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ABSTRACT. Some of the conclusions ®n higher Rorii approximation following 
the works of Sauter, Sexl and Distel as pre.scntcd in the literature are 
incorrect- Molt, using the Dirac's second-order relativistic equation and taking 
the exact solution, has obtained a second-order correction term, which is different from the 
result of Urban. Urban’s result is the same as that of SexU Roth results are 
incorrect as they arc not consistent expansions in powers of o Z, where a and Z are the 
fine-structure con.stant and the atomic number re»pectively. Using the matrix-formalism 
Dalitr. has recently obtained a 2nd order term in the scattering cross section for 
the Dirac particle, pointing out the errors in the development of the former writers. In 
this paper, the second-order approximation in the elastic scattering of fast electrons by 
atom has been carried out using the Itypercomplex notation. The first nppoxiniation 
has been checked by this method by ,Sauter. The method used here, is ba.scd on a 
consistent expansion in powers of o Z. The series actually obtained for the cross section 
is given bj,

sin* 0/2I+irogj8. sin® 0/2 (J-2 sin* 0/2)-!-, ... 
multiplied by the Rutherford scattering formula.

I N T R 0  1) U C T 1 O N

The method of higher Born approximation in the discussion of the 
scattering problems consists in the calculation of the series-expansion of 
the scattering-amplitudes in powers of the interaction potential. The Born 
approximation has been developed in a variety of forms and has been applied 
to different types of problems. But the calculations have not beeu carried 
out correctly beyond the first approximation. Sauter (19336), using the 
time-dependent perturbation method has obtained the second-order correction 
which contains an erroi in the development (Dalitz 1951). Urban, (1943) 
following him proceeded to calculate the third approximation, but was unable 
to calculate all the terms of the series aud his method is wrong. The method 
of Somraerf.eld and Mao (1935) gives an unsurmountable difficulty in finding 
out the higher-order terms. Dalitz (1951) has found the second-order 
correction term, using the matrix-formalism of Dyson and Feynman. Sauter, 
(i933«) using the hypercomplex notation has correctly formulated the first 
Bom approximation. In this paper, this formalism has been extended to 
calculate the second-order correction term in the scattering of fast Dirac
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electron by the potential, which is of some interest as a
representation of the screened atomic field!

The wave function ^  of a parliclj  ̂ in a static field V{r) is expanded
in a series + + ...........; whc^ represents the incident wave
undisturbed by the field, and V'u consist only of outgoing waves at 
infinity. The latter functions are to be fd^nd from a recurrence formula.

In this paper, actually the fuuctio|i \p2 bas been calculated. It is seen 
that the evaluation of depends on the palliation of the integrals (see Eq 

9̂) i-u i-zi E4 of which L, ~ ô4 in the limit Others are
finite. It can be easily obsei ved from th^ wellknown formula of the current 
density, that the contribution to the scattlSiring cross section is only due to the 
imaginary part of the integral, L,. Thus the difficulty in handling with /„ 
due to its infinite-character has been avoided.
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T n F ,  vS C A T T E R 1 N G O 1*' A D I R A C P A R  T I C h U  

The relativistic Dirac's equatioit may be written as

T v  9 jL. Ivi/I a,. n, * » J*"“ (i)

where V is the general potential function and \ ann -
2?r

Now let be expanded as =  ̂ 1̂ + ^ ^ ^ 3 ^ 2 )
..>.v

wdiere —  ̂  ̂ , the incident undisturbed wave, ... (3I
and V'j. ^2,**.are outgoing waves at infinity. Putting the value of from
(2) in (1) and collecting the terms of the same order one gets the recurrence 
relation,

t  , me
"^'hc n

Operating the equation U) from the left by

d R me \

one gets,

where ^  is the Laplaciau operator. 
The solution of this is given by

(4)

,-2.P,n z )

where R stands for the vector OP and r for OP'. The point P  has .the coordi-
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nate (X „  X») and P' has (x „  Xj, x ,). OP is along the direction of
observation, and P' the integration point (figure i). O is  the position of the

scatterer. The distance between P and P' is denoted by R,

With regard to the source and sink point, one can write, ^ H R ~  f ) —

— A - f( R - r ) ,  and with the help of this, the equation (5) may be written as 
oAv

ax.
E m c \ f e

2irp/~t̂  \
~h \R-t}

‘ ftc
' V(y) 4n-i(r)dTr (6)

P - r |
> ► f

We have from (figure t), |/? -r| —R — r.n where n is the unit vector
-f •>

in the direction of observation, and replace \R -r\  by R since R is very 
large.

