received for publication November 11, 1952, received after revision September 5, 1953)

ABSTRACT. The latent heat of sublimation of fifteen salts, which have not been experimentally determined, are calculated from spectroscopic and thermochemical data.

The latent heat of sublimation L(MN) of a salt MX can be obtained from spectroscopic and thermochemical data by means of the following equations:

> $(MX)_{gus} = M_{gus} + X_{gus} - D_o(MX)$ $(MX)_{solid} + L(MX) = (MX)_{gus}$ $M_{gus} = M_{solid} + L(M)$ $X_{gus} = \frac{1}{2}(X_2)_{gus} + \frac{1}{2}D_o(X_2)$ $\frac{1}{2}(X_2)_{gus} = \frac{1}{2}(X_2)_{solid} + L(X)$ $M_{solid} + \frac{1}{2}(X_2)_{solid} = (MX)_{solid} + F$

or $L(MX) = F + L(M) + L(X) + \frac{1}{2}D_o(X_2) - D_o(MX)$

where F is the heat of formation of MX; L(M) and L(X) are the latent heats of M and X respectively, $D_o(M)$ and $D_o(X_2)$ are the heats of dissociation of MX and X_2 respectively.

The calculations for the latent heats of the salts are shown in Table I.

REMARKS

(1) The values of heats of formation are those given by Bichowsky and Rossini (1936).

(2) The values of L(M) are given by Landolt-Bornstein (1936).

(3) The values of L(X) are those used by Mathur (1937).

(4) The values of $D_0(X_2)$ and $D_0(MX)$ are those given by Herzberg (1950) except those which are marked with asterisks and are given by Gaydon (1947).

(5) Whenever a range is given only the mean value has been used.

(6) Calculated L(PbO) agrees closely with the value 61.6 Kcal./mole given by Landolt-Börnstein, which shows the correctness of $D_0(PbO)$.

* Now at Defence Science Laboratory, New Delhi.

S. No.	ХЖ	F in Kcal/mol	L(M) II Kcal/mole	L (X) in Kcal/mole	$D_0(X_2)$ in $e. V$	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	$F + L(M) + L(X) + \frac{1}{2}D_0X(g) \text{ in } Kcal^3 \text{ mole}$	D ₀ (MX) in e, V.	D ₀ (MN) in Kcal 'mole	L(MX) in Kcal'mole
-	-		-		00	5 1	157 8	1.3	99.2	58.6
	PbO	52.5	17.2	845	200 ¢		116.0	17	108.4	8.5
	PbSe	20.0	17 2	t /1	α 1	5 7 C		, 1 - e	So T	12.2
 m	PbTe	é o	17.2	13.2	2.3	ی ت	92 9	e -		120.0
	Sn()	<i>6</i> 7.7	68.0	gas	5 o8	541	193 ^S	2.5		8 97
r 1	SuS	22-7	68 o	147	+++++++++++++++++++++++++++++++++++++++	2 03	I sň I	o ,.	<u>د</u> ۵۵	
n v	PeO		οų.γ	gas	5 08	58.1	219.0	8 +	N OII	7 QCI
0 1		2.85	81.7	gas	5 0%	58 1	175 3	+ 5 ⁺	1 201	ç †'
			r F2	gas	5.08	5%.1	238.6	3.7	- 22 3	153.3
ø	ORIN			5620	s os	58.1	2 3 D	4 4	IOI 5	122 I
6	0uN	40.5	0. 6 0	່. ສ	, ` <u>f</u>	ç.12	\$2.3	1 9	13.8	3% 5
10	CsH	12.0	18.7	28	974 t	9.1s	×3.5	1.5	5·1t	12 0
I٦	KH	Ū.JI	5115	ga,	0/4.5	, y	1.00 2	10	5.6 5	31.6
12	LiH	21.6	36 o	gav	915 F	0.10			- '0'	1 17
. 1	NaH	14.0	2f2	gas	51t t	51 6	8.1 Q	7 • 7		
C,			20.6	ga.	1.476	51.6	5 † 5	6.1	-13.8	
14	KON	-	5	28.	5:1:2	28.5	127.5	5.0	80.7	16.S
15	AuCI	1 2.3	1	0	-	1.05	182 0	2.9	6 .96	115.1
91	MgS	82.2	34 4	1+.	, †	-				-

TABLE I Calculation of latent heats of fifteen salts

M. S. Sodha and Y. P. Varshni

ACKNOWLEDGMENTS

The authors express grateful thanks to Dr. K. Majumdar and Dr. D. Sharma for their interest in the work.

REFERENCES

- Bichowsky and Rossini, 1936, Thermochemistry of Chemical Substances, Reynhold Publishing Corporation, New York .
- Gaydon: 1947 Dissociation Energies and Spectra of Diatomic Molecules (Chapman and Hall, London) p. 204.
- Herzberg, 1950, Molecular Spectra and Molecular Structure Part I Diatomic Molecules (D Van Nostrand Co., London) 5. 501-581.

Landolt-Bornstein, 1936, Physikalish Chemische Tabellen

Mathur, L. S., 1937, Proc. Roy. Soc., 908, 162, 63

Mathur, L. S., 1937, Ind. J. Phys., 11, 177.