ON HIGHER BORN APPROXIMATIONS IN POTENTIAL SCATTERING OF FAST ELECTRONS BY ATOMIC NUCLEI IN A STATIC FIELD

By S. N. BISWAS
Department of Thmorbtical Physics, Indian Association for the: Cultivation of Science, Calcutta.

(Reccived for publication, December 17, 1951)

Abstract

Some of the conclusions on higher Burn approximation following the works of Sauter, Sexl and listel as prescnted in the literature are incorrect. Mott, using the Dirac's second-order relativistic equation and taking the exact solntion, has obtained a second-order correction term, which is different from the result of Urban. Urban's result is the same as that of Sexl. Both results are incorrect as they are not consistent expansions in powers of a Z, where a and Z are the finc-structure constant and the atomic number recpectively. Using the matrix-formalism Dalitz has recently obtained a $2 n d$ order term in the scattering cross section for the Dirac particle, pointing out the errors in the development of the former writers. In this paper, the second-order approximation in the elastic scattering of fast electrons by atom has been carried out using the hypercomplex notation. The first appoximation has been checked by this method by Sauter. The method used here, is based on a consistent expansion in powers of a Z. The series actually obtained for the cross section is given bs,

$$
\left(1-\beta^{2} \sin ^{2} \theta / 2\right)+\pi a Z \beta . \sin ^{2} \theta / 2\left(\frac{3}{y}-2 \sin ^{2} \theta / 2\right)+, \ldots
$$

multiplied by the Rutherford scattering formula.

INTROIUCTION

The method of higher Born approximation in the discussion of the scattering problems consists in the calculation of the series-expansion of the scattering-amplitudes in powers of the interaction potentiai. The Born approximation has been developed in a variety of forms and has been applied to different types of problems. But the calculations have not been carried out correctly beyond the first approximation. Sauter (rg33b), using the time-dependent perturbation method has obtained the second-order correction which contains an error in the development (Dalitz 1951). Urban, (1943) following him proceeded to calculate the third approximation, but was unable to calculate all the terms of the series and his method is wrong. The method of Sommerfeld and Mao (1935) gives an unsurmountable difficulty in finding out the higher-order terms. Dalitz (195I) has found the second-order correction term, using the matrix-formalism of Dyson and Feynman. Sauter, (1933a) using the hypercomplex notation has correctly formulated the first Born approximation. In this paper, this formalism has been extended to calculate the second-order correction term in the scattering of fast Dirac
electron by the potential, $V(r)=Z e . e^{-r / a} i r$, which is of some interest as a representation of the screened atomic field

The wave function Ψ of a partic in a static fleld $V(r)$ is expanded in a series $\Psi=\psi_{0}+\psi_{1}+\psi_{2}+$ \qquad ; whe ψ_{0} represents the incident wave undisturbed by the ficld, and $\psi_{1}, \psi_{2} \cdot \frac{d}{}$ consist only of outgoing waves at infinity. The latter functions are to be found from a recurrence formula.

In this paper, actually the function ψ_{2} has been calculated. It is seen that the evaluation of ψ_{2} depends on the evaluation of the integrals (see Eq (9) $L_{1}, L_{2}, L_{3}, L_{1}$ of which $L_{1} \rightarrow \infty$ in the limit $a \rightarrow \infty$. ()thers are finite. It can be easily obset ved from the wellknown formula of the current density, that the contribution to the scattering cross section is only due to the imaginary part of the integral, L_{1}. Thus the difficulty in handling with $L_{L_{1}}$ due to its infinite-character has been avoided.

THESCATTERINGOJADIRACPAKTICLI

The relativistic Dirac's equation may be written as

$$
\left[\begin{array}{ccc}
\sum_{v=1}^{3} & \partial & \tag{1}\\
\partial x_{v} & l & 1!-V \\
\hbar c
\end{array}+\begin{array}{c}
m c \\
\hbar
\end{array}\right] \Psi=0
$$

