THE SPECTRUM OF HIGHLY IONISED IODINE-I VI

By S. G. KRISHNAMUR'TY and I. FliRNAND()

(Reccived for publication, Nov. 8, 19,8)

Abstract

Using the regular and irregular doublet laws, appropriate lines possibly. belonging to the spectrum of indine VI have been picked up from the far ultraviolet data of highly ionised isdine due to Mlochs and lielici, and a scheme set up The important intervals $5 \dagger\left(3 P_{0}-{ }^{3} P_{1}\right)$ and $5 p\left({ }^{3} Y_{1}-P^{3} P_{2}\right)$ have been found to be $3593 \mathrm{~cm}^{-1}$ and $10.24 \mathrm{~cm}^{-1}$ respectively.

Our knowledge of the spectrum of bighly ionised iodine is as yet vety meagre. In a previous publication, onc of the authors (Krishnamurty, 1935.) reported a regularity in the spectrum of trebly ionised jodine and set up a scheme consisting of the $6 s, 6 p$, and $5 d$ terms. Since then Blochs and col laborator (I 937) published a long list of lines of highly excited iodine from λ_{200} to $\lambda_{\mathrm{I}, 000}$. They showed that the excitation obtained in their experiments was very high, by picking up from the list, two lines belonging to I VIII.

However, they did not classify their data into the lines belonging to I VIl, VI, V, etc, bat only into seven groups denominated $2-, 2,2+, 3^{\cdots}$, $3,3^{+}$, and 4 in increasing order of excitation. They point out that all lines attributed to I II are contained in their group 2. Group 3, they think, contains "about all" the lines due to 1 IIl but as no reliable analysis of I III lines is as yct made, they do not feel sure of this conclusion. Group 4 contains, according to them, lines due to iodine IV, V, VI, VII and VIIl.

Starting from the clue afforded in the last sentence, we made an attempt in the present paper, to pick out from the data given by the Blochs, lines of I VI, which are expected to result from the allowed combinations of the terms listed in Table I.

Table I
'rerms of I VI

Spectrum of Highly lonised Iodine-I VI

The main procedture adopted is the application of the law of variation of the frequencies of corresponding lines in iso-electronic spectra as shown in Table II.

Tabies II
Corresponding lines in Cd I-like spectra

\begin{tabular}{|c|c|c|c|}
\hline Epectrutu. \& $5 p^{3} P_{2}-5 d^{3} D_{3}$ \& $5 r^{3} r_{1}-5 d^{3} I_{2}$ \& $5 P^{3} P_{0}-5 d^{3} r_{1}$

\hline In II \& 56479 26.128 \& $$
5_{275 \cup 3}
$$ \& $$
{ }^{598 \times 2}
$$

\hline Sn III \& 8260782450 \& $$
8_{26328}
$$ \& $$
{ }_{3776908}
$$

\hline Sb IV \& 10725923853 \& ${ }^{1125} 3282553$ \& $$
{ }^{114477}{ }_{29626}
$$

\hline 're V \& $$
131112
$$ \& $$
\mathrm{J}_{3} \mathrm{I}_{25162}
$$ \& $$
144103_{22049}
$$

\hline I VI \& 154055 \& 163276 \& 166152

\hline Spectrum \& ${ }_{5} p^{3} P_{2}-5 p^{2}{ }^{3} P_{2}$ \& $5 p^{3} J_{1}-5 p^{2}{ }^{3} P_{1}$ \& $5 p^{3} I_{2}-5 s^{2}{ }^{3} S_{0}$

\hline In 1I \& $$
{ }^{59735}{ }_{15599}
$$ \& 68988

15023 \& $$
63036_{16872}
$$

\hline Sn IIt \& ${ }^{75334}{ }_{15623}$ \& 74921×1761 \& $$
79908_{16014}
$$

\hline Sb IV \& ${ }^{00957} 15^{65} 8$ \& 89682 \& $$
95952 \times 555
$$

\hline 'Ie V \& $$
{ }^{106595}{ }_{15702}
$$ \& ${ }^{104396}{ }_{14819}$ \& ${ }^{111707} 15468$

\hline I VI \& 122297 \& 119215 \& 127175

\hline
\end{tabular}

Table 1 II
Scrcening Constants.

Z	Spectrum	$5 p\left({ }^{3} \Gamma_{1}-{ }^{3} \Gamma_{2}\right)$	S	$\Delta . S$	$\Delta^{2} S$
48	Cd II	1171	33.03		
49	In II	2478	30.94		. 75
50	Sn 1II	403.1	29.6		. 34
51	Sb IV	5^{860}	28.6		. 21
52	Te V	7974	27.81		. 12
53	I VI	10.43	27.14		

As far as possible, only group 4 lines of the Blochs were selected in this process. which yielded the scheme presented in Table. IV. Further
confirmation for the selection was obtained from the law of variation of screeing constants shown in Table III.

The numbers printed above the frequencies in Table IV represent the group to which the selected lines are assigned in the list of the Blochs. It will be seen that some gioup 3 lines are also selected for the scheme. It is hoped that, in view of the want of absolute certainty in the assignment of the lines to the varions known stages of excitation, these lines will fit ultimately into the I VI scheme, when further work on I III, I IV etc., which is in progress, is completed. The behaviour of intervals and intensities is throughont nomal. Onc line, 1 I 5 fo55 (20) looks quite of an abnormal intensity, but in addition 10 representing the present combination, which should be about the brightest liee (compare intensities of the $5 d^{3} D$ - $5 f^{3} I$ ' multiplet with other multiplet hnes) it (alone) is found to represent another combination in I VII too.
'T'able IV
Multiplet Scheme of I VI

Dipartment of Peysics,
Prisidency Colliger, Madras
REFERENCES
Bloch and Felici, 1937 Jour. de Ploy. ct Rad., 8, 9.
Krishnamurty, S. G., 1936, Proc. Lond. Phy. Soc., 48, 277.

