A NOTE ON THE PROBLEM OF DISLOCATION IN A SEMI-INFINITE PLATE CONTAINING A CIRCULAR HOLE*

By B. KARUNES
Department of aplied Physics, Unitersity Collegib of Scifnci and
technolomis, Calcutta
(Reccivcd for publication, April 23, 1952)

Abstract

A stress function giving the stress distribution due to dislocation in a semi-infinite plate containing an unstressed (ircular hole near the straight cdge of the plate is obtained in bipolar co-ordinates after the work of Ghosh on the problems of dislocation in a circular plate containing an eccentric hole. The circumferential stresses over the hole boundary and the stiaight edge ate calculated.

INTRODUCTION

Solutions to two problems of dislocation in a circular plate containing an eccentric circular hole are given by Ghosh (5926). The dislocations that he has considered are due to (1) a fissure of constant width joining the two boundaries and (2) a wedge shaped fissure with its wider end on the hole boundary. He has solved the problems in bipolar co-ordinates taking the apex of the wedge shaped fissure at the origin of the relevant Cartesian coordinates. It can be casily verified that his solutions hold good in cases of similar dislocations in a semi-infinite plate containing a circular hole near its straight edge, while the fissures are between the hole boundary and the straight edge or between the hole boundary and infinity, along the axis of symmetry of the hole. The apex of the wedge shaped fissure still remains at the origin of the Cartesian co-ordinates and the wider end of the wedge on the hole boundiy. In the present paper a solution is given to the problem of dislocation due to a wedge shaped fissure in a semi-infinite plate containing a circular hole, where the apex of the wedge may be anywhere on the axis of symmetry. The solution is obtained by choosing a stress function equal to the sum of the stress functions required for the cases of a parallel fissure and a wedge shaped fissure with its apex at the origin.

THESOLUTION

In the solution we shall use bipolar co-ordinates in the same notations as those used by Jeffery (1921), so that $\alpha=0$ represents the straight edge and $\alpha=\alpha_{1}$ represents the hole boundary. Let us choose a stress function

$$
\begin{equation*}
h x_{0}=A \alpha \sinh \alpha+B \alpha \cosh \alpha \tag{I}
\end{equation*}
$$

which gives the following multiple valued terms in the displacements.

* Communicated by Prof. P. C. Mahanti.
$u=\frac{\lambda+2 \mu}{2 \mu(\lambda+\mu)}(A \sinh \alpha+\beta \cosh \alpha) \begin{gathered}\beta \sin \beta \\ \cosh \alpha-\cos \beta\end{gathered}$

$v=$| $\lambda+2 \mu$ |
| :---: | :---: | :---: |
| $2 \mu(\lambda+\mu)$ |\(A(1-\cosh \alpha \cos \beta)-B \sinh \alpha \cos (j\} \begin{gathered}\beta

\cosh \alpha-\cos \beta\end{gathered}\)
Then at the batier $\beta= \pm \pi, u$ is continuous and r has a discontinuity equal to

$$
\begin{gather*}
\tau_{0}=\begin{array}{c}
\lambda+2 \mu \\
\mu(\lambda+\mu)
\end{array}\left\{A+B \underset{\sinh ^{2} \alpha}{ } \quad \begin{array}{c}
\sinh _{1}
\end{array}\right\} \pi \\
=(\cdot+1)_{r_{u}} \tag{3}
\end{gather*}
$$

where

$$
\begin{gather*}
y_{n}=y \cdot \text { ordinate at } \beta= \pm \pi \\
\left(=\begin{array}{c}
\lambda+2!\mu \\
\mu(\lambda+\mu)
\end{array} \cdot \Lambda \pi\right. \tag{4}\\
L=\begin{array}{c}
\lambda+2 \mu \\
\mu(\lambda+\mu)
\end{array} \quad \beta \pi
\end{gather*}
$$

Therefore, the chosen stress function will suit the state of dislocation due to a fissure bounded by the planes

$$
\begin{equation*}
r= \pm\left(c+D_{y}\right) \tag{5}
\end{equation*}
$$

By adjusting the values of C we shall be able to get point of intersection of these two planes at any desired point on the y-axis, and the value of D will determine the apex angle of the wedige. When $C=0$ we get a wedge shaped fissure with its apex at the origin and when $D=0$ we get a parallel fissure.

To obtain the complete solution to the problem we must add a stress function $h X_{1}$ to $h \lambda_{\text {, }}$ such that $h X_{1}$ produces on stress over the straight boundary $(\alpha=0)$ and at infinity $(\alpha=0, \beta \cdots \sigma)$, where $n o$ stresses are produced by $h^{\prime \prime}$ either ; and the sum ($h X_{0}+h_{1} X_{1}$) produces n) stress over the boundaty of the hole ($\alpha=\alpha_{1}$). It can be verified that all these 1 erquirements are satisfied by the stiess function

$$
h \chi_{1}=B_{11} \alpha(\cosh \alpha-\cos \beta)+\left\{A_{1}(\cosh 2 \alpha-1)+c_{1} \sinh 2 \alpha\right\} \cos \beta \quad \ldots \quad \text { (6) }
$$

where

$$
\begin{align*}
B_{0} & =2 C_{1} \tag{7}\\
& =-\left\{\Lambda+B\left(\cosh \alpha_{1} \sinh \alpha_{1}-\alpha_{1}\right) \operatorname{cosech}^{2} \alpha_{1}\right\} \operatorname{coth} \alpha_{1} \\
A_{1} & =\frac{1}{2}\left\{A+B\left(\cosh \alpha_{1} \sinh \alpha_{1}-\alpha_{1}\right) \operatorname{cosech}^{2} \alpha_{1}\right)
\end{align*}
$$

Calculating the stresses $\widehat{\beta}$ over the boundaries from the complete stress function ($h X_{0}+h X_{1}$), we get over $\alpha=\alpha_{1}$

$$
\begin{gathered}
a \widehat{\beta} \beta_{1}=2\left(\cosh \alpha_{1}-\cos \beta\right) \operatorname{cosech}^{2} \alpha_{1} \\
\times\left[B\left(\alpha_{1} \cosh \alpha_{1}-\sinh \alpha_{1}\right)-\left\{A \sinh ^{2} \alpha_{1}+B\left(\cosh \alpha_{1} \sinh \alpha_{1}-\alpha_{1}\right)\right\} \cos \beta\right]
\end{gathered}
$$

and over $9=0$

$$
{ }_{a \beta \beta_{0}}=2(1-\cos \beta)\left[A+\left\{1+B\left(\cosh \alpha_{1} \sinh \alpha_{1}-\alpha_{1}\right) \operatorname{cosech}{ }^{\prime \prime} \alpha_{1}\right\} \cos \beta\right] \ldots \quad(9)
$$

ACKNOWLHIDGMENS

The author wishes to express his respectul thanks to Dr. S. Ghose, under whose suggestion and guidance the note was prepared.

RIFFHRENCLS

Ghosh, S., 1926, Bul. C'al. Math. SOC., 17, 4, 265.
Jeffery, G. B., 1921, Phil, Trans, Roy. Soc., A221, 245.