where V is the general potential function and $\gamma_{K}=i \beta \alpha_{k} ; \gamma_{v}=\beta$ ann $k=\frac{h}{2 \pi}$
Now let Ψ be expanded as $\Psi=\psi_{1}+\psi_{1}+\psi_{2}+\ldots$
where $\psi_{0}=a e^{\frac{2 \pi i}{i n}\left(\begin{array}{l}\vec{\mu}, r\end{array}\right)}$, the incident undisturbed wave, ... (. ${ }^{2}$) and $\psi_{1}, \psi_{2}, \ldots$ are outgoing waves at infinity. Putting the value of Ψ from (2) in (1) and collecting the terms of the same order one gets the recurrence relation,

$$
\begin{equation*}
\left(\sum_{v} \gamma_{v} \frac{\partial}{\partial x_{v}}-\gamma_{i \hbar c}^{F}+\frac{m c}{\hbar}\right) \psi_{n}=-\gamma_{1} \frac{V}{\hbar c} \psi_{n-1} \tag{4}
\end{equation*}
$$

Operating the equation (4) from the left by

$$
\left(\Sigma_{v} \gamma_{v} \frac{\partial}{\partial \lambda_{v}}-\gamma_{4} \frac{F}{\hbar c}-\frac{m c}{\hbar}\right)
$$

one gets,

$$
\begin{equation*}
\left[\Delta+\frac{r^{2}}{\hbar^{2}}\right] \psi_{n}=-\left(\underset{v}{\sum} \gamma_{1} \frac{\partial}{\partial x_{v}}-\gamma_{A} \cdot \frac{E}{\hbar c} \cdot \underset{\hbar}{m c}\right) \gamma_{4} \frac{V}{\hbar c} \psi_{n-1} \tag{4n}
\end{equation*}
$$

where Δ is the Laplacian operator.
The solution of this is given by
$\psi_{n}(\vec{R})=\frac{I}{4 \pi \hbar c} \int \frac{e^{i \frac{2 \pi p}{h}(\underset{R}{n} \vec{r})}}{|\vec{R}-\vec{r}|} \cdot\left\{\sum_{v} \gamma_{v} \frac{\partial}{\partial x_{v}}-\gamma_{4} \frac{E}{\hbar c}-\frac{m c}{\hbar}\right\} \gamma_{4} V(\eta) \cdot \psi_{n-1}(r) d r_{r} \ldots$ (5)
where \vec{R} stands for the vector $O P$ and r for $O P^{\prime}$. The point P has the coordi-
nate $\left(X_{1}, X_{2}, X_{3}\right)$ and P^{\prime} has $\left(x_{1}, x_{3}, x_{3}\right) . O P$ is along the direction of observation, and P^{\prime} the integration point (figure I). O is the position of the

Fig. I
scatterer. The distance between P and P^{\prime} is denoted by R.
With regard to the source and sink point, one can write, $\frac{\partial}{\partial x_{v}} f(\bar{R}-\bar{r})=$ $-\frac{\partial}{\partial \ddot{X}_{v}} f(\vec{R}-\vec{r})$, and with the help of this, the equation (5) may be written as

 in the direction of observation, and replace $|\vec{R}-\vec{r}|$ by R since R is very large.

Sauter (1933) has calcujated the value of ψ_{1} and he has found, $\psi_{1} \rightarrow$
where θ is the unit vector along the direction of the incident wave.
Noting that the amplitude a of equation (3) satisfies the following equation,

$$
\left\{i c p(e . \vec{\gamma})-\gamma_{4} E+m c^{2}\right\} a=0
$$

we can turn the above equation (6) in the form (7). Now let us calculate ψ_{2} from the recurrence relation (6). Thus

$$
\psi_{2}(\vec{R})=\frac{1}{4 \pi \hbar c}\left\{\sum_{v} \gamma_{\bullet} \frac{\partial}{\partial X_{v}}-\gamma_{4} \frac{E}{\hbar c}-\frac{m c}{\hbar}\right\} \gamma_{4} \cdot \int \frac{e^{2 \pi i p / h(\overrightarrow{R-r})}}{|\vec{R}-r|} \cdot V(r) \cdot \psi_{1}(r) d \tau_{r}
$$

