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ABSTRACT. In thc present paper it 1s shown that tHe inclusion of the influence of
radiation damping on the scattering of =* meson by profon explains satisfactorily the
variation of the total scattering cross section with cnergy of the incident =' mesoun as
experimentally chservedby Anderson and by Sachs and Steiaberger; for a proper fit to the
experimental curve the value of the couphing constant g2 is 0.56.  The well-known Ileitler's
integral equation for the above problem is, hwever, solved by the semi-variational method
of Ma and ITsnch, becante it is net possible to find an exact solution in this case The
corresponding integral equation for the scattering of =~ meson by proton has been exactly
solved by Ma; a comparison of Ma's result with ours shows that experimentally observed
ratio of the cross section of scattering by proton of #* meson to that of «” meson is
explained by the weak coupling perturbation method which includes radiation reactions.

. INTRODUCTION

It has been mentioned by Bhabha (1940) and Heitler (ro41) that the
theory of radiation damping plays a vital role in the meson theory. In fact,
the wellknown discrepancy between the theorctical and the experimental
results for the cross section of scattering of mesons by nuclcons can be
removed if we consider the effect of radiation damping. Attempts have
been made by several authors (Hcitler, Wilson, Peng and Gora) to take into
account this field reaction. ‘I'hey have replaced the tramsition matris
clement H, (in the Born approximationj by s, where Uy is the solution of
the following integral cquation :

Ui=Hy- iﬁ.\ll'f}hf' pr UpdQp

Iixact solutions of this integrai cquation have been obtained by Heitler
(1941) in the non-relativistic approximation  Since the influence of radiation
damping is important ounly at high energies, it is necessary to have an ¢xact
relativistic treatment of the problem. ‘The solution of the integral equation in
such cases is mathematically very complicated. Exact solutions of this
integral equation can only be had in some particular cases when the kernel
of this non-homogenous equation is degenerate. The formal method of
so'ution of the integral equation with degenerate kernel is toltrausform
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the equation to a system of algebraic equations by a suitable transformation.
By this method, Ma (19.43) and Hsuch and Ma (1g44) have solved the integral
equation for the scattering of a positive meson by neutron and that of a
negative meson by proton.

Here we shall consider the scattering of a positive meson by a proton
and that of a negative meson by neutron. In this case the kernel Hy of the
integral equation is non-degencrate. So the method of solving the integral
equation by transforming it into a system of algebraic equations is not
applicable here. Other methods, such as Fourier and Mellin transformations,
arce not applicable owing to the serious complicacy of the kernel.

The general series solution (Fredholm’s series or ILouville-Newman's
method of iteration) does not always yield tenable results, The difficulty
lies in the fact that the resulting iterated serics cannot in all cases be summed
and even in most relativistic cases, the calculations of higher order terms of
the serics a1c exceedingly involved due to spur calculations. It is scen that
this particular mothod is only applicable in the case of non-relativistic
treatment of scattering of light by electron (Thomson’s formula). In this
case the result agrees with the exact solution obtained by Heitler. In the
relativistic scattering of the pseudoscalar charged positive meson by proton,
this method is absolutely untenable.

In -view of this difficulty, it is dcsirable to find approximate solutions
of the problemm. Of the approximate solutions proposed by Wilson and
Hsueh and Ma, the semi-variational procedute of the latter is moie reliable.
By this approximate solution Basu (1g9jg, 1951) in the scattering of neutron
by proton at high cnergies has obtained a result which is in good agreement
with the available experimental results. So we apply here this semi-
variational procedure in the scattering of positive meson by proton and that
of negative meson by neutron.

Rccently, using pseudoscalar meson field, Corinaldesi and Field (1049,
(1g50) attempted to take into consideration this field reaction in the non-
relativistic scattering of positive meson by proton. But they have not solved
the inicgral equation rigourously. Only for qualitative analysis they have
replaced the transition watrix element Uy in the damping term by an average
over all angles. DBut this is not mathematically justifiable.

