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ABSTRACT. Somec of the conclusions en higher Born approximation following
the works of Sauter, Sex] and Distel as presented in the literature are
incorrect. Mott, using the Dirac's second-order relativistic equation and taking
the exact solution, has obtained a second-order correction term, which is different from the
result of Urban. Urban’s result is the same as that of Sexl. Both results are
incorrect as they are not consistent expansions in powers of a Z, where ¢ and Z are the
finc-structure constant and the atowic nutnber respectively. Using the matrix-formalism
Dalitz has recently obtained a 2nd order term in the scattering cross section for
the Dirac particle, pointing out the errors in the development of the former writers. In
this paper, the second-order approximation in the elastic scattering of fast clectrons by
atom has been carried ont using the hypercomplex mnotation. The first appoximation
has been checked by this method by Sauter. ‘Ihe mcthod uscd here, is based on a
consistent expansion in powers of @ Z. ‘The series actually obtained for the cross section
is given by,

(1—87 +in? 8/2) +maZB. sin? /2 (3-2 sin? 8/2) +,
multiplied by the Rutherford scattering formula.

INTRODUCTION

The method of higher Born approximation in the discussion of the
scattering problems consists in the calculation of the series-expansion of
the scattering-amplitudes in powers of the interaction potential. The Born
approximation has been developed in a variety of forms and has been applied
to different types of problems. But the calculations have not been carried
out corrcctly beyond the first approximation. Sauter (1g33b), using the
time-dependent perturbation method has obtained the second-order correction
which contains an erro1 in the development (Dalitz 1951). Urban, (1943)
following him proceeded to calculate the third approximation, but was unable
to calculate all the terms of the series and his method is wrong. ‘The method
of Sommerfeld and Mao (1935) gives an unsurmountable difficulty in finding
out the higher-order terms. Dalitz (1951) has found the second-order
correction term, using the matrix-formalism of Dyson and Feynman. Sauter,
(1933a) using the hypercomplex notation has correctly formulated the first
Born approximation, In this paper, this formalism has been extended to
calculate the second-order correction term in the scattering of fast Dirac
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electron by the potential, V(r)=Ze.e~"® s, which is of some interest as a
representation of the screened atomic field, '

The wave function ¥ of a particle in a static fleld V() is expanded
in a series U=y +y, +¥,+......... ; whelle ¥, represents the incidemt wave
undisturbed by the ficld, and v,, ¢2...§fconsist only of outgoing waves at
infinity. ‘The latter functions are to be fdand from a recurrence formula.

In this paper, actually the functiof ¥, has been calculated. Tt is seen
that the evaluation of ¥. depends on the yaluation of the integrals ( (sce Eq
(9) 1., L, L,, I., of which I., -—m% in the limit a = . Others are
finite. Tt can be easily obsetved from thel \\ cllknown formula of the current
density, that the contribution to the scattering cross section is only due to the
imaginary part of the integral, I.,. Thus the difficulty in handling with 1.,
due to its infinite-character has been avoided.

THE SCATTERING O A DIRAC PARTICLE

‘I'he relativistic Dirac’s equation may be written as

[2 o "0 5 = 0
where V is the general potential function and yrk=1iB8&x ; y, =5 ann k= ?,,
Now let ¥ be expanded as U=y, by, +,+ ... (2)
where Y,=ae ?"‘H =4 , the incident undisturbed wave, . {2

and ¥,, Y,,...are outgoing waves at infinity. Putting the value of \If from
(2) in (1) and collecting the terms of the same order one gets the recurrence

relation,
3] F | mc ) y
w., O _ + = -
(‘:7v B+, 7!7‘ \b Ylh ‘Pn -1 \4)
Operating the equation (4) from the left by

(Zrge ~veme~ %)
one gets,
[A+ ;:,]\Pn ( D -'7;»%—“;- is )wﬁ‘-:\lfn-l (4n)
where A is the Laplacian operator.
The solution of this is given by
(lap(3 >

9__ _.{1 0 E_ mc

¢~(R)—4—fc 3 R b }y.vm Yuy(dr, ... (5)

where R stands for the vector OP and r for OP. The point P has the coordi-
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nate (X,, X3, Xs) and P’ has (x,, %, x,). OPis along the direction of
observation, and P’ the integration point (figure 1). O fs the position of the

POxixa% e R PGX1s Xg.X3)

1)

_Q

FiG. 1
scatterer. The distance betwecen P and P’ is denoted by R.