Substituting the valpe of $\psi_{1}(r)$ from equation (7) we have

$$
\begin{aligned}
& \int_{1} \frac{e^{2 r i p / h}(\vec{R}-\vec{r})}{|\vec{R}-r|} \cdot V(r)\left[\frac{e^{2 \pi i p / h}}{r}\left\{-2 E+i c p\left(n_{1}-e \vec{\gamma}\right) \cdot \gamma_{4}\right\} a \int V\left(r^{\prime}\right) e^{2 \pi i p / h\left(e-n_{1} \overrightarrow{r^{\prime}}\right)} d \tau^{\cdot}\right] d \tau_{r}
\end{aligned}
$$

where, e, n, and n_{1} are the unit vectors in the direction of the vector \vec{r} (the direction of which has been taken as the 7 -axis), in the direction of the vector \vec{R} (the direction of observation) and, in the direction of the vector; (a variable vector), respectively (vide fizure 2). The angles θ, θ^{\prime} and ω are

Fig. 2
respectively. the angles between the vcctors $\overbrace{c}, n_{1}),(e, n)$ and $\left(n_{n}, n_{1}\right)$, also we replace $\cos \omega$ by $\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \phi$ where ϕ is the angle between the planes containing (c, n) and $\left(e, n_{1}\right)$ vectors.

We set further the following abbreviations:

$$
\begin{aligned}
k & =p / \hbar ; \\
V(r) & =\frac{Z e E^{\prime}}{r} \cdot e^{-t / n} ; \text { and } b=1+\ldots \frac{1}{2 a^{2} k^{2}}
\end{aligned}
$$

Using the above ablureviations, we proceed to calculated ψ_{2}. Thus performing the r^{\prime}-integration in the square bracket of the last expression, and changing the vector $\left(n_{1}-e\right)$ into its polar forms, we can write,

$$
\left.\left.+I_{3}-I_{4}\right)\right\}
$$

where,

$$
\begin{aligned}
& \left.L_{1}=\int \frac{e}{r}^{i(1-(1 \operatorname{com} \ldots) r} V(1) 4 k^{2} \sin ^{2} \theta / 2+1 / a^{2}:-2 E\right) a \cdot d \tau_{r} \\
& I_{2}=\int \frac{e^{i k(1-\cos \omega) r}}{r} V(r) \frac{\sin \theta \cos \phi}{4 k^{2} \sin ^{2} \theta / 2+1 / \overline{a^{2}}} \cdot \gamma_{1} \gamma_{4} \cdot a \cdot d \tau_{r} \\
& L_{3}=\int \frac{e^{i h\left(1-\text { ro4 m }^{\prime}\right) \prime}}{r} V(r) \frac{\sin \theta \cdot \sin \phi}{4 k^{2} \sin ^{2} \theta / 2+1 / a^{2}} \gamma_{2} \gamma_{4} \cdot a \cdot d \tau_{r} \\
& L_{d}=\int \frac{e^{i k\left(1-r n_{n} \omega\right) r}}{r} V(r) \frac{(1-\cos \theta)}{4 k^{2} \sin ^{2} \theta / 2+1 / a^{2}} \cdot \gamma_{3} \gamma_{4} \cdot a \cdot d \tau_{r} \\
& \text { 6-1802P-1 }
\end{aligned}
$$

Now if by J we denote the number of particles scattered through unit solid angle per unit time, then J is given by a well known formula,

$$
\begin{align*}
J & =i c\left\{\Psi^{* *} \gamma_{4}(n \cdot \gamma) \Psi\right\} \\
& =i c\left\{\psi_{1}^{*} \gamma_{4}(n \vec{\gamma}) \psi_{1}\right\}+i c\left[\left\{\left(\psi_{1}^{*} \cdot \gamma_{1}\left(n \gamma^{\prime} \cdot \psi_{2}\right\}-\text { its conjugate complex }\right]\right.\right. \text { which } \tag{ro}
\end{align*}
$$ is upto second-order terms.