In this papcr we shall assume the pseudoscalar meson field and our
calculation has been pertormed in the case of pseudoscalar g, coupling only.
In the last section a comparison of the theoretical results with the
experimental one obtained by Anderson and Steinberger (1951,1951) has
heen made by means of a graph. ‘The graph shows the energy dependence
of the damped cross section. A higher value of g, has been suggested in
order that the theorctically obtained damped crosss ection to be in good
agreement with the experiinental one. Another feature of the curves drawn
may be mentioned. It has been shown that the damped cross section of
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the positive meson by proton is larger than that of the negative meson by
proton. This is also an experimental fact.
For simplification, we have used throughout k=c=1,

METIIOD AND SOLUTION

The matrix element U/; which determines the transition from an mitial
state i to a final state f, in the theory of radiation dampmf., is the solution
of the following integral equation :

l"ﬁ"“’[,ﬁ‘1."'\:/‘{'{"{’(,(‘:/'/11!2!‘ e D
[

Here py denotes the density of the energy level corresponding to the state f'.
Hy is the scattering amplitude 1 the ordinary pegturbation theory. The
integration and summation are to be carried out over all directions und
polarisations of the state f'.

As mentioned above, in this particular case of the scattering eof a
positive meson by a proton, the kerncl Hy of the equation (1) is non-
degenerate. So exact solutjons canmot be had. We therefore look for
an approximate solution of (1) by the semi-variational method proposed by
Hscuh and Ma (1945).

An equivalent form of equation (1) is the following :

\‘\'/‘5(’ [1/ ”/, nl-qur; I {,[’;11&’ -I/’rd-(-r—~(> (

.

where 8U*,is the arbitrary variation of the complex conjugate of /4.
Equation (1) holds for all cases if (2) is satisficd for any arbitrary variation
of 3U*,;.

Let us assume a trial solution vH; of 17y
i.e. Up=aHg e (3)
where x is a parameter not depending on the final or initial state, fori.
Then equation (2) must hold good for the solution AHy of Ug.

Substituting (3) in {2) and varying x we get

Ba* X X f Hﬁ[“:](\— 1A in 3 an Hyipy d iy ]md‘lrww e ()

On solving for x wc have

a
r= o |
' a+ib 5)

where

a=2 -\-:f HyH pyd€Yy (6a)
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and b=xX3XX ff H. HyH pprpd L f A’ (6b)
A

where again cach of these processes, Hy, Hy, etc takes place in two successive
stages through some intermediate states which we denote by n, n’” and n”.
Hence from (6) we write

cxxs [ HuHudHy
=X XA XN (i
’ ‘j 7 " AI‘ (l':’_Ell)(El b l?,,ll,’rd (2[ (7ﬂ)
and
b= s Ef I-{mll”(lh"'l.l. "’f'_H (’u"}{u"t dQpd ) ... [(=b)
T TR N TR TR N (,':I~FU)(EA_I.’:;:’\(E,--E"'.) PPy f f 7

Now for the pscudoscalar charged meson field, the total Hamiltonian
density is
Hy=zn*7+{grad ¥". grad ) + n*y*Y v |
and for the nucleon field,

v}
~

Ilz'-‘fp:[ : z, grad +/3.M]7: R (7))

where & and 8 are the Dirac-mmatrices and the mass of the nucleon is M. ¢
is an eight-component column matrix :

(78 ¢y (2
p= where ¢p=| ¢ Jand ¢v={ . (10)
AN hy Py

The Hamiltonian density for the interaction field (in case of pscudoscalar
g.-coupling only) is given by

Hy=~ ¥ {qn)g{'o yrmely + §iyimvrp )y} o (i)
where oi=ipf3
Y =Y Y2YaYa N v (12)
T:-\'=( 2; )aud rw=( (1)2 ) J!

Here we will discuss the process involving positive meson hy proton.
The second order process is schematically given by
Y*(p)+P(-p)+|N(-p-p)]
-> P(-p’)+P(~Dp) { (13)
— P(=p)+y (@) +[NC-p-p)])
where the frame of reference has been so chosen that the momenta of two
particles are equal and opposite.
In the above scheme Y'(pP) represents a positive meson particle with
momentum p; P(—p) represents a proton with momentum—p and N(—p—p"
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in the square bracket stands for ncutron with momentum (- p—p’) in the
negative energy state.

The second-order matrix element for the above process (13) is given by
the theory of perturbation (Corinaldesi and Field).
III!'_:a‘_y'(Pf)I'I'a,(P,) ee (14)
where a (p) satisfies the Dirac equation for the nucleon
[(2.P) +BM]a’P) = Ea(P)

and H'= -——:’ﬂ:f—_—{ nom b TR M } e 15

) DL
wlere IV is the periodicity volume, P=p, - Proe=vVip, +pl = yiplt
P, Ev= VPR MY K= (P + M), E= M2+ M%) and P ostands for
the nuclcon momentum and p for the meson momentum.