With regard to the source and sink point, one can write, a?~ J(R- )=

v

>
- 6?( f(R—17), and with the help of this, the equation (5) may be written as

2epsy
4 i (R—r
= ‘l“ n a - li:— mf f ’ q ) (v) .es
V() arhc {T' Yox, TR % } |R=7 V(v $noy(rdr, (6)

» > »

We have from (figure1), |R—r| =R—r.n where n is the unit vector
+

in the direction of obscrvation, and replace |R—7| by R since R is very

large.
Sauter (1933} has calcujated the value of ¥, and he has found, ¥, —>

1 e2ninlh , + avinfh -+ i
W R —2E+icp(n—e, v)-va}a.f V.exivlh(g —p,y) dr, . (7)

where o is the unit vector along the direction of the incident wave,
Noting that the amplitude a of equation (3) satisfies the following equation,

+
{ictr(e.'y) —v.E+ mc"}a =0

we can turn the above equation (6) in the form (7). Now let us calculate ¥,
from the recurrence relation (6). Thus

2wipth (B =v)
*+ 5] E c e
‘P’(R)'I’;I%_C{%Y'a-}—(v Y fE_ % }71-./‘_1“—;—3— ’ V"’)-#‘x(f)dfr

Substituting the valge of ¥,(r) from equation (7) we have
-+ -
(Rye X ey E_mcl 1
¥4(R) W} %7’ 5& LA YRS R = <

+ i

seipi (B3 i : 2 wepih (o-n?
f,__;_:__ V(r)[eﬁ' pih { _zE+icp(n,—e.'ﬁ-‘/¢}“f V(r’)e" plh (e, )dr‘]dfr
| |Rwt] !
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where, ¢, n, and n, are the unit vectors in the direction of the vector

:(the direction of which has been taken as the Z-axis), in the direction of the

vector 15 (the direction of observation) and, in the direction of the vector:

(a variable vector), respectively (vide figure 2j. The angles 6, 6" and v are
v >

’l /e

’

Fi1G. 2

respectively. the angles between the vectors ie, n,), (e, n} and (n, n,), also
we replace cos w by cos # cos 6’ +sin # sin 8 cos ¢ where ¢ is the angle between
the planes containing (¢, n) and e, n,} vectors.

We set further the following abbreviations :

k=p/h ;

ZeE' 1
T

;and b=1+ - | |
' 2a°k?

Vir,=
Using the above ablreviations, we proceed to calculated ¥,. Thus performing

the 7’ —integration in the square bracket of the last expression, and changing
the vector n, —e) into its polar formns, we can write,

2 - , > S
\bz(ls;z( 72 ,l) anlel:] Letminh (ir[)(n.y} v I - mc")y.{ L, +icpil.,
4mh°c

R
+ 143 "'14‘)}
where,
e Ph(l ~eon w)r ( . E} . dT
L‘=f; Vi 4k*sin®*@/2+1/a® 20 4Gty
ikl =~cos o)t : 0
4 smbcose¢
/’2::[; pin gk’sin’6/2+1/a® MYea-dr,
()
th(l=ros wh . sin 0 Sin ¢
L= VD o sin® 62+ 1/ar YoTeadTr
ik(1—ens w)r ) (I —COoS 9)
L= Viri ok sin® 6)z +1jad VTS

618021
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Now if by J we denote the number of particles scattered through unit
solid angle per unit time, then J is given by a well known formula,

>
J=ic{ Ty, (n.y)¥}

o R
=icfY ¥y, (n YW+ ic[{(¥, %y, (ny* Y.} —its conjugate complex] which

is upto second-order terms. o (r10)
J=L+ =]+, +].2
[ 4
Now ]'-'”)'_'iu{‘l’!")’l("-‘:’\’%}
. 1 e Rriplh 1t *{ . * } ax7el’ *
mie L T R ticpin - R LN (Y
e e U AR L M 3(h = oner YY)
2 " N
( ‘» ) ﬂ’?éil"_‘ elinih n (ir[v(ny) -v.F -mrz)v..]l,,+ic[»(l.g -i-l,;,—l“).l.
arhi’c? R .
1 (4nZeEN? 1 *

14
=qc, (_ZeriTcz)"' CRUaRE (b—-co;:-h.‘ﬁ’-) .a'""{ —2li+icp(n —'(', v). 7.} el

x(i(‘[vfnryj —yJC——mc”).yd{L. Viepil.+1., -l,,)} . (D

The differential cross scection, after averaging over the initial electron
states and the summing over the final states, is obtained fiom the expression

ic (qm.7cl')? T . C . i *
e o Ly (1)