$$
J=J_{1}+J_{2}=J_{1}+J_{2}{ }^{(1)}+J_{2}{ }^{(2)}
$$

Now

$$
J_{2}{ }^{(1)}=i c\left\{\psi_{1}^{*} \gamma_{1}\left(n \cdot \gamma^{\prime} \psi_{2}\right\}\right.
$$

$$
=i c \frac{1}{4 \pi \hbar^{2} c^{2}} \cdot \frac{c^{-2 r i,} / l / k}{R} \cdot a^{*}\left\{-2 E+i c p\left(n-e^{\prime}, \gamma\right) \gamma_{1}\right\} . \quad \frac{4 \pi 7 c E^{\prime}}{2 k^{2}\left(b-\cos \theta^{\prime}\right.} \cdot \gamma_{1}(n \gamma)
$$

$$
\left.\left.\binom{\mathrm{I}}{4 \pi \hbar^{2} c^{2}}^{2} \cdot \frac{4 \pi Z_{c} \cdot!^{\prime}}{R} \cdot e^{2 \alpha_{1} / l_{1} n}\left(i c p(n \gamma)-\gamma_{1} E-m c^{2}\right) \gamma_{1} \cdot\right] I_{1}+i c p\left(I_{2_{2}}+I_{3}-L_{4}\right)\right] .
$$

$$
=i c \cdot \frac{1}{\left(4 \pi \hbar^{2} c^{2}\right)^{3}} \cdot \frac{\left(1 \pi 7, E^{\prime} E^{\prime}\right)^{2}}{R^{2} \cdot 2 k^{2}} \cdot\left(b-\cos \theta^{\prime}\right) \cdot a^{*}\left\{-2 I \vdots+i c p(n-c, \gamma) \cdot \gamma_{1}\right\} \cdot \gamma_{4}^{\prime} n \gamma^{\prime}
$$

$$
\begin{equation*}
\left.\times\left(i c p^{\prime} n+\quad-\gamma_{1} I!-m c^{2}\right) \cdot \gamma_{4}\left\{L_{1}+i c p^{(} L_{2}+I_{3}-L_{4}\right)\right\} \ldots \tag{II}
\end{equation*}
$$

The differential cross section, after averaging over the initial electron states and the summing over the final states, is ohtained f_{1} om the expression $\frac{1}{2} \operatorname{spur}\left[\begin{array}{c}i c \\ \left(4 \pi \hbar^{2} c^{2}\right)^{2}\end{array}, \stackrel{\left(4 \pi . Z c E^{\prime}\right)^{2}}{R^{2} \cdot 2 k^{2}} \cdot \stackrel{I}{\left(b-\cos \theta^{\prime}\right)} \cdot a^{n}\left\{-!E+i c p\left(n-c, \gamma^{\prime} \gamma_{1}\right\} \gamma_{1}\left(n \cdot \gamma^{\prime}\right)\right.\right.$

$$
\left.\left(i c p^{\prime} \cdot n \cdot \gamma\right)-\gamma_{1} I:-m c^{2}\right) \cdot \gamma_{1}\left\{L_{1}+i c p^{\prime}\left(L_{2}+L_{3_{3}}-L_{1}\right)\right\}
$$

where the values of the intigrals L_{1}, I_{2}, L_{3}, and L_{4} are evaluated in the appendix. It is easy to see that the contribution to the scattering cross section is due to the integral term l_{1}. Hence in calculating the spur value, of the above expression due to the term L_{1} we need only consider the following,

$$
\frac{1}{2} \operatorname{spur} \cdot a^{*} a\left\{-2 E+i c p(n-c, \gamma) \gamma_{4}\right\} \gamma_{4}(n \gamma)\left\{i c p(n \gamma) \cdot \gamma_{4} E-m c^{2}\right\}\left(-\gamma_{3}\right) . \mid \underset{2 F}{|E|+H_{n}}
$$

where $H_{0}=\left(\stackrel{++}{\alpha} p_{0}\right)+\beta . m c, \stackrel{p}{p}_{0}$ is the momentum vector ${ }_{0}{ }^{\text {in }}$ the initial direction, which gives,

$$
\begin{gathered}
J_{0} \cdot E \cdot c^{2} p^{2} \\
\text { where } J_{0}{ }^{2} \rightarrow \underset{v}{ } \rightarrow \bar{a} \cdot \gamma_{4} a j
\end{gathered}
$$