Sauter (1933) has calculated the value of and he has found, —>

... (7)

where e is the unit vector along the direction of the incident wave.
Noting that the amplitude a of equation (3) satisfies the following equation,

+ mc''*|‘a = o

we can turn the above equation (6) in the form (7). Now let us calculate 
from the recurrence relation (6). Thus

 ̂ r n̂iplhin̂ r)

Substituting the vâ \̂ e of it(r) from equation (7) we have

“  s f e }  ^  fe ■  T  }■

I | R - f |  *■  r  I  )
V{r')e

,  2iripfh ,d r'jd r,



v ^ h e r e ,  e ,  n ,  a n d  « ,  a r e  t h e  u n i t  v e c t o r s  i n  t h e  d i r e c t i o n  o f  t h e  v e c t o r

r  ( t h e  d i r e c t i o n  o f  w h i c h  h a s  b e e n  t a k e n  a s  t h e  Z - a x i s ) ,  i n  t h e  d i r e c t i o n  o f  t h e

v e c t o r  R  ( t h e  d i r e c t i o n  o f  o b s e r v a t i o n )  a n d ,  i n  t h e  d i r e c t i o n  o f  t h e  v e c t o r  r  

( a  v a r i a b l e  v e c t o r ) ,  r e s p e c t i v e l y  ( v i d e  f i g u r e  2) ,  T h e  a n g l e s  a n d  w  a r e
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/ \  / \
r e s p e c t i v e l y ,  t h e  a n g l e s  b e t w e e n  t h e  v e c t o r s  u  , w , ) ,  (<?, n )  a n d  a l s o

v v e  r e p l a c e  c o s  <«> b y  c o s  0  c o s  0 '  -H s i n  0  s i n  0 '  c o s  <j> w h e r e  0 i s  t h e  a n g l e  b e t w e e n  

t h e  p l a n e s  c o n t a i n i n g  U ’,  n )  a n d  w , )  v e c t o r s .

W e  s e t  f u r t h e r  t h e  f o l l o w i n g  a b b r e v i a t i o n s  :

;

V { r , ^  ; a n d  \

r  2 a  k

U s i n g  t h e  a b o v e  a b b r e v i a t i o n s ,  w e  p r o c e e d  t o  c a l c u l a t e d  ^ 2- T h u s  p e r f o r m i n g  

t h e  i n t e g r a t i o n  i n  t h e  s q u a r e  b r a c k e t  o f  t h e  l a s t  e x p r e s s i o n ,  a n d  c h a n g i n g  

t h e  v e c t o r  —  i n t o  i t s  p o l a r  f o r m s ,  w e  c a n  w r i t e ,

\  4 t t / v E

V  R

- . t ’- " ’ / • n <  r t  ^ i c p l n . y ]  y ^ i -  » i c ‘ j y , |  L

w h e r e ,

^  i h { l  u v)r

r

F ( » )
4f c ^ s i n “ /̂2 +  l i a r

2E )  a . d T r

t - 2  —  j

^  >7f(] “ Cos «,»)r

r
V { t \

s i n  0  c o s  ^

4^ *  s i n ^  /̂2 +  i/a'*®
. y , r t . a . d T ,

f ^ f A ( l - r o s  «>)»

r
V l r )

s i n  s i n  ^

4fc® s i n “ O j  2 -a -  i j a *

■ Y t Y 4 . a . d T y

w ) r
€

r

F i r /
( i  — c o s  ^ )

4fe" s i n *  /̂2 +  i / a *
.  y ^ y t . a . d T r

6 — 1803P — I

+ L , - L . ) }

... h)
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Now if by / ws denote the number of particles scattered throuRh unit 
solid angle per unit time, then ]  is given by a well known formula,

- V --f
= conjii^^ate coniplex] which

is upto second-order terms. ... fro)
7 - / i  +

No w  ̂ i/'/y, (w .71 i/'oj

r c
—  ■ . • { - . r t M . - f . T h r . } .  ■ V. '-'Vl-

2

-1C. ^ r 2 v » •(]  ̂ - .A  + . y)-y*} -7^̂7rfe“r̂ ) R^2/o (b-COS^O) t )

x^icp^ 11 y ) - y  iF. — nic^^ .y,i^Li  I irp\J.n-^L^ .. (i i)

The dilTerential cross section, after averagiiiR over the initial electron 
states and the summing over the final states, is obtained fiom the expression