In order to simphty calculations we take the refeience system in whicli
the centre of gravity of the proton and meson is at rest. So

Pi=-p:; Pr=—Dy

We shall also usc the conservation of encrgy between the initial and the

final states. Hence it follows that
|P1|=|p||=|Pfl:,pfl=l)
and
e, =¢,=¢; E,=1., =L

and the angle between the initinl and the final directions of meson

isfi.c.
(pt, pr:":]’z COS b

With these above simplifications, the matrix ciement for the process

under investigation reduces (o
y Zﬂ‘,l,’2 * {(il'—li""7(p¢ +p/)+]”/3}
p=— """ SR B T e,
Ie (=)= [?
T'ne cvaluation of the expressions ¢ and b given in (6a, 6b) with (16) as

the matrix element is laborious but straightforward.  We shall use the usual
method of summing over the spin states. Thus

2 '." 2 . P o .
a= (f/f“e;:z fr /{'/1 +Bcos 6/ X —2p* cos 6,]°dSY, ... (17)
AV e
2 (e—=E) M*  (e—L)* ., M
v = R _ . A —_—, e — -} axn B
where A=p PEIR + 2 e % o

2 B Esm;ﬂl
" 4 —,u" I _]

B=p*| a*(3x* +1) +a%, =5

E.e
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N=(E—et= M2 = 2p?
and x stands for the ratio p/p, p is the meson momentum and pu is the
meson mass
and
b= -| gfrg') I'fl'l"'-[/ o l(F,+F...+'I"3+E4)dﬂfd(2r' ‘
[ D0 GEMN ~2p* cos 0,1, (X - 2p* cos 0,0) (N — 2p? cos Bp)
(18)
where
Fo=[3h" (e = )+ (6 = E) {2M2E2 + M2 (2 Ee = p ) + 212p2)
4 (2e-- BV = EYOE? + M?) 4 2M? 137}
4 (e~ E)aM?E(20i¢ - p*o + aMp*E” + 3p*E}
1 127+ M2E (2Fe = p") + 3 e p* + 2 M3 p2e?
4 pP(Fe— p2) M2 L + pUEE + p*)
Fo=p?| (Fe—=EY¥+ (6= E)* (4 E* = M*) + (e = E) {213 + [5p?
FMPE + (2% + 31ip? = M2E)}+ MPE(E +¢)
4 Fe(Ee—=p*) = M*(2Ee — % + 2pEe + 2M? e
+ 42t — 2 M + 2p*] cos O,
Fy= p*[le= IDHE® + 3p°) + (e = E){E*c + 7Ep° + 3 1< M*}
+ M2(E 4 e) + p2E*+ p*) + 2p? 2 + 2p*Ee + 2p*] cos 0,
F=p'[{3M?Ee+ 3E%(c ~ E)* + 4E*p* + 2p°Ee 4 p*(e— E)* +2p%}
+(e— ENE*c¢+ Me+ Ii(e - E)*+ 215"
+ep?+6Ep*}] cos Oy
and X is the same as in eqn (17),
6., 6, and O are the angles through which the meson has been scattered.
If we denote by dQ, the differential scattering cross section in which
the radiation damping has been neglected and by dQ, the cross section
including radiation damping, then from (5)

aQ=4dQ, (1+:2) ... l19)
where b and a are given by (6a) and (6b)
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Now dQu = (;

4 A+DBcos
dQ,= & 4 ST C08 7 % gQ) ve (200
2 2]:* {(.\’ —2p*® cos 6)? } 2

where 4, B and X arc given by (17).
Integrating over the entire 1ange of angles, we have from (17) and (18),
for the expressions of a and b, the following results.

Hence from (16)

a=npsg* F,(x) o (20)

1
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where Fo/x) ={[(k*+ 15 {(1 + x%) + (k2 + 1% = 2(1 + A7) 2k + 1 %) 13}
R+ x%) + (k24 a%) — 201 + x2) R+ 3 )V + 20
+h b 22 (k2+ %) - (kP + )+ 4k A7) (a0t

+ox] i (R ()Y ra) M/ (22 -1)
1 ) 2 . 2
—(Iog:—_—?)[.\-”h.\" 4?28 (4 B2y

where a stands for pjpu; k=M/pand 7= (f:—l =- M— -
2f”

2p’