Now, utilising the values obtained in equations (11; and (12) the resultant cross section becomes the following (in this θ^{\prime} has been changed to θ as usual :

$$
J_{2}=2\binom{1}{4 \pi \hbar^{2} c^{2}}^{3} \cdot \frac{1}{R^{2}} \cdot \frac{\left(4 \pi / c E^{\prime}\right)^{2}}{2 k^{\prime}(b} \frac{\cos \theta)}{\left(J_{1} \cdot\right.} \begin{gathered}
1 \\
1 c^{2}
\end{gathered} 1^{2} c^{2}(1-2 \cos \theta) \cdot \prime^{2} \cdot \frac{2 \pi^{2}}{2 k^{3}}
$$

Changing E^{\prime} by - - for clectron, and when $b \rightarrow 1$ for the bare nuclells

$$
\begin{gathered}
I_{2}=l_{R_{1}}^{R^{2}\left(\frac{\ddot{n}_{1}^{2}}{2 m i^{2}}\right)^{2}\left(1-\beta^{2}\right)\left[\begin{array}{cc}
\pi /_{i}^{2} \cdot \beta & 1-2 \cos \theta \\
\hbar_{i} & 1-\cos \theta
\end{array}\right]} \text { where } \beta=\boldsymbol{v} / i
\end{gathered}
$$

The value of J_{1}, has been checked hy this method by sauter (ion3ab) and has been found to be

$$
J_{1}=J_{R_{1}}^{R^{\prime 2}}\binom{\%_{2}}{2 m \tau^{2}}^{2}\left(1-\beta^{2}\right) \operatorname{cosec}^{\prime} \theta_{i}^{\prime}\left(1-\beta^{2} \sin ^{2} \theta_{/ 2}\right)
$$

Thus upto the second-order correction term, we get $J=\begin{aligned} & J_{1 \prime}^{\prime \prime} \\ & R^{2}\end{aligned}\binom{/ c^{\prime \prime}}{2 m z^{\prime 2}}^{2}\left(1-\beta^{2}\right)\left(0 \operatorname{cocc}^{4} \theta / 2\left[1-\beta^{2} \sin ^{2} \theta!2\right.\right.$

$$
\left.+\pi \cdot \alpha \cdot \beta \cdot \sin ^{2} \theta_{l} \cdot\left(\frac{1-2 \cos \theta}{2}\right)+. .\right]
$$

where $\alpha=Z_{i}{ }^{2} / \hbar_{c}$
If R stands fon the ratio of the scattering to the Ruthenford scattering, then upto scoond-order approximation, R becomes

$$
R=\left(1-\beta^{2} \sin ^{2} \theta / 2\right)-\pi / \cdot \alpha_{r} \cdot \beta \sin ^{2} \theta / 2\left(3-2 \sin ^{2} \theta / 2\right)
$$

$W h \geqq t \alpha$, stands for the finc-structure constant.
When still higher terms are calculated, this is consistent expansion in powers of $\% . \alpha_{r}$.

(゚)N(IIUSION

The correction term of order $\% c^{2}$ (relative to the first ordes) found hare is $\pi \cdot \begin{aligned} & 7 c^{2} \\ & \hbar_{c}\end{aligned} . \beta \cdot \sin ^{2} \theta / 2\left(3 / 2-2 \sin ^{2} \theta / 2\right)$ which is not in agicement with that obtained by Mott (1929). His correction term is $\pi \frac{\% e^{2}}{\hbar c} \sin \frac{\theta}{2} \cos \frac{\theta}{2}$. Urban (1942) obtained the correction terms as $\pi \cdot \frac{\hbar \cdot e^{2}}{\hbar c} \sin \frac{\theta}{2}$ as that of Sexl's (1933). But their results originate from errors pointed out by Dalitz (1951). Dalitz's correction term comes out to be $\pi \cdot \frac{\pi e^{2}}{c} \cdot \sin \frac{\theta}{2} \cdot(1-\sin \theta ; 2)$, which is at variance form the
result obtained here. The advantage of the method used here is that it is quite elegant and lucid.

ACKNOWLEDGMENT

The author's sincerest thanks are due to Dr. D. Basu for suggesting this problem as a 1 esearch topic and for his constant help and invaluable counsel at every stage of the investigation.

APPFNIIX

The equaluation of the integrals occurring in (o)
In evaluating the integrals in equation (0), we first consider the integral L_{1} which after the completion of r-integration gives the ϕ-integration in the form.

$$
\int_{a}^{2 \pi} \underset{a-b \cos \phi}{d \phi} ; a>b
$$

in which $a=\lambda-\cos \theta \cos \theta^{\prime}, b=\sin \theta \sin \theta^{\prime}: \lambda \rightarrow 1:$ the $\theta-$ integration may be effected by transforming the integral by the substitution $b-\cos \theta=\%$ to the wellknown form

$$
\int \frac{d Z}{Z \sqrt{ } A Z^{2}+B Z+C}
$$

the values of A, B, C can be easily found out. Thus,

$$
\left.\left.\begin{array}{lll}
L_{1}=\begin{array}{ll}
2 \pi & E \\
i k & k^{-2} b-\cos \theta^{\prime}
\end{array} & \left\{\begin{array}{c}
M \\
2 I \\
1
\end{array} \frac{1}{1}+b\right.
\end{array}\right\}+\sqrt{\left(\frac{M}{2 I}-\frac{1}{1+b}\right)^{2}+\frac{1}{L}-\frac{M^{2}}{4 L}{ }^{2}}\right\} \begin{aligned}
& \left\{\frac{M}{2 I}+\frac{1}{1-b}\right\}+\sqrt{\left(\frac{M}{2 L}+\frac{1}{1-b}\right)^{2}+\frac{1}{I}-\frac{M_{2}}{4 L^{\prime \prime}}}
\end{aligned}
$$

where

$$
\begin{aligned}
L & =b^{2}-2 \lambda b \cos \theta^{\prime}+\left(\lambda^{2}+\cos ^{2} \theta^{\prime}-1\right) \\
M & =2 b-2 \lambda \cos \theta^{\prime} \\
\lambda & =1-\frac{1}{i a k} ; b=1+\frac{1}{2 a^{2} k^{2}}
\end{aligned}
$$

For the integrals L_{2} and L_{3} we see it convenient to take help of the contour integration. Combining L_{2} and L_{3} we have for the $\phi-$ integration,

$$
\int_{0}^{2 \pi} \frac{e^{i \varphi}}{a-b \cos \phi} d \phi ; a>b
$$

and a, b stand for the same values as in L_{1} by changing $Z=e^{i \varphi}$ this reduces to $\int_{i}^{2} \frac{Z d Z}{2 a Z-b-b Z^{2}}=\frac{2}{i} \cdot 2 \pi i$ (sum of the residues at the poles) where F is
the unit-circle. The evaluation of L_{1} may be performed in the like manner. In this evaluation we have neglected the variation of the quantity

$$
\begin{aligned}
\left\{\frac{1}{a^{2} k^{2}}+\frac{2}{i a k}\left(\cos \theta \cos \theta^{\prime}-1\right)^{\prime}\right\} \text { in } d\left[\left(\cos \theta-\cos \theta^{\prime}\right)^{2}-\right. \\
\left.\left\{\begin{array}{l}
\frac{1}{2}+\frac{2}{1 a k}\left(\cos \theta \cos \theta^{\prime}-1\right) \\
a^{2} k^{2}
\end{array}\right]\right]
\end{aligned}
$$

in the limit a. ∞. Thus we have

$$
\underset{a \rightarrow \infty}{L, t} L_{3} \quad \frac{\pi i}{3}\{\pi i+2 \log \tan \theta j 2\}
$$

REFIERENCES
Nalitz R. H, Proc. Roy, Soc., A 226, 509.
I istel, F. 1932, Z f. Phys , 74, 785.
Mott, N. F., 1929, Proc, Koy. Soc, A 124, 425.
Mott, N. F., 1932, Proc. Roy. Soc., A 185, 429
Sauter, F., 1933 a, Z. I. Phys., 36, 18 .
sauter I'., 1933, b. Ann. Phys-LPZ., 6F, 18, 61.
Sexl, T., 1933, Z. f. Phys., 81, 178.
Sommerfeld and Mao, 1935, Ann. Phys. LPZ., 6, 22s, 620.
Urban, P., 1942, Z f. Phys., 119, 67.
Urbau, P., 1943, Ann. Phys. Ipz., 6F. 43. 557.