‘ """ [ A -  -.rh-. V' (»■»>)

.(^icp{n.y) - y j i -  me" ^  y i | L , - t

where the values of the intigrals L,, f.o. f a, and />♦  are evaluated in the 
appendix. It is easy to see that the contribution to the scattering cross 
section is due to the integral term Li. Hence in calculating the spur value, 
of the above expression due to the term Lx we need only consider the 
following,

i  s p u r . f i * f 7 |  “  2II +  irp(n-  c ,  7 ) 7 4 1  y4 {ny)^icp(ny) y j l  - - 7 3 ) .  ^

> > f
where 7/o=(9̂ /»o> p̂  is the momentum vector ĵ in the initial direction,
which gives,

c p
where Jo* t (̂«.y.ia)

• . (12)



Now, utilising the values ohlaincd in equations (i i ; and (i 2) the resultant 
cross section becomes the following (in this has been changed to 0 as 
usual :
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I V L , E ,
’ 2k-{b cos<̂ >) ‘ ^ (  j  ~ 2  C O S  0 ) . n " ,

277̂
2k̂

Changing h by c for uleelron, alid when />—> i  for the bare nuclevis

p.. (  — \  " 1R \ 2 }ii e / f  hr j — 0 J

where = r

l l ic  value of /,, has been checked by this method by vSauter (103311) and 
has been found to he

E “ (  eosec' 0:2{\

'I bus upto the second-order coirci'tion term, we get
J

~ R'- (   ̂ f I — /5*̂) c osec'* 0/- * *“ /̂ ‘* 0 i 2

+ n.ajb shvOj ~  

where ĉ — Zc'!hr

If R stands foi the ratio ot the scattering to the Rutheiford scattering, then 
ui)to second-order approximation, R hceoines

R — {\ “ 7 ’̂“ siir^V^) -rrZ.o f̂.ft sin"̂ /*> (3 - -  ̂ siirV^^)

\\lu‘ie (X, stands for the fine-str\icture constant.

When still higlier terms arc calculated, this is consistent expansion 
in powers of Z.cx f.

C o  N  C  h  V vS 1 0  K

The correction term of order Zc  ̂ (relative to the first ordei) found here is 

sin“<y/2̂ 3/2*~ 2 sIn7V/2  ̂which is not ill agicement with that obtained

y ^2 0  0
by Mott (1929). His correction term is a- sin — cos — . Urban (lojaiobtai-

nc 2 2

lied the correction terms as sin - as that of ftexl’s (1933). But their

results originate from errors pointed out by Dalitz (1951). Dalitz’s correction 

term conies out to.be tt.— sin -  - (i —sin 2), which is at variance form the
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result obtained here. The advantage of the method used here is that it is 
quite elegant and lucid.
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A 1> P E N 1) I X

The evaluation of the intcgfals occurring in (q)

In evaluating the integrals in equation (g), v\ e first consider the integral 
L, wliich after the comi>letion of r-integration gives the 0 - integration 
in the form.

r  t./ a — h cos </>

in which rj ~ A -  cos  ̂cos 6 = sin sin ; A—> i ; the —integration may
be effected by transforming the integral by the substitution b - c o s O - /  
to the wellknown form

dZ

/W AZ* + BZ + C 

the values of A, R, C cau be easily found out. T h u s ,

!./■
2 n K
ik k̂  h-cosf i '

i  M  ̂ U  \ / ( - - -  -
I 2/. i + hi ^  \ 2L  1 + h/ L 4l J

I 2 7 , t - b l  ^  \ 2 L  i - b /  L  a L '

w d ic r c , L = b " - 2 \ b  cos (A°-f cos i)

Af = —aAcos^'

A = i - - 7^- ; b = i+  —  
tak 20. fe

f*'or the integrals L2 and L, we see it convenient to take help of the contour 
integration. Combining L2 and La we have for the 0 —integration,

.2r

J  ̂ a - b c c -I COS0

and <t, b stand for the same values as in L, by changing Z —e'*’ this reduces to

ZdZ___
2oF T -  bZ*

I f  ~ 7  •2*’» (sum of the residues at the poles) where T  is



the unit-circle. The evaluation oi Li may be performed in the like manner. 
In this evaluation we have neglected the variation of the quantity
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~  lco s^ co s^ '-i) '|in  0-COS0')*-

+ Icos 0 cos 0' "  1 )11 
tak ' J

in the limit a- w . Thus we have

14 L,
o  ̂no

ni5 {«■ (-(►  2 log tan 0/2}
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