— b2 ,(.’f i - .
and b= —ap, P hb(\)

u+ 2 9 2.1/ .y " 9
where Fb(.\‘;=<l()g7_ :) [k + e )P+ 3k 107

0

for %) kT ) =2l )RR )
gtk ) 2x (R4 )+ 2% A
N S T SR LA SR Lo B RC S (SR L
— P+ AP 4 T 2R ) P kBT ) (R 2
[k 425 (47 —2(04 2F) PR + VU] 4 2 (k2 4 )
(a6 (kY

where again, k, X and 2 represent the same values as in a.
From the values of b and a as calculated above, we have

2
b*_ 1 gt P Fylx (23)
a* 16(amy (E+e)* | Falv) ?
It follows froin (1g) that the total cross section
)
7: VL()
¢ 1+ b%a

where 0, can be evaluated from (20) and b*/a* has been given by (23).
Integrating over the entire range of angles, we have from (20)

4 Falx)

- £
Qo .7.4"'3”23_’ ,\"')

- . 1 .
Where p is the nieson mass and p, A and F.(x) arc the same as given

by (21) and (23).

COMPARISON WITH EXPRERIMENT

The energy dependenec of the total cross section including radiation
damping has been shown by means of the graph (Figure 1). We have taken



624 S. N. Biswas

the mass of meson to be 276.m,, (me=mass of clectron) hence the ratio M/u
takes the value 6.67. In figure 1, the variation of cross sections with energy

‘IT+
6 T I
! 4
X 8 1T d
T
-"\
i %
1 N 2 ) ] 1 )
So 160 240

Meson energy in Mev >

Fic. 1

has been studied in comparison with the cxperimental results, The general
agreement of the theoretical results is fairly yood. ‘I'he effect of radiation
damping is predominant at 180 Mev meson cuergy (kinetic cnergy). The curve
rapidly rises from 2.7 to 15.5 at encrgies hetween 60 Mev to 135 Mev energy.
The curve falls down from and after 180 Mev showing the non-divergency
of the result. The cross points stand for the experimentally observed
values., lixcept at 135 Mev, the curve is seen to be in good agreement
with the experiment,

In order to fit the theoretical values in agreement with the experimental
ounes, a siightly higher value of g* has been suggested. The value taken is
0.56. This value of g? is reasonable since it will not disturb the convergency
of the higher order cross section terms according to the pertuibation theory.

Curve I (in figure 1) represents the total cross section of positive meson
scattering by proton. Corresponding experimental values have been shown
by cross points.

Curve 11 (in figure 2} represents the total cross section for the scattering



Influence of Radiation Damping on Scattering, etc. 625

of negalivg meson by proton. The cross scction has been evaluated from
the following result of Heueh and Ma (1o44).

w

L

The ratio of =* to =~ scattering by
L

proton including radiation damping.

1 1 i A d

0 140 8o 120 160
Meson cnergy in Mev
F1G. 2

The totul cross scction for this case according to the pseudoscalar
theory using speudoscalar coupling (g, coupling) only.

$7 K2+K2+ (K=K

LAY S - ey Py ey o
here = PlAUi+e) +BM
wherc K= Yol + o= 3}
k.= P AM+BE+s)
2T AE + )il +e)* — M2
with A= -g2 I

=—-g"'M
C= -p[__g”: (e*+ p* + 215«:)]
m

T'his cross section varies from 2.7 to 6 at energy 8o to 200 Mev with a
highest peak of value 7 at 180 Mev energy. ‘The values have been calculated
taking g to be o0.56. This gives us an excellent agrecment with the
experimental result.

In figure 2. the ratio of positive meson scattering to negative meson
scattering including radiation damping has been drawn. The values very
from 0.5 to 2.3 at energy o Mev to 200 Mev. The experimental point 1.8
at 72 Mev is slightly at variance with the theoretical result 1.8 ‘at 8o Mev

7 —1802P—12
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energy. The experimental point shown by cross point is from the result
of Steinberger (1951).

CONCLUSION

I'ie present paper brings out two points: the influence of radiation
reactions begins to assert itself from 200 Mev. The scattering by proton of
#' meson is greater than that of »~ meson, the difference in the two cases
consists in two types of intermediate states, in the former the scattered meson
is emitted before the incident meson is absorbed, so there are two mesons
in the virtual state, whereas, in the latter case the incident meson is absot bed
before the scattered meson is emitted. Because of this difference the matrix
clement for the former case has larger value than that for the latter. This
result is in contradistinction to an observation made by Brueckner (1g52)
about the weak coupling theory.
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