»
( icplny) =y i —mc? ) 'y,{L, ticp(ly+ 1, —L.,) },

where the values of the intigrals I.,, I.., I.,, and 1., are cvaluated in the
appendix. It is casy to see that the contribution to the scattering cross
section 1s due to the integral term /.,. Hence in calculating the spur value,

of the above expression due to the term L, we need only consider the
following,

soir atal = oF +icbn— " ’-.(*, T U [E|+H,
$spur.a®ad —2E+icpn—c, vive [ ya(ny)icpny) - viEE - me? i (—v,). i
2F
+-¥ » -
where Hy=(&py) + B.me, p, is the momentum vectoriin the initial direction,
which gives,
> .2
Jo E.c*p? o . (r2)
where J,* —> v(@.y,a)
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Now, utilising the values obtained in equations (11} and (12) the resultant
cross section becemes the following (in this 6 has heen changed to 6 as
usual :

3
- 1 1 (4=7cE")? | D s am’
1. 2( a2 ) RS b con ) o st e —2cos 0), 1k, r?

Changing E' by - ¢ for clectron, atd when b—> 1 for the bare nucleus

/ s . 1—2008 0
J.= o . ) st gt ]
R* \ 2mp?® f v ohe © 1—cosf

where B=1/¢

The value of J,, has been checked by this miethod by Sauter (1033a) and
has been found to be

o

5= Ju ( - ) (1--7) cosce' 02010 =% sin* 6/ 2)

R*\ 2mp®
Thus upto the second-order correction term, we get

]:_-_-: ]U

2
I'"'( /e ) (I~Bz>mscc4f)/z[1~/3‘"sin”9/z
\

amr?

. — 2 cosf
+r.a.f3. sm‘(’,z(’—— cox )+ . ]
2 .

where a=/Z¢*[fic

H R dands for the ratio ot the scattering to the Rutharford scattering, then
upto sccond-order approximation, R hecotnes

R=0=f*sin®*0/2)=nZ.&,.B 5106/ 2 (3-- 2 sin‘0] 2)
wheaie o, stands for the fine-structure constant.

When still higher terms are calculated, this is consistent expansion
in powers of 7.« .

CONCLUSION
The correction term of order Z¢? (relative to the first order) found here is

7t <oyt — . . i
- .B.sin0j2( 3/2— 2 sin*0/2 ) which is not in agreement with that obtained
hic

2

by Mott (1929). His correction term is:r«/%;;} sin g cos f- Urban (1¢42) obtai-
g 2

“

Ze* . 0 .y .
ned the correction terms as n.—/'ﬁfc«» sin - as that of Sexl's (1933). But their

results originate from errors pointed out by Dalitz (1951). Dalitz’s correction

Ze2 . 0 . , g .
term comes out to be ”'“iﬁ' sin —- (1 —sin #,2), which is at variance form the
c 2
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result obtained here. The advantage of the method used here is that it is
quite clegant and lucid.

ACKENOWLEDGMENT

The author’s sincerest thanks are due to Dr. D. Basu for suggesting
this problem as a 1esearch topic and for his constant help and invaluable
counsel at every stage of the investigation.

APPENDIX
The evaluation of the integrals occurring in (q)

In cvaluating the integrals in equation (o), we first consider the integral
L., which after the completion of r—integration gives the ¢—integration

in the form,
n

[ . de ; a>b
. a—bcos¢

in which a=A—cosfcos 8, b=sin fsin 6’ : A—> 1 : the #—integration may
be effected by transforming the integral by the substitution b-cosf=/7
to the wellknown form

/' ) a7
/N AZ*+B7+C
the values of A, B, (' can be easily found out. Thus,

2
{ M /\/( + 1 _ M
2]. 2l 1+b I, 41'—'

Je 27 E ) 1+b . 1+b/ L
b ik k? b—cos #' ) T e
{M +L}+ 4/(—4 +—.)
2. 1-Db 2L b I 41.

where, I.=b*—2Abcos # + (A% +cos 6"~ 1)

M=2b~2Acos ¢’

A=1——— ' b=1+ —~ rs

T ek 2a°k?

For the integrals L, and L, we see it convenient to take lielp of the contour
integration. Combinwmg L, and L; we have for the ¢ —integration,
2

fo a= bcos¢d¢ a=>b

and a, b stand for the same values as in L, by changing Z=¢" this reduces to

z[ ZdZ =2
i) 2a2-b-b2*

.275 (sum of the residues at the poles) where I'is
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the unit-circle. ‘The evaluation of L., may be performed in the like manner.
In this evaluation we have neglected the variation of the quantity

{a;;—z; + 17:'-,? ‘cos()cosﬁ’—l)‘}iu M[(cosﬂ—cos 9,2 -

{ 2!1‘6 + -27‘ (cos(icosﬁ'—»n}]
a’k?® 1ak -

in the limit a - w. Thus we have

Lt L, “f; {zi+2 log tan 6,2}

adm